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Abstract

A method for incorporating multi-resolution capabilities within pre-existing global 3-D
spherical mantle convection codes is presented. The method, which we term “geomet-
ric multigrid refinement”, is based upon the application of a multigrid solver on non-
uniform, structured grids and allows for the incorporation of local high-resolution grids5

within global models. Validation tests demonstrate that the method is accurate and ro-
bust, with highly efficient solutions to large-scale non-uniform problems obtained. Sig-
nificantly, the scheme is conceptually simple and straightforward to implement, negat-
ing the need to reformulate and restructure large sections of code. Consequently, al-
though more advanced techniques are under development at the frontiers of mesh10

refinement and solver technology research, the technique presented is capable of ex-
tending the lifetime and applicability of pre-existing global mantle convection codes.

1 Introduction

Mantle convection is the “engine” that drives our dynamic Earth. Quantitative mod-
elling of this process is thus essential for understanding Earth’s dynamics, structure,15

and evolution, from earthquakes and volcanoes to the forces that build mountains and
break continents apart. Whilst 2- and 3-D Cartesian models have provided important in-
sights into a range of mantle processes (e.g. McKenzie et al., 1974; Gurnis and Davies,
1986; Davies and Stevenson, 1992; Moresi and Solomatov, 1995; Labrosse, 2002; van
Keken et al., 2002; Lowman et al., 2004; King, 2009; Lee and King, 2009; Hunt et al.,20

2012), 3-D spherical geometry is implicitly required to simulate global mantle dynamics
(e.g. Tackley et al., 1993; Bunge et al., 1996, 1997; Zhong et al., 2000; Oldham and
Davies, 2004; McNamara and Zhong, 2005; Davies, 2005; Nakagawa and Tackley,
2008; Schuberth et al., 2009; Davies and Davies, 2009; Wolstencroft et al., 2009; Tan
et al., 2011; Styles et al., 2011; Davies et al., 2012). However, large-scale global mantle25

convection models of this nature place extreme demands on computational resources.

2250

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 2249–2285, 2013

Geometric multigrid
refinement

techniques for mantle
convection

D. R. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

This is particularly true with pre-existing 3-D spherical mantle convection codes, such
as TERRA (Baumgardner, 1985; Bunge et al., 1996; Yang and Baumgardner, 2000),
CITCOMs (Moresi and Solomatov, 1995; Zhong et al., 2000, 2008), STAG3D (Tackley,
1996, 2008) and OEDIPUS (Choblet et al., 2007), which are based upon structured,
uniform (or quasi-uniform) discretizations and closely coupled solution algorithms.5

Whilst the uniform discretizations and algorithms used in such codes have their ad-
vantages in terms of storage, data structure and parallelization, they do not exploit com-
puter power to its full potential, since local variations in resolution are not possible. Con-
sequently, despite the large supercomputing clusters available today, these codes have
difficulty in resolving the important fine-scale physics (i.e. thermal boundary-layers, up-10

welling plumes and downwelling slabs) within a high Rayleigh number global mantle
convection simulation. The development of efficient multi-resolution numerical meth-
ods for such problems has become a major goal of current research.

In computational engineering, non-uniform resolution is usually attained via unstruc-
tured grids, with solution accuracy and computational efficiency improved through15

error-guided grid adaptivity (e.g. Peraire et al., 1987; Hassan et al., 1995; Nithiarasu
and Zienkiewicz, 2000). Such techniques (and similar adaptive techniques that are
based upon hierarchical mesh refinement) have recently been applied within the man-
tle dynamics community (e.g. Davies et al., 2007, 2008; Stadler et al., 2010; Leng
and Zhong, 2011), leading to the development of several state-of-the-art computa-20

tional frameworks for simulating global mantle convection. The most notable examples
are: (i) Fluidity (Davies et al., 2011; Kramer et al., 2012); (ii) ASPECT (Kronbichler
et al., 2012); and (iii) RHEA (Stadler et al., 2010; Burstedde et al., 2013). Such codes,
which employ cutting-edge methods in mesh refinement, solver technology and paral-
lelisation, open up a whole new class of problems for mantle dynamics research, as25

demonstrated by Stadler et al. (2010). However, although perhaps more limited in their
applicability, more established codes, which are based upon older numerical methods,
remain heavily utilised within the community (e.g. Nakagawa and Tackley, 2008; Schu-
berth et al., 2009; Davies and Davies, 2009; Nakagawa et al., 2009; Zhang et al., 2010;
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Wolstencroft and Davies, 2011; Tan et al., 2011; Davies et al., 2012; Miller and Becker,
2012; Bower et al., 2012). A means to extend the lifetime and applicability of such
codes is therefore highly desirable.

In this paper we introduce a method, which we term “geometric multigrid refinement”
(e.g. Brandt, 1977; Thompson et al., 1992; Albers, 2000), that offers a practical solu-5

tion to the limitations of current codes. The approach maintains the key benefits of the
current uniform discretizations, but allows for local variations in resolution. It is concep-
tually simple and, perhaps most importantly, straightforward to implement. In addition,
it is suitable for finite element, finite difference and finite volume schemes and, thus, is
applicable to several codes within the community.10

The paper begins with a general introduction to the underlying methodology. The nu-
merical issues involved in implementing the scheme are then outlined. The technique
is subsequently validated, using the well-established 3-D spherical mantle convection
code TERRA as a basis: model predictions are compared with analytical and bench-
mark solutions (e.g. Hager and O’Connell, 1981; Richards and Hager, 1984; Bercovici15

et al., 1989; Stemmer et al., 2006; Choblet et al., 2007; Tackley, 2008; Zhong et al.,
2008). Results indicate that the proposed methodology is highly successful, generat-
ing accurate solutions at a reduced computational cost. Although a thorough validation
of TERRA is beyond the scope of this study, results also demonstrate that TERRA is
robust and accurate for the class of problems examined herein.20

2 Methodology

2.1 Geometric multigrid refinement

Geometric multigrid (e.g. Brandt, 1984; Briggs et al., 2000) is an amalgamation of ideas
and techniques, combining iterative solution strategies and a hierarchy of grids, to form
a powerful tool for the numerical solution of differential equations. The basic idea behind25

the technique is to work not with a single grid, but with a sequence of grids (“levels”) of

2252

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 2249–2285, 2013

Geometric multigrid
refinement

techniques for mantle
convection

D. R. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

increasing coarseness, to improve the slow convergence of classical iterative/relaxation
methods (see, for example, Brandt, 1984, for further details). Multigrid schemes can be
applied in combination with any of the common numerical discretization techniques
and, consequently, have been widely used within the geodynamical community (e.g.
Baumgardner, 1985; Tackley, 1996; Bunge et al., 1997; Zhong et al., 2000; Kameyama5

et al., 2005; Choblet et al., 2007; Tackley, 2008; Zhong et al., 2008).
Excluding the recent examples cited above, the mantle convection modelling commu-

nity has generally applied multigrid to programs with uniform discretizations at each grid
level (Fig. 1a). This makes programming more straightforward and avoids the compu-
tational overhead of dealing with varying mesh spacing. However, as outlined above, in10

global mantle convection simulations, uniform grids lead to an excessive problem size
and, hence, models that are computationally inefficient. Grid-refinement is needed, pre-
dominantly in the system’s boundary layers, whilst coarser resolution is often sufficient
away from the boundary layers, where the solution is smoother. Fortunately, geometric
multigrid algorithms are not restricted to truly uniform discretizations.15

The approach described here recovers the flexibility of non-uniform grids by exploit-
ing the fact that the various grids used in the usual multigrid cycles need not extend
over the whole domain (e.g. Brandt, 1977; Bai and Brandt, 1987; Thompson et al.,
1992; Lopez and Casciaro, 1997; Albers, 2000). The finest levels may be confined to
progressively smaller subdomains, thereby providing higher resolution where required.20

These “local patches” are treated identically to “global” grids in the multigrid algorithm,
only that their boundary values are obtained via interpolation from coarser grids, where
needed. In such a structure, the effective mesh-size in each region will be that of the
finest grid covering it. It is the limited extent of the fine-grid that provides the benefits
to the method.25

To illustrate this concept, consider a simple domain, consisting of four grid levels that
are discretized by quadrilateral elements (Fig. 1b). Suppose grid level one and two
extend over the entire domain, as is standard practice for multigrid programs. How-
ever, grid level three is confined to a smaller region, in the domains lower-right-hand
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quadrant. Grid four complements grid three, with further localized element subdivision.
Thus, the final non-uniform grid is made up of four distinctive grid levels.

This structure is highly flexible, since local grid refinement (or coarsening) is done
by extending (or contracting) uniform grids, which is relatively easy and inexpensive
to implement. Recurrent operators can be used for both relaxation and transfer proce-5

dures and a simple data structure can be employed. Furthermore, the use of partial
grids leads to a considerable saving in both computational memory and operations,
especially when only a small region of the domain requires grid refinement (such as
the boundary layers). There does, however, appear to be a certain waste in the pro-
posed system, as one function value may be stored several times, when its grid point10

belongs to several levels. This is not the case. Firstly, the amount of such extra storage
is small, being less than 2−d of the total storage, for a d -dimensional problem (Brandt,
1977). Moreover, the stored values are exactly those needed for the multigrid solution
process.

This method of local refinements is based upon the Full Approximation Storage (FAS)15

mode of multigrid processing, where the full approximation is stored at all grid levels
(see Brandt, 1977, 1984); in parts of the domain not covered by the finer grid, the
coarser grid must show the full solution, not just a correction, as occurs with the cor-
rection scheme (CS) mode of multigrid processing.

2.2 Implementation20

The key aspects involved with implementing the multigrid refinement technique within
a pre-existing 3-D spherical mantle convection code are covered in this section. The
well-established code TERRA is utilized to illustrate and validate the key ideas, al-
though, as noted previously, the methodology is equally applicable to other codes and,
hence, the findings of this study will be of benefit to the wider geodynamical community.25

For completeness, a brief overview of TERRA is first presented. This is intended to: (i)
provide the reader with a background to the code’s fundamental building blocks; and
(ii) summarize recent developments to the code.
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2.2.1 TERRA

TERRA is a well-established finite element mantle convection code that was first de-
veloped by Baumgardner (1985) and has been further modified by Bunge et al. (1996,
1997) and Yang and Baumgardner (2000). The code solves the equations governing
mantle convection inside a 3-D spherical shell with appropriate boundary conditions.5

Assuming incompressibility and the Boussinesq approximation (e.g. McKenzie et al.,
1974), these equations, expressed in their non-dimensional form, are:

∇ ·u = 0 (1)

µ∇2u−∇p+Ra k̂∆T = 0 (2)

∂T
∂t

+∇ · (Tu) = κ∇2T +
H
ρcp

(3)10

where, u is the fluid velocity vector, p denotes dynamic pressure, T temperature, ρ
density, t time, κ thermal diffusivity, g gravitational acceleration, cp specific heat at
constant pressure, H the heat generation rate per unit volume, µ dynamic viscosity and
k̂ the unit radial vector. Note that the above non-dimensional equations are obtained15

from the following characteristic scales: mantle depth d ; time d2/κ; and temperature
∆T .

The spherical shell is discretized by an icosahedral grid (Baumgardner and Freder-
ickson, 1985). By projecting the regular icosahedron onto a sphere, the spherical sur-
face can be divided into twenty identical spherical triangles, or ten identical diamonds,20

each of which contains one of the ten triangles surrounding each pole. Triangles can
subsequently be subdivided into four triangles by construction of great circle arcs be-
tween triangle side mid-points. This refinement process can be repeated to yield an
almost uniform triangulation of the sphere at any desired resolution. Refinements to
the grid and, hence, lateral resolution, are referenced by mt – the number of grid inter-25

vals along an icosahedral diamond edge. The number of nodes on a spherical surface
is given by 10 mt2 +2 (there are 10 icosahedral diamonds on each surface and two
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polar nodes). The grid is extended radially by placing several of these spherical shells
above one and other, generating a mesh of triangular prisms (layers) with spherical
ends. The number of radial layers, nr, is flexible, but is usually set to mt/2. The total
number of nodes in the spherical shell (with the standard uniform grid) is thus given by
(nr+1)(10 mt2 +2).5

TERRA utilizes the Galerkin finite element formulation. Excluding pressure, which
is piecewise constant and discontinuous, all dynamic variables use local linear basis
functions. The discretised form of Eqs. (1) and (2) are solved with a Uzawa type pres-
sure correction approach, coupled to a conjugate gradient algorithm. The basis of this
approach is that the velocity and pressure, determined by solving Eq. (2) alone, should10

be corrected until Eq. (1) is satisfied (Yang and Baumgardner, 2000). The algorithm
was originally proposed by Verfuerth (1984) and is outlined in detail by both Atanga
and Silvester (1992) and Ramage and Wathen (1994). The algorithm exploits a multi-
grid inner-solver and, hence, TERRA is ideal for investigating and validating the geo-
metric multigrid refinement methodology. The discretised form of Eq. (3) is solved by15

means of a flux-form finite difference method (see Baumgardner, 1985, for further de-
tails), while time-stepping is accomplished through a fourth-order Runge-Kutta scheme
(Davies and Davies, 2009).

2.2.2 Reference non-uniform discretization

A reference discretization is now introduced, which will be used to illustrate (and val-20

idate) the key implementation procedures. For simplicity, fine and coarse-grid regions
are selected a priori (i.e. the procedure is non-adaptive). Additionally, whilst refinement
is performed radially and laterally, it is done as a function of radius only (i.e. lateral
resolution is constant for each individual radial layer, but can vary between layers). It
should be noted however that the strategies employed are equally valid for full lateral25

refinement (i.e. variations in lateral spacing, within individual radial layers).
The following discussion will focus on the discretisation displayed in Fig. 2a. The

spherical shell is separated into two distinct regions (fine and coarse); the upper half
2256
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(fine) is discretized by one additional refinement level (i.e. the number of nodes in each
radial layer increases by a factor of 4 and there are twice as many radial layers: note
that the interface between fine and coarse regions can be placed at an arbitrary, user-
defined radius). Such a configuration allows the multi-level processes to be illustrated
via one-dimensional diagrams. Nonetheless, in spite of its simplicity, it overcomes many5

disadvantages of TERRA’s conventional quasi-uniform structure (termed uniform for
the remainder of this paper). With the original uniform scheme:

1. Grid resolution can only be increased in fixed step sizes, with successive refine-
ments requiring an ≈ 8-fold increase in the number of nodes (the number of nodes
increases by a factor of 4 and 2, laterally and radially, respectively). The solution10

to a given problem therefore requires ≈ 8-times more RAM and ≈ 16-times more
CPU-time at the next level of refinement, the increased factor in CPU-time result-
ing from the need to decrease the time-step, due to the CFL constraint. A local
increase in resolution is not possible.

2. Element sizes and inter-nodal distances are dependent upon radius, with the grid15

points denser at the inner boundary than at the surface. As a consequence, the
lower boundary layer is often better resolved than its surface counterpart, whilst
the dynamically controlled time-step is restricted.

The non-uniform discretization presented in Fig. 2a overcomes these shortcomings.
Upper mantle resolution is enhanced when compared to the original scheme and,20

hence, element sizes and inter-nodal distances show greater consistency over the
entire domain. Thermal boundary layers can therefore be simulated at similar reso-
lutions and the dynamically controlled time-step becomes better-suited to the problem
under examination (it is not unnecessarily restricted by smaller elements at the base of
the shell). Perhaps most importantly, resolution can be increased locally, which offers25

greater flexibility.
There are also significant benefits to this configuration from a geophysical perspec-

tive. The viscosity of Earth’s mantle increases significantly with depth (e.g. Hager et al.,
2257
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1985; Mitrovica and Forte, 2004). As a consequence, fine-scale features will likely
dominate the upper mantle convective planform, with longer wavelength features more
prevalent at depth. The reference discretization presented, with higher resolution in the
upper mantle, is ideally suited to such a scenario.

2.2.3 Numerical Issues5

Two key numerical issues must be addressed when implementing the multigrid refine-
ment scheme:

1. Non-conforming grids (i.e. the presence of irregular points, or “hanging nodes”, at
grid interfaces).

2. Solution continuity during inter-grid transfers.10

Figure 3a illustrates the radial location of all genuine solution nodes (s-nodes) at the
grid interface, along line A–B of Fig. 2a. A hanging node arises at this interface, where
two fine-grid elements connect with one coarse-grid element. At this node, the usual
nodal solution stencil is no longer applicable; it should be modified to involve both
fine- and coarse-grid components, as is done in, for example, Burstedde et al. (2013).15

However, within the context of pre-existing codes, such topological and mathematical
complexity would be inconvenient, requiring coding of new operators and subsequently,
major changes in code structure. As a result, a different route is taken here. For compu-
tational convenience, a boundary band of virtual nodes is introduced in the coarse-grid
region to regularize the structure of unknowns (following Thompson et al., 1992). This20

band contains two layers of nodes: r- and t-nodes (relaxation and transfer), which
are displayed in Fig. 3b and c, respectively. These are initialized via interpolation from
the coarse-grid solution. t-nodes act as boundary values during fine-grid calculations
and remain unmodified, whilst s- and r-nodes, now separated from the interface, are
updated. t-nodes thus ensure that fine-grid accuracy is transferred to the coarse-grid25

during inter-grid projection (see Fig. 3b).
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By utilizing uniform grids at each level of refinement, TERRA’s standard operators
can be used for both relaxation and inter-grid transfer procedures. In addition, the
radial refinement structure fits in perfectly with TERRA’s existing parallelization and
domain decomposition configuration, retaining the equal load-balance of the original
scheme (see Sect. 4 for further details). This is of utmost importance for computational5

efficiency. The major benefit to this technique however, is the ease at which it can
be implemented, which is of great practical importance. No significant revisions were
made to TERRA. Only minor modifications were necessary, which are listed below:

1. The multigrid was converted from the CS to the FAS mode of multigrid process-
ing. For linear problems, the CS and FAS modes are directly equivalent (Brandt,10

1984). Conversion to the FAS mode was simply a case of storing the full current
approximation, which is the sum of the correction and its base approximation, at
each grid level, as opposed to the correction alone.

2. Inter-grid transfer routines, to and from the fine-grid, were localized: projection
from the fine-grid was modified to involve only fine-grid s- and r-nodes. Interpo-15

lation to the fine-grid was modified to initialize s-, r- and t-nodes. Pre-existing
inter-grid transfer operators were utilized.

3. Fine-grid solution routines were localized, with t-nodes acting as boundary values
during calculations.

The whole multigrid transfer process for the modified multi-level scheme, in the context20

of a four level cycle, is presented in Fig. 2c.

3 Methodology validation

The accuracy of the multigrid refinement algorithm, in addition to TERRA, is examined
by comparing results from the modified code with analytical solutions and previously
published numerical predictions. It should be emphasized that the goal of this paper25
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is not a thorough benchmark of TERRA. While we realize that further benchmark
tests/comparisons are possible, our aim here is to demonstrate that the geometric
multigrid refinement technique is valid (i.e. it does not degrade results in comparison to
the uniform discretization/solution algorithms). Note that for all simulations presented
in this paper, the interface between fine and coarse regions of the domain is placed at5

≈ 750km depth, with refinement restricted to one level only. In addition, we focus solely
on isoviscous convection. Whilst TERRA’s robustness at simulating variable viscosity
convection has recently been improved (see Koestler, 2011, for further details), these
developments have not yet been combined with the geometric multigrid refinement
technology.10

3.1 Stokes flow

The first set of problems examined exclusively test the solution of Eqs. (1) and (2).
Comparisons are made with quasi-analytical solutions, derived via propagator matrix
methods (e.g. Hager and O’Connell, 1981; Richards and Hager, 1984). We specifically
examine the response of: (i) normalized poloidal velocity coefficients at the surface15

and CMB; (ii) surface and CMB topography; and (iii) the predicted geoid; to a spherical
harmonic temperature perturbation at a specified depth in the spherical shell. Such
analytical comparisons have previously been used to validate numerous global mantle
convection codes (e.g. Choblet et al., 2007; Zhong et al., 2008; Burstedde et al., 2013).

The problem is set up as follows. The inner radius is set to mimic that of Earth’s core20

mantle boundary, rb = 3480km, while the outer radius is set to equal that of Earth’s
surface, rt = 6370km. Free-slip mechanical boundary conditions are specified at both
surfaces (note that we have modified the treatment of free-slip boundary conditions
from the original version of TERRA, to more accurately account for surface curvature).
The driving force is a delta function temperature perturbation in radius, defined as:25

T = δ
(
r −

ri + ro

2

)
Ylm(θ,φ) (4)
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Here, Ylm is the spherical harmonic function of degree l and order m. Cases are inves-
tigated at a range of spherical harmonic degrees (2, 4, 8, 16) and grid resolutions, for
both uniform and non-uniform grids.

Results are presented in Fig. 4. These demonstrate that, in general, both uniform and
non-uniform configurations agree well with analytical solutions. Furthermore, although5

there are exceptions, non-uniform configurations generally yield a better accuracy for
a given number of nodal points (i.e. they generally plot on, or below, the uniform cases).
For all diagnostics, results are convergent, with approximately second order conver-
gence observed in the errors for poloidal velocity coefficients, as would be expected.
The agreement between model predictions and analytical solutions does diminish as10

one goes to higher and higher harmonic degrees. However, this is to be expected and
is consistent with the predictions of previous studies (e.g. Choblet et al., 2007; Zhong
et al., 2008; Burstedde et al., 2013).

3.2 Low Rayleigh number convection

We next examine three cases of low Rayleigh number, symmetric, 3-D flows. These15

cases, which have also been examined by a range of other codes (e.g. Bercovici
et al., 1989; Ratcliff et al., 1996; Yoshida and Kageyama, 2004; Stemmer et al., 2006;
Choblet et al., 2007; Tackley, 2008; Zhong et al., 2008) test our solution strategy for
all three governing equations. The first class of cases are for tetrahedral symmetry
at Ra = 7×103, while the second and third set of cases are for cubic symmetry at20

Ra = 3.5×103 and Ra = 1×105, respectively. Results are compared with those of pre-
vious investigations. We specifically examine Nusselt numbers at the surface (Nut)
and base (Nub) of the shell, and the mean global non-dimensionalized RMS velocity
(〈VRMS〉). Note that velocities are non-dimensionalized via u′ = ud/κ, where d is the
depth of the mantle and κ, the thermal diffusivity, taken as 1×10−6 m2 s−1. Nusselt25

numbers are determined by solving the time-dependent energy equation until the rel-
ative variation in the Nusselt number between five consecutive time-steps is < 10−5.
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RMS velocities are calculated once Nusselt numbers have converged. Results are pre-
sented in Table 1 and 2, with representative plots of the thermal fields in Fig. 5.

When examining the results of fully uniform cases, we observe an excellent agree-
ment with a range of other studies, demonstrating that TERRA is robust and accurate
for this particular class of problem. Results for non-uniform cases are also consistent5

with previous studies, indicating that the revised methodology is valid. A comforting ob-
servation is the small difference between upper and lower boundary Nusselt Numbers,
indicating that the modified scheme is globally conservative. These results, along with
those presented in Sect. 3.1, demonstrate that the code and, hence, the new tech-
niques are valid, for this class of problem.10

4 Parallel efficiency and computational cost

The parallel performance and strong scaling of TERRA and the non-uniform extension
is next examined. TERRA’s parallel implementation is enabled by MPI (see Bunge and
Baumgardner (1996) for a full description). In brief, the spherical shell is decomposed
into smaller subdomains and spread across a number of processes. The first step15

is to divide each icosahedral diamond into a series of subdiamonds/subdomains. As
noted in Sect. 2.2.1, the number of grid intervals along an icosahedral diamond edge
is referred to as mt. A second parameter is used to define the size of the subdomains:
nt – the number of grid intervals along the edge of a local subdomain. The values of mt
and nt must be such that mt is a power of 2 and nt is also a power of two less than or20

equal to mt.
The next step in the decomposition is to select the number of subdomains to dis-

tribute to each process. This is defined by the parameter nd – the number of diamonds
from which subdomains will be mapped onto the processes. nd can have a value of 5
or 10; if nd = 5 only Northern Hemisphere diamonds are mapped onto the first half of25

the processes and Southern Hemisphere diamonds to the second half. If nd = 10 each
process owns one subdomain from each of the ten diamonds (see Fig. 6). To finalize
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the domain decomposition, subdomains are extended throughout the radial dimension,
from Earth’s surface to the Core-Mantle-Boundary (CMB). This procedure is identical
for all grid configurations (i.e. uniform and non-uniform). The number of processes is
thus given by (mt/nt)2 × (10/nd).

For parallel efficiency calculations we consider a symmetric, cubic flow, at Ra =5

1×105, identical to the final case examined in Sect. 3.2. We compute the problem
for 100 time steps. Calculations are carried out at a variety of problem sizes (i.e. res-
olutions), using between 4 and 4096 cores (i.e. processes/CPU’s) on HECToR, the
UK national supercomputing service. Figure 7a illustrates the results, showing, as ex-
pected, faster execution with a larger number of CPUs. A reduction in elapsed time10

and, thus, a good improvement in speed (“speedup”) is observed for all configurations.
In addition, all configurations follow a similar pattern, thus demonstrating that the non-
uniform configuration integrates well with TERRA’s domain decomposition strategy,
maintaining the equal load balance properties of the original scheme. A selection of
results summarizing speedup and efficiency are displayed in Table 3. Note that results15

are generally consistent between different problem sizes (i.e. mt – see Fig. 7a) and,
hence, only one set of results is presented fully.

The efficiency of the original, uniformly discretized configuration is first examined.
If TERRA scaled perfectly, each case would show 100 % parallel efficiency (i.e. for
a given problem size, increasing the number of processes by a factor of n would speed20

up the calculation by a factor of n). However, as expected, that is not the case. As-
suming an efficiency of 100 % on 8 CPU’s (this problem is too large to run on a single
CPU), efficiency decreases to 58.76 % on 512 CPU’s (Table 3). Such an observation
is easily understood: for a given problem size, as the number of cores increases, there
is a tendency for the number of pressure solve iterations to increase, leading to a re-25

duction in computational efficiency. In addition, individual process subdomains extend
throughout the radial dimension – they are long and thin, with a large surface area. As
the number of CPU’s increases, the ratio of surface area to subdomain size increases,
leading to greater message passing, which, ultimately, restricts the performance and
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speedup of the code (Bunge and Baumgardner, 1996). We consistently observe that
cases at nd = 5 are more efficient than those at nd = 10, since less inter-process com-
munication is required (see Fig. 6). A reassuring point to note is that as the problem
size increases, the amount of work per node at each time step remains reasonably con-
sistent (see Fig. 7a – for example, moving from a uniform mesh simulation on 4 CPU’s5

at mt = 32, to a simulation on 32 CPU’s at mt = 64, to a simulation on 256 CPU’s at
mt = 128). This demonstrates that the multigrid achieves its goal of attaining a conver-
gence rate that is independent of the number of grid points.

Focussing now on the modified, non-uniform, discretizations, we see that the ex-
pended CPU-time decreases in comparison to uniform cases. This is despite the fact10

that the number of pressure solve iterations increases by, on average, 25 %. The ob-
served speedup is therefore largely due to a reduction in the number of nodes (or
degrees of freedom) and, hence, the number of calculations. In addition, there is an in-
crease in parallel efficiency to 67.56 % on 512 CPU’s with non-uniform cases, implying
a better balance between communication and processing, when compared to uniform15

grids (see Table 3).
If one neglects the aforementioned differences in parallel efficiency, it is possible

to estimate a maximum theoretical speedup for non-uniform configurations, based on
the ratio between the number of nodes involved in non-uniform and uniform calcula-
tions. The performance of the non-uniform grid configuration is displayed in Fig. 7b.20

Although results fall short of the maximum theoretical speedup, performance improves
as the problem size increases. Such behaviour is to be expected: the implementation
involves interpolation of values to and from ghost nodes and calculations across these
ghost nodes. Consequently, computational overheads arise. However, as grid resolu-
tion increases, the boundary band of ghost layers makes up a smaller percentage of25

the computational domain (the number of radial layers in the calculation increases,
but the number of ghost layers remains fixed) and, hence, the computational overhead
decreases (see Fig. 7c).
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5 Memory

The total memory requirements for uniform and non-uniform grid configurations are
presented in Table 4. For uniform cases, as noted previously, the memory addressed
should theoretically increase by a factor of ≈ 8 with successive refinements. However,
the practical memory requirements vary from this idealized value. In moving from mt =5

32 to mt = 64, the amount of memory addressed increases by a factor of ≈ 6. Moving
from mt = 64 to mt = 128, from mt = 128 to mt = 256 and from mt = 256 to mt = 512
requires ≈ 7.2, ≈ 7.6 and ≈ 7.9 times more RAM, respectively. These variations are
caused by fixed static memory allocation in a number of TERRA’s arrays, which leads
to larger overhead at coarser resolutions.10

To test the numerical implementation of the non-uniform cases, we compare the
actual memory requirements with those predicted by simple scaling relationships. One
can estimate that a non-uniform, mt = 512/256 case, incorporating lateral and radial
refinement in the upper 25% of the shell, should theoretically require ≈ 181.63Gb of
RAM (i.e. a factor of ≈ 3 greater than a uniform mt = 256 case). The practical memory15

requirement of ≈ 197.45Gb is therefore exceptional, demonstrating that the scheme
has been implemented efficiently. The minor overheads are caused by ghost nodes
at the fine/coarse interface. As discussed in the previous section, these overheads
decrease with increasing problem size.

6 Conclusions20

This paper has explored the potential of hierarchical geometric multigrid refinement
techniques for 3-D spherical mantle convection codes. The methodology, based around
the application of a multigrid solver on non-uniform, structured grids, yields highly effi-
cient solutions to multi-resolution problems, providing significant benefits for global 3-D
spherical mantle convection simulations: localized variations in resolution are possible,25
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negating the need for complete global refinement. Consequently, computational re-
sources are exploited more efficiently.

The technique is conceptually simple and, perhaps most importantly, straightforward
to implement within pre-existing mantle convection codes. The proposed methodology
has been validated and an excellent agreement is observed with analytical results and5

those from a wide-range of other studies. Results also demonstrate that TERRA, the
code utilized in examining the multigrid refinement procedures, is robust and accurate
for the class of problems examined herein.

It is important to emphasize that the refinement strategies presented allow simula-
tions of global 3-D spherical mantle convection, with a lateral resolution of ≈ 14km at10

both boundaries, on a system with ≈ 200Gb of RAM. When compared to standard,
uniform configurations, the memory footprint is therefore reduced by a factor of ≈ 3,
whilst typically, simulations require a factor of ≈ 2.5 less CPU-time. Consequently, al-
though the scheme may be less beneficial than the fully adaptive techniques currently
under development (e.g. Davies et al., 2011; Kronbichler et al., 2012; Burstedde et al.,15

2013), it will allow pre-existing codes to examine more challenging problems than have
previously been possible (indeed, it has already done so, as demonstrated by Davies
and Davies, 2009). Given the amount of investment that has gone into these codes,
a method such as that presented, which will extend their lifetime and applicability, is
a worthwhile and significant development. Indeed, with such capabilities, global 3-D20

spherical mantle convection simulations, at Earth-like convective vigour, will no longer
be restricted to individuals/institutions with the largest and most advanced computa-
tional facilities, as has previously been the case.
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Table 1. Thermal amplitude benchmark comparisons for an isoviscous fluid showing tetrahedral
symmetry at Ra = 7×103. Abbreviations in the first column refer to the studies used for com-
parison: B89 (Bercovici et al., 1989), R96 (Ratcliff et al., 1996), Y04 (Yoshida and Kageyama,
2004), S06 (Stemmer et al., 2006), C07 (Choblet et al., 2007), T08 (Tackley, 2008), Z08 (Zhong
et al., 2008). D13 is the present study. U/NU represents the grid configuration, with U being
uniform and NU non-uniform. # Nodes denotes the total number of nodes, with a resolution
of r × (θ×φ) in radial (and lateral) direction. For non-uniform cases, fine and [coarse] nodal
resolutions are separated, using square brackets. The respective discretization method (DM) is
listed, where “SP” indicates spectral, “FE” finite element, “FD” finite differences and “FV” finite
volume. 〈VRMS〉 denotes the mean non-dimensionalized RMS velocity, whilst Nut and Nub repre-
sent the upper and lower boundary Nusselt numbers, respectively. Note that, theoretically, Nut
and Nub should be equal.

Study #Nodes r × (θ×φ) U/NU DM 〈VRMS〉 Nut Nub

B89 2400 12× (10×20) U SP – 3.4657 3.5293
R96 65 536 32× (32×64) U FV 32.19 3.4423 –
Y04 2 122 416 102× (102×204) U FD 32.05 3.4430 –
S06 663 552 48× (6×48×48) U FV 32.59 3.4864 3.4864
C07 196 608 32× (6×32×32) U FV 32.74 3.4814 3.4717
T08 196 608 32× (2×32×96) U FV 32.57 3.48 –
Z08 393 216 32× (12×32×32) U FE 32.66 3.5126 3.4919

D13(1) 174 114 17× (10×32×32) U FE 32.03 3.478 3.479
D13(2) 1 351 746 33× (10×64×64) U FE 32.22 3.512 3.512
D13(3) 10 649 730 65× (10×128×128) U FE 32.24 3.513 3.513

D13(4) 491 562 9[12]× (10×64[32]×64[32]) NU FE 32.17 3.508 3.504
D13(5) 3 768 402 17[24]× (10×128[64]×128[64]) NU FE 32.23 3.516 3.514
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Table 2. As in Table 1, but for cubic symmetry at Ra = 3.5×103 (top) and Ra = 1×105 (bottom).

Study #Nodes r × (θ×φ) U/NU DM 〈VRMS〉 Nut Nub

B89 2400 12× (10×20) U SP – 2.7954 –
R96 262 144 32× (64×128) U FV 18.86 2.8306 –
Y04 2 122 416 102× (102×204) U FD 18.48 2.8830 –
C07 196 608 32× (6×32×32) U FV 19.55 2.8640 2.8948

D13(1) 174 114 17× (10×32×32) U FE 18.73 2.837 2.837
D13(2) 1 351 746 33× (10×64×64) U FE 18.79 2.855 2.855
D13(3) 10 649 730 65× (10×128×128) U FE 18.80 2.857 2.856

D13(4) 491 562 9[12]× (10×64[32]×64[32]) NU FE 18.79 2.854 2.851
D13(5) 3 768 402 17[24]× (10×128[64]×128[64]) NU FE 18.80 2.856 2.855

R96 262 144 32× (64×128) U FV 157.5 7.5669 –
T08 196 608 32× (2×32×96) U FV 160.2 7.27 –
Z08 1 327 104 48× (12×48×48) U FE 154.8 7.8495 7.7701

D13(1) 1 351 746 33× (10×64×64) U FE 153.32 7.802 7.804
D13(2) 10 649 730 65× (10×128×128) U FE 153.75 7.872 7.872
D13(3) 84 541 698 129× (10×256×256) U FE 153.90 7.890 7.891

D13(4) 3 768 402 17[24]× (10×128[64]×128[64]) NU FE 153.60 7.822 7.824
D13(5) 29 491 362 33[48]× (10×256[128]×256[128]) NU FE 153.78 7.873 7.874
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Table 3. CPU-time for different grid configurations across a range of cores, with the domain
decomposed according to nt – the number of grid intervals along the edge of a local subdomain,
and nd – the number of diamonds mapped to a local process. The speedup factor is calculated
relative to the 8-core simulation (the problem was too large to run on a single core), whilst the
efficiency is calculated from the following formula: speedup factor / (# cores / 8). Note that whilst
we only present the results for cases at mt = 128, the observed trends are consistent across
different problem sizes.

CPU- Speedup Efficiency
# Cores r × (θ×φ) # Nodes nt nd U/NU time (s) factor (%)

8 65× (10×128×128) 10 649 730 64 5 U 11 187.75 / 100
16 65× (10×128×128) 10 649 730 32 10 U 7293.45 1.53 76.70
32 65× (10×128×128) 10 649 730 32 5 U 3131.09 3.57 89.33
64 65× (10×128×128) 10 649 730 16 10 U 1939.18 5.77 72.12
128 65× (10×128×128) 10 649 730 16 5 U 906.46 12.34 77.14
256 65× (10×128×128) 10 649 730 8 10 U 623.46 17.94 56.08
512 65× (10×128×128) 10 649 730 8 5 U 297.50 37.61 58.76

8 17(24)× (10×128(64)×128(64)) 3 768 402 64 (32) 5 NU 6983.42 / 100
16 17(24)× (10×128(64)×128(64)) 3 768 402 32 (16) 10 NU 3891.81 1.79 89.72
32 17(24)× (10×128(64)×128(64)) 3 768 402 32 (16) 5 NU 1807.62 3.86 96.58
64 17(24)× (10×128(64)×128(64)) 3 768 402 16 (8) 10 NU 1055.99 6.61 82.66
128 17(24)× (10×128(64)×128(64)) 3 768 402 16 (8) 5 NU 489.35 14.27 89.19
256 17(24)× (10×128(64)×128(64)) 3 768 402 8 (4) 10 NU 326.27 21.40 66.89
512 17(24)× (10×128(64)×128(64)) 3 768 402 8 (4) 5 NU 161.50 43.24 67.56
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Table 4. Memory requirements for different grid configurations. Non-uniform cases incorporate
refinement in the upper 750-km (or ≈ 25%) of the spherical shell. Note that the theoretical
RAM is calculated via the following formula, using the NU 64/32 case as an example: (nodes
mt64/32/nodes mt32)×RAM mt32.

Theoretical
mt nr U/NU Nodes RAM (Gb) RAM (Gb) Overhead (%)

32 16 U 1.74×105 0.20 – –
64 32 U 1.35×106 1.21 – –
128 64 U 1.06×107 8.71 – –
256 128 U 8.45×107 65.87 – –
512 256 U 6.74×108 521.92 – –
64/32 21 (9/12) NU 4.91×105 0.81 0.56 44.64
128/64 41 (17/24) NU 3.77×106 4.58 3.38 35.50
256/128 81 (33/48) NU 2.95×107 29.42 24.24 21.37
512/256 161 (65/96) NU 2.33×108 197.45 181.63 8.71

2277

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 2249–2285, 2013

Geometric multigrid
refinement

techniques for mantle
convection

D. R. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) (b)

Uniform Non-uniform

Grid 4Grid 4

Fig. 1. (a) An example of the hierarchy of uniform grids used in regular geometric multigrid cycles. A standard bisection refinement rule is

employed; each quadrilateral element is split into four elements at the next grid level; (b) A non-uniform grid and the uniform levels it is made

of. In essence, a non-uniform grid is a union of uniform sub-grids. However, unlike the traditional grids utilized in a multigrid, the sub-grids

do not necessarily extended over the same domain.
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Fig. 1. (a) An example of the hierarchy of uniform grids used in regular geometric multigrid
cycles. A standard bisection refinement rule is employed; each quadrilateral element is split
into four elements at the next grid level; (b) A non-uniform grid and the uniform levels it is made
of. In essence, a non-uniform grid is a union of uniform sub-grids. However, unlike the traditional
grids utilized in a multigrid, the sub-grids do not necessarily extended over the same domain.
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A

A

Solution

Grid h 2h 4h 8h

Multigrid Levels

s-nodes c-nodes r-nodes t-nodes n-nodes

(b)(a) (c)

Fig. 2. (a) The reference grid configuration implemented in this study. The final solution is derived from distinctive local grids, with high resolution in the upper half of the spherical shell and coarser resolution

in the lower half. (b) A radial section, drawn along A−B, illustrating the final non-uniform solution grid. (c) The multigrid solution process, illustrated for a four level cycle (grids h−8h). Grid level h is

a local fine-grid that spans the upper half of the mantle. Nodes shaded in red are those intrinsic to the final solution (s-nodes). r- and t-nodes are utilized during fine-grid calculations. They ensure solution

accuracy on the fine-grid and solution continuity during inter-grid projection. n-nodes would occur in the regular multigrid formulation, but do not exist in the modified formulation. Grid level 2h is a global

grid, covering the whole mantle. As with grid level h, nodes shaded in red are part of the final solution (s-nodes). Conversely, nodes shaded in grey (c-nodes) are only utilized during the multigrid process; they

do not explicitly contribute to the final solution. Grids 4h and 8h are further global grids, which are involved in the multigrid solver but do not explicitly contribute to the final solution. Black arrows denote

inter-grid projection. These are reversed for coarse-to-fine grid interpolation, whilst dashed orange arrows are also applicable. Note, grid resolution is decimated for illustrative purposes.
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Fig. 2. (a) The reference grid configuration implemented in this study. The final solution is
derived from distinctive local grids, with high resolution in the upper half of the spherical shell
and coarser resolution in the lower half. (b) A radial section, drawn along A–B, illustrating
the final non-uniform solution grid. (c) The multigrid solution process, illustrated for a four level
cycle (grids h–8h). Grid level h is a local fine-grid that spans the upper half of the mantle. Nodes
shaded in red are those intrinsic to the final solution (s-nodes). r- and t-nodes are utilized during
fine-grid calculations. They ensure solution accuracy on the fine-grid and solution continuity
during inter-grid projection. n-nodes would occur in the regular multigrid formulation, but do not
exist in the modified formulation. Grid level 2h is a global grid, covering the whole mantle. As
with grid level h, nodes shaded in red are part of the final solution (s-nodes). Conversely, nodes
shaded in grey (c-nodes) are only utilized during the multigrid process; they do not explicitly
contribute to the final solution. Grids 4h and 8h are further global grids, which are involved in the
multigrid solver but do not explicitly contribute to the final solution. Black arrows denote inter-
grid projection. These are reversed for coarse-to-fine grid interpolation, whilst dashed orange
arrows are also applicable. Note, grid resolution is decimated for illustrative purposes.
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(a) (b) (c)

s-nodes

c-nodes r-nodes t-nodes

solution-grid solution-grid solution-gridfine-grid fine-grid fine-gridcoarse-grid coarse-grid coarse-grid
A

B

Grid
Interface

Hanging
Node

Fig. 3. (a) The problem: one coarse-grid element interfacing with two fine-grid elements. The location of genuine unknowns (i.e. unknowns that are associated with an approximation to the governing

differential equation), s-nodes, is shown for both fine and coarse grids. (b) The problem, modified to show the r-nodes which are introduced for computational convenience. These nodes are not unknowns in

our system of equations, but dummy nodes that are introduced to allow consistent solution derivation at all genuine nodes. With just one boundary layer (the r-nodes), fine-grid solution continuity will not be

satisfied during inter-grid projection: the r-nodes would act as boundary values during fine-grid calculations and would not be updated. Consequently, the values projected from the fine-grid to the encircled

c-nodes (coarse grid nodes utilized during the multigrid process that do not explicitly contribute to the final solution), during the multigrid solution process, would be derived from nodal solutions with both

fine and coarse-grid accuracy. Accordingly, a second layer of dummy nodes, the t-nodes, are introduced, as illustrated in part (c). Their inclusion and the subsequent updating of r-nodes during fine-grid

calculations, ensures solution continuity during inter-grid projection. In summary, s-nodes are the genuine nodes, intrinsic to the final solution. r- and t-nodes are utilized during fine-grid calculations and

inter-grid projection, whilst c-nodes represent coarse-grid nodes, that are integral to the overall multigrid process, but do not explicitly contribute to the final solution.
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Fig. 3. (Caption on next page.)
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Fig. 3. (a) The problem: one coarse-grid element interfacing with two fine-grid elements. The
location of genuine unknowns (i.e. unknowns that are associated with an approximation to the
governing differential equation), s-nodes, is shown for both fine and coarse grids. (b) The prob-
lem, modified to show the r-nodes which are introduced for computational convenience. These
nodes are not unknowns in our system of equations, but dummy nodes that are introduced to
allow consistent solution derivation at all genuine nodes. With just one boundary layer (the r-
nodes), fine-grid solution continuity will not be satisfied during inter-grid projection: the r-nodes
would act as boundary values during fine-grid calculations and would not be updated. Con-
sequently, the values projected from the fine-grid to the encircled c-nodes (coarse grid nodes
utilized during the multigrid process that do not explicitly contribute to the final solution), during
the multigrid solution process, would be derived from nodal solutions with both fine and coarse-
grid accuracy. Accordingly, a second layer of dummy nodes, the t-nodes, are introduced, as
illustrated in part (c). Their inclusion and the subsequent updating of r-nodes during fine-grid
calculations, ensures solution continuity during inter-grid projection. In summary, s-nodes are
the genuine nodes, intrinsic to the final solution. r- and t-nodes are utilized during fine-grid cal-
culations and inter-grid projection, whilst c-nodes represent coarse-grid nodes, that are integral
to the overall multigrid process, but do not explicitly contribute to the final solution.
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Fig. 4. Relative errors in numerical predictions with respect to semi-analytical solutions (e.g. Hager and O’Connell, 1981; Richards and Hager, 1984) for: (a) normalized harmonic coefficients for poloidal

velocity at the surface and CMB (combined); (b) surface and CMB topography (combined); and (c) total geoid; for a range of uniform (circles) and non-uniform (stars) grids, at spherical harmonic degrees 2,

4, 8 and 16. Note that continuous lines connect the results from uniform cases.
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Fig. 4. Relative errors in numerical predictions with respect to semi-analytical solutions (e.g.
Hager and O’Connell, 1981; Richards and Hager, 1984) for: (a) normalized harmonic coeffi-
cients for poloidal velocity at the surface and CMB (combined); (b) surface and CMB topog-
raphy (combined); and (c) total geoid; for a range of uniform (circles) and non-uniform (stars)
grids, at spherical harmonic degrees 2, 4, 8 and 16. Note that continuous lines connect the
results from uniform cases.
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Fig. 5. Representative temperature anomalies from thermal amplitude convection tests for: (a) tetrahedral symmetry at Ra= 7×103; (b) cubic symmetry at Ra= 3.5×103; and (c) cubic symmetry at

Ra= 1×105 respectively. Yellow and blue isosurfaces represent radial temperature anomalies of 250 and -250 K respectively. These results are from the highest resolution non-uniform cases of Table 1.
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Fig. 5. Representative temperature anomalies from thermal amplitude convection tests for:
(a) tetrahedral symmetry at Ra = 7×103; (b) cubic symmetry at Ra = 3.5×103; and (c) cubic
symmetry at Ra = 1×105, respectively. Yellow and blue isosurfaces represent radial tempera-
ture anomalies of 250 and −250K, respectively. These results are from the highest resolution
non-uniform cases of Table 1.

2283

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2249/2013/gmdd-6-2249-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 2249–2285, 2013

Geometric multigrid
refinement

techniques for mantle
convection

D. R. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3

3

3

3

3

3

3

3

3

3

0

0

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

0

4

0

4

0

4

0

4

0

4
2

6

2

6

2

6

2

6

2

6

1

5

1

5

1

5

1

5

1

5
3

7

3

7

3

7

3

7

3

7

(a)

(b)

(a)	
  nd=10	
  

(b)	
  nd=5	
  

Fig. 6. Subdomain process mapping in TERRA for a case where mt/nt= 2. In (a) nd= 10, while in (b) nd= 5. The diamonds have been projected on to a flat surface and solid black lines define their

boundaries, while dashed lines represent subdomain boundaries. The number within each subdomain denotes the MPI rank of the process to which the subdomain is mapped.
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Fig. 6. Subdomain process mapping in TERRA for a case where mt/nt = 2. In (a) nd = 10, while
in (b) nd = 5. The diamonds have been projected on to a flat surface and solid black lines define
their boundaries, while dashed lines represent subdomain boundaries. The number within each
subdomain denotes the MPI rank of the process to which the subdomain is mapped.
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Fig. 7. (a) Parallel performance of TERRA; the elapsed computational time as a function of the number of CPU’s, at a range of different scales, utilizing different grid configurations - red and blue lines denote

uniform and non-uniform configurations respectively. For non-uniform cases, mt denotes the lateral resolution in fine regions of the domain. We observe faster execution using a larger number of CPUs, as

expected. Interestingly, variations are observed between different domain decompositions, with nd= 5 cases (circles) being more efficient than nd= 10 (stars). Due to a reduction in the number of nodes,

the expended CPU-time decreases in moving from uniform to non-uniform configurations. Results for all configurations follow a similar pattern, illustrating that the non-uniform configurations integrate well

with TERRA’s parallel domain decomposition strategy; (b) the speedup attained when utilizing a non-uniform grid configuration, compared to an estimate of the maximum theoretical speedup, based purely

upon a ratio between the number of nodes in each case. As grid resolution increases, a greater speedup is observed, converging towards the theoretical maximum; (c) the computational overhead of using a

non-uniform grid configuration - the overhead decreases as the problem size increases.
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Fig. 7. (a) Parallel performance of TERRA; the elapsed computational time as a function of the
number of CPU’s, at a range of different scales, utilizing different grid configurations – red and
blue lines denote uniform and non-uniform configurations respectively. For non-uniform cases,
mt denotes the lateral resolution in fine regions of the domain. We observe faster execution
using a larger number of CPUs, as expected. Interestingly, variations are observed between
different domain decompositions, with nd = 5 cases (circles) being more efficient than nd = 10
(stars). Due to a reduction in the number of nodes, the expended CPU-time decreases in mov-
ing from uniform to non-uniform configurations. Results for all configurations follow a similar
pattern, illustrating that the non-uniform configurations integrate well with TERRA’s parallel
domain decomposition strategy; (b) the speedup attained when utilizing a non-uniform grid
configuration, compared to an estimate of the maximum theoretical speedup, based purely
upon a ratio between the number of nodes in each case. As grid resolution increases, a greater
speedup is observed, converging towards the theoretical maximum; (c) the computational over-
head of using a non-uniform grid configuration – the overhead decreases as the problem size
increases.
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