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Abstract

A new algorithm, featuring overlapping domain decompositions, for the parallel con-
struction of Delaunay and Voronoi tessellations is developed. Overlapping allows for
the seamless stitching of the partial Delaunay tessellations constructed by individual
processors. The algorithm is then modified, by the addition of stereographic projec-5

tions, to handle the parallel construction of spherical Delaunay and Voronoi tessella-
tions. The algorithms are then embedded into algorithms for the parallel construction of
planar and spherical centroidal Voronoi tessellations that require multiple constructions
of Delaunay tessellations. Computational tests are used to demonstrate the efficiency
and scalability of the algorithms for spherical Delaunay and centroidal Voronoi tessel-10

lations. Compared to serial versions of the algorithm and to the STRIPACK-based ap-
proaches, the new parallel algorithm results in significant speedups for the construction
of spherical centroidal Voronoi tessellations.

1 Introduction

Voronoi diagrams and their dual Delaunay tessellations have become, in many settings,15

natural choices for spatial gridding due to their ability to handle arbitrary boundaries and
refinement well. Such grids are used in a wide range of applications and can, in princi-
ple, be created for almost any geometry in two and higher dimensions. The recent trend
towards the exascale in most aspects of high-performance computing further demands
fast algorithms for the generation of high-resolution spatial meshes that are also of high20

quality, e.g. featuring variable resolution with smooth transition regions; otherwise, the
meshing part can dominate the rest of the discretization and solution processes. How-
ever, creating such meshes can be time consuming, especially for high-quality, high-
resolution meshing. Attempts to speed up the generation of Delaunay tessellations
via parallel divide-and-conquer algorithms were made in, e.g. Cignoni et al. (1998);25

Chernikov and Chrisochoides (2008). The few algorithms that do exist for the parallel
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construction of Delaunay triangulations are limited to two-dimensional planar surfaces.
With the current need for high, variable-resolution grid generators in mind, we first de-
velop a new algorithm that makes use of a novel approach to domain decomposition
for the fast, parallel generation of Delaunay and Voronoi grids in Euclidean domains.

Centroidal Voronoi tessellations provide one approach for high-quality Delaunay and5

Voronoi grid generation (Du et al., 1999, 2003b, 2006b; Du and Gunzburger, 2002;
Nguyen et al., 2008). The efficient construction of such grids involves an iterative pro-
cess (Du et al., 1999) that calls for the determination of multiple Delaunay tessellations;
we show how our new parallel Delaunay algorithm is especially useful in this context.

Climate modelling is a specific field which has recently begun adopting Voronoi tes-10

sellations as well as triangular meshes for the spatial discretization of partial differen-
tial equations (Pain et al., 2005; Weller et al., 2009; Ju et al., 2008, 2011; Duda et al.,
2011). As this is a special interest of ours, we also develop a new parallel algorithm
for the generation of Voronoi and Delaunay tessellations for the entire sphere or some
subregion of interest. The algorithm uses stereographic projections to transform these15

tasks into planar Delaunay constructions for which we apply the new parallel algorithm
we have developed for that purpose. Spherical centroidal Voronoi tessellation (SCVT)
based grids are especially desirable in climate modelling because they not only provide
for precise grid refinement, but also feature smooth transition regions (Ringler et al.,
2011). We show how such grids can be generated using the new parallel algorithm for20

spherical Delaunay tessellations.
The paper is organized in the following fashion. In Sect. 2.1, background material

about Delaunay and Voronoi tessellations is provided and then, in Sect. 2.2, we present
our new parallel algorithm for the construction of such tessellations. In Sect. 2.3, we
provide a brief discussion of centroidal Voronoi tessellations (CVTs) followed by show-25

ing how the new parallel Delaunay tessellation algorithm can be incorporated into an
efficient method for the construction of CVTs. In Sect. 3.1, we provide a short review
of stereographic projections followed, in Sect. 3.2, by a presentation of the new par-
allel algorithm for the construction of spherical Delaunay and Voronoi tessellations. In
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Sect. 3.3, we consider the parallel construction of spherical CVTs. In Sect. 4, the re-
sults of numerical experiments and demonstrations of the new algorithms are given; for
the sake of brevity, we only consider the algorithms for grid generation on the sphere.
Finally, in Sect. 5, concluding remarks are provided.

2 Parallel Delaunay and Voronoi tessellation construction in Rk
5

In this section, we present a new method for the construction of Delaunay and Voronoi
tessellations. We begin with a brief review of the definitions and some of the properties
of these tessellations.

2.1 Delaunay and Voronoi tessellations

Let k+1 points in Rk be in general position; this means that, for s = 1, . . . ,k, no subset10

of s+1 points lies on an (s−1)-dimensional hyperplane, i.e. no subset of s+1 = 3
points lies on a line, no subset of s+1 = 4 points lies on a two-dimensional plane, . . . ,
the k +1 given points do not lie on an (k −1)-dimensional hyperplane. A k-simplex is
the k-dimensional polytope which is the convex hull of the k +1 points; a k-simplex is
the smallest convex set containing the k+1 points and the given points are the vertices15

of the simplex. A 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is
a tetrahedron, and a 4-simplex is a pentachoron; by convention, a 0-simplex is a point.
A k-simplex has s-faces (s ≤ k) corresponding to any s+1 distinct vertices of the k-
simplex; s-faces are themselves s-simplices, e.g. a k-face is the simplex itself, . . . ,
a 3-face is a tetrahedron, a 2-face is a triangle, a 1-face is an edge, and a 0-face is20

a vertex.
Given a set of points P = {xj}

n
j=1 in Rk , the Delaunay tessellation D(P ) of the point

set is the set of k-simplices such that:

– a point p ∈Rk is a vertex of a simplex in D(P ) if and only if p ∈ P ;

– the intersection of two simplices in D(P ) is either the empty set or a common face;25
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– the interior of the circumscribing k-sphere through the k+1 vertices of any simplex
in D(P ) contains no other points from the set P ; in the sequel, we refer this as the
circumsphere property, or, in two dimensions, the circumcircle property.

If the circumscribing k-sphere of a simplex in D(P ) has more than k +1 points lying
on its surface, the Delaunay tessellation is not unique. The Delaunay triangulation of5

a point set defined in Rk is related to the convex hull of the point set when projected
onto a paraboloid in Rk+1 (Cignoni et al., 1998).

Given a set of points P = {xj}
n
j=1 in Rk , the Voronoi region or Voronoi cell associated

with a particular point xi is the subset Vi ⊂Rk defined by

Vi = {x ∈Rk : ‖x−xi‖ < ‖x−xj‖ ∀ j 6= i},10

where here and throughout, ‖ · ‖ denotes the Euclidean norm. This property, referred
to as the Voronoi property, states that the Voronoi cell Vi consists of all points in Rk

that are closer to xi than to any of the other points in P . The set V (P ) = {Vj}
n
j=1 of

Voronoi regions is referred to as a Voronoi tessellation or Voronoi diagram of the point15

set P and the points in P are referred to as the generators of the Voronoi tessellation.
Some of the Voronoi regions are infinite in extent. However, we can also view a Voronoi
tessellation of any bounded region Ω containing the point set P = {xj}

n
j=1 in which case

all the Voronoi regions are finite in extent and are given by Vi =Ω∩{x ∈Rk : |x−xi | <
|x−xj | ∀ j 6= i}. In general, Voronoi cells are polytopes in Rk , except that when they20

intersect the boundary of Ω, part of the boundary of the Voronoi cell is a portion of the
boundary of Ω.

Given a set P of points in Rk , the corresponding Delaunay and Voronoi tessellations
are topological dual tessellations, e.g. if you connect all pairs of generators whose
Voronoi cells share a common face, you obtain the Delaunay tessellation. Also, the25

generators of the Voronoi tessellation are the vertices of the Delaunay tessellation.
See Okabe et al. (2000) for details about Delaunay and Voronoi tessellations.
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2.2 Parallel algorithm for Delaunay tessellation construction

The construction of planar Delaunay triangulations in parallel has been of interest for
several years; see, e.g. Amato and Preparata (1993); Cignoni et al. (1998); Zhou et al.
(2001); Batista et al. (2010). Typically, such algorithms divide the point set up into
several smaller subsets, each of which can then be triangulated independently from5

the others. The resulting triangulations need to be stitched together to form a global
triangulation. This stitching, or merge step, is typically computed serially because one
may need to modify significant portions of the individual triangulations. The merge step
is the main difference between the different parallel algorithms. Here, we provide a new
alternative merge step that, because no modifications of the individual triangulations10

are needed, can be performed in parallel.
We are given a set of points P = {xj}

n
j=1 in a given domain Ω ⊂Rk . We begin by

covering Ω by a set S = {Sk(ck ,rk)}Nk=1 of N overlapping spheres Sk , each of which
is defined by a centre point ck and radius rk . For each sphere Sk , a connectivity or
neighbour list is defined which consists of the indices of all the spheres Si ∈ S, i 6= k,15

that overlap with Sk . From the given point set P , we then create N smaller point sets
Pk , k = 1, . . . ,N, each of which consists of the points in P which are in the sphere Sk .
Due to the overlap of the spheres Sk , a point in P may belong to multiple points sets
Pk .

The next step is to construct the N Delaunay tessellations Tk , k = 1, . . . ,N, of the20

N point sets Pk , k = 1, . . . ,N. For this purpose, one can use any Delaunay tessella-
tion method at one’s disposal; for example, in the plane, one can use the Delaunay
triangulator that is part of the Triangle software of Shewchuk (1996). These Delaunay
tessellations, of course, can be constructed completely in parallel after assigning one
point set Pk to each of N processors.25

At this point we are almost but not quite ready to merge the N local Delaunay tes-
sellations into a single global one. Before doing so, we deal with the fact that although,
by construction, the tessellation Tk of the point set Pk is a Delaunay tessellation of Pk ,
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there are very likely to be simplices in the tessellation Tk that may not be globally De-
launay, i.e. that may not be Delaunay with respect to points in P that are not in Pk . This
follows because the points in any Tk are unaware of the triangles and points outside of
Sk so that there may be points in P that are not in Pk that lie within the circumsphere of
a simplex in Tk . In fact, only simplices whose circumspheres are completely contained5

inside of the ball Sk are guaranteed to be globally Delaunay; those points satisfy the
criteria

||ck − ĉi ||+ r̂i < rk , (1)

where ĉi and r̂i are the centre and radius of the circumsphere of the i th triangle in the10

local Delaunay tessellation Tk .
So, at this point, for each k = 1, . . . ,N, we construct the triangulation T̂k by discarding

all simplices in the local Delaunay tessellation Tk whose circumspheres are not com-
pletely contained in Sk , i.e. all simplices that do not satisfy Eq. (1). Figure 1 shows
one of the local Delaunay triangulations Tk and the triangulation T̂k after the deletion of15

triangles that are not guaranteed to satisfy the Delaunay property globally.
The final step is to merge the N modified tessellations T̂k , k = 1, . . . ,N, that have

been constructed completely in parallel into a single global tessellation. The key obser-
vation here is that each regional tessellation T̂k is now exactly a portion of the global
Delaunay tessellation because if two local tessellations T̂i and T̂k overlap, they must20

coincide wherever they overlap. This follows from the uniqueness property of the De-
launay tessellations. Thus, the union of the local Delaunay tessellations is the global
Delaunay tessellation; by using an overlapping domain decomposition, the stitching of
the regional Delaunay tessellations into a global one is transparent. Of course, some
bookkeeping chores have to be done such as rewriting simplex information in terms of25

global point indices and counting overlapping simplices only once.
A final note is that the radii {rk}

N
k=1 should be chosen large enough so that there

are no gaps between the regional Delaunay triangulations after the possibly non-
globally Delaunay triangles are deleted, i.e. no gaps appear in the union of the T̂ks.
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For quasi-uniform grids, choosing rk as the maximum distance from the centre ck of
its ball Sk to the centre of all its adjacent balls allows enough overlap; as discussed in
Sect. 4.2.2, this heuristic may not be optimal for variable resolution grids.

In summary, the algorithm for the construction of a Delaunay tessellation in parallel
consists of the following steps:5

– define overlapping balls Sk , k = 1, . . . ,N, that cover the given region Ω;

– sort the given point set P into the subsets Pk , k = 1, . . . ,N, each containing points
in P that are in Sk ;

– for k = 1, . . . ,N, construct in parallel the N Delaunay tessellations Tk of the points
sets Pk ;10

– for k = 1, . . . ,N, construct in parallel the tessellation T̂k by removing from Tk all
simplices that are not guaranteed to satisfy the circumsphere property;

– construct the Delaunay tessellation of P as the union of the N modified Delaunay
tessellations {T̂k}

N
k=1.

Once a Delaunay tessellation is determined, it is an easy matter, at least for domains15

in R2 and R3, to construct the dual Voronoi tessellation; see, e.g. Okabe et al. (2000).

2.3 Application to the construction of centroidal Voronoi and Delaunay tessel-
lations

Given a Voronoi tessellation V = {Vj}
n
j=1 of a bounded region Ω ⊂Rk corresponding to

the set of generators P = {xj}
n
j=1 and given a nonnegative function ρ(x) defined over Ω,20

referred to as the point-density function, we can define the centre of mass or centroid
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x
∗
j of each Voronoi region as

x∗
j =

∫
Vj
xρ(x)dx∫

Vj
ρ(x)dx

, j = 1, . . . ,n. (2)

In general, xj 6= x
∗
j , i.e. the generators of the Voronoi cells do not coincide with the

centres of mass of those cells. The special case for which xj = x
∗
j for all j = 1, . . . ,n, i.e.5

for which all the generators coincide with the centres of mass of their Voronoi regions,
is referred to as a centroidal Voronoi tessellation (CVT).

Given Ω, n, and ρ(x), a CVT of Ω must be constructed. The simplest means for do-
ing so is Lloyd’s method (Lloyd, 1982) in which, starting with an initial set of n distinct
generators, one constructs the corresponding Voronoi tessellation, then determines the10

centroid of each of the Voronoi cells, and then moves each generator to the centroid of
its Voronoi cell. These steps are repeated until satisfactory convergence is achieved,
e.g. until the movement of generators falls below a prescribed tolerance. The conver-
gence properties of Lloyd’s method are rigorously studied in Du et al. (2006a).

The point-density function ρ plays a crucial role in how the converged generators15

are distributed and the relative sizes of the corresponding Voronoi cells. If we arbitrarily
select two Voronoi cells Vi and Vj from a CVT, their grid spacing and density are related
as

hi

hj
≈
(

ρ(xj )

ρ(xi )

) 1
d+2

, (3)
20

where hi denotes a measure of the linear dimension, e.g. the diameter, of the cell Vi
and xi denotes a point, e.g. the generator, in Vi . Thus, the point-density function can be
used to produce nonuniform grids in either a passive or adaptive manner by prescribing
a ρ or by connecting ρ to an error indicator, respectively. Although the relation Eq. (3)
is at the present time a conjecture, its validity has been demonstrated through many25
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numerical studies; see, e.g. Du et al. (1999); Ringler et al. (2011). CVTs and their dual
Delaunay tessellations have been successfully used for the generation of high-quality
nonuniform grids; see, e.g. Du and Gunzburger (2002); Du et al. (2003b, 2006b); Ju
et al. (2011); Nguyen et al. (2008).

As defined above, every iteration of Lloyd’s method requires the construction of the5

Voronoi tessellation of the current set of generators followed by the determination of
the centroids of the Voronoi cells. However, the construction of the Voronoi tessellation
can be avoided until after the iteration has converged and instead, the iterative process
can be carried out with only Delaunay tessellation constructions. Thus, the first task
within every iteration of Lloyd’s method is to construct the Delaunay tessellation of10

the current set of generators. The parallel algorithm for the generation of Delaunay
tessellations given in Sect. 2.2 is thus especially useful in reducing the costs of the
multiple tessellations needed in CVT construction.

After the Delaunay tessellation of the current generators is computed, every Voronoi
cell centre of mass must be computed by integration, so its generator can be replaced15

by the centre of mass. Superficially, it seems that we cannot avoid constructing the
Voronoi tessellation to do this. However, it is easy to see that one does not actually
need the Voronoi tessellation and instead one can determine the needed centroids
from the Delaunay tessellation. For simplicity, we restrict this discussion to tessella-
tions in R2. Each triangle in a Delaunay triangulation contributes to the integration over20

three different Voronoi cells. As seen in Fig. 2, the triangle is split into three kites, each
made up of two edge midpoints, the triangle circumcentre, and a vertex of the triangle.
Each kite is part of the Voronoi cell whose generator is located at the triangle vertex
associated with the kite. Integrating over each kite and updating a portion of the inte-
grals in the centroid formula Eq. (2) allows one to only use the Delaunay triangulation25

to determine the centroids of the Voronoi cells. Thus, because both steps within each
Lloyd iteration can be performed using only the Delaunay triangulation, determining
the generators of a CVT does not require construction of any Voronoi tessellations
nor does it require any mesh connectivity information. If one is interested in the CVT,
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one need only construct a single Voronoi tessellation after the Lloyd iteration has con-
verged; if one is interested in the Delaunay tessellation corresponding to the CVT, then
no Voronoi construction is needed.

To make this algorithm parallel, one can compute the Voronoi cell centroids using the
local Delaunay tessellations and not on the stitched-together global one. However, be-5

cause the local Delaunay tessellations overlap, one has to ensure that each generator
is only updated by one region, i.e. by only one processor. This can be done using one
of a variety of domain decomposition methods. We use a coarse Voronoi diagram cor-
responding to the region centres ck . Each processor only updates the generators that
are inside of its coarse Voronoi cell. Because Voronoi cells are non-overlapping, each10

generator will only get updated by one processor. After all the generators are updated,
each coarse region needs to transfer its newly updated points only to its adjacent re-
gions and not to all active processors. This limits each processor’s communications to
roughly six sends and receives, regardless of the total number of processors used.

We use two metrics to check for the convergence of the Lloyd iteration, namely the15

`2 and `∞ norms of generator movement given by

`2norm =
(1
n

n∑
j=1

(xold
j −xnew

j )2
)1/2

and `∞norm = max
j=1,...,n

(|xold
j −xnew

j |),

respectively, are compared with a given tolerance; here, old and new refer to the pre-
vious and current Lloyd iterates. If either norm falls below the tolerance, the iterative20

process is deemed to have converged. The `∞ norm is more strict, but both norms fol-
low similar convergence paths when plotted against the iteration number. Other metrics
can be used such as the clustering energy (Du et al., 1999)

CE =
n∑

j=1

∫
Vj

(ρ(x)‖x−xj‖2 dx).

25
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However, in practice, this choice tends to be less strict and more computationally ex-
pensive when compared with the use of generator movement.

A variety of point sets can be used to initiate Lloyd’s method for CVT construction.
The obvious one is Monte Carlo points (Metropolis and Ulam, 1949). These can either
be sampled uniformly over Ω or sampled according to the point-density function ρ(x).5

The latter approach usually reduces the number of iterations required for convergence.
One can instead use a bisection method to build fine grids from a coarse grid (Heikes
and Randall, 1995). To create a bisection grid, a coarse CVT is constructed using as
few points as possible. After this coarse grid is converged, in R2, one would add the
midpoint of every Voronoi cell edge or Delaunay triangle edge to the set of points. This10

causes the overall grid spacing to be reduced by roughly a factor of two in every cell so
that the refined point set is roughly four times larger.

In summary, the algorithm for the construction of a CVT in parallel consists of the
following steps; the steps in Roman font are the same as in the algorithm of Sect. 2.2
whereas the italicized steps, as well as the do loop, are additions for CVT construction:15

– define overlapping balls that cover the given region;

– while not converged do

– sort the current point set;

– construct in parallel the local Delaunay tessellations;

– remove from the Delaunay tessellations simplices which are not guaranteed20

to satisfy the circumsphere property;

– in parallel, determine the centroids of the Voronoi cells by integrating over
simplices;

– move each generator to the corresponding cell centroid ;

– test the convergence criteria;25

– communicate new generator positions to neighbouring balls;
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– end

– construct the Delaunay tessellation corresponding to the CVT as the union of the
modified local Delaunay tessellations.

3 Parallel Delaunay and Voronoi tessellation construction on the sphere

Replacing the constructs defined in Sect. 2.1 with their analogous components on the5

sphere, i.e. on the surface of a ball in R3, creates the spherical versions of Delaunay tri-
angulations and Voronoi tessellations. The Euclidean distance metric is replaced by the
geodesic distance, i.e. the shortest of the two lengths along the great circle joining two
points on the sphere. Triangles and Voronoi cells are replaced with spherical triangles
and spherical Voronoi cells whose boundaries are geodesic arcs. To develop a parallel10

Delaunay and Voronoi tessellation construction algorithm on the sphere, we could try
to parallelize the STRIPACK algorithm of Renka (1997). Here, however, we take a new
approach that is based on a combination of stereographic projections (which we briefly
discuss in Sect. 3.1) and the algorithm of Sect. 2.2 applied to planar domains. The se-
rial version of the new Delaunay tessellation construction algorithm is therefore novel15

as well.

3.1 Stereographic projections

Stereographic projections are special mappings between the surface of a sphere and
a plane tangent to the sphere. Not only are stereographic projections conformal map-
pings, meaning that angles are preserved, but they also preserve circularity, meaning20

that circles on the sphere are mapped to circles on the plane. Stereographic projec-
tions also map the interior of these circles to the interior of the mapped circles (Bowers
et al., 1998; Saalfeld, 1999). For our purposes, the importance of circularity preserva-
tion is that it implies that stereographic projections preserve the Delaunay circumcircle
property as defined in Sect. 2.1. This follows because triangle circumcircles (along25
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with their interiors) are preserved. Therefore, Delaunay triangulations on the sphere
are mapped to Delaunay triangulations on the plane and conversely. As a result, stere-
ographic projections can be used to construct a Delaunay triangulation of a portion of
the sphere by first constructing a Delaunay triangulation in the plane, which is a simpler
and well-studied task.5

Without loss of generality, we assume that we are given the unit sphere in R3 centred
at the origin. We are also given a plane tangent to the sphere at the point t. The focus
point f is defined as the reflection of t about the centre of the sphere, i.e. f is the
antipode of t. Let p denote a point on the unit sphere. The stereographic projection of
p onto the plane tangent at t is the point q on the plane defined by10

q = sp+ (1− s)f , where s = 2
1

f · (f −p)
. (4)

Figure 3 illustrates the stereographic projection. For our purposes, it is more convenient
to define the projection relative to t rather than f . The simple substitution of f = −t into
Eq. (4) results in15

q = sp+ (s−1)t, where s = 2
1

t · (p+ t)
. (5)

The definitions Eqs. (4) and (5) can also be used to define stereographic projections in
Rk for k > 3.

3.2 Parallel algorithm for spherical Delaunay triangulation construction20

A spherical Delaunay triangulation (SDT) is the Delaunay triangulation of a point set P
defined on the surface of the sphere. We adapt the algorithm developed in Sect. 2.2 for
domains in Rk to develop a parallel algorithm for the construction of SDTs. The most
important adaptation is to use stereographic projections so that the actual construction
of Delaunay triangulations is done on planar domains.25
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We are now given a set of points P = {xj}
n
j=1 on a subset Ω of the sphere; Ω may be

the whole sphere. We begin by covering Ω by a set U = {Uk(tk ,rk)}Nk=1 of N overlapping
“umbrellas” or spherical caps Uk , each of which is defined by a centre point tk and
geodesic radius rk . See the left plot in Fig. 4. For each spherical cap Uk , a connectivity
(or neighbours) list is defined that consists of the indices of all the spherical caps Ui ∈ U ,5

i 6= k, that overlap with Uk . From the given point set P , we then create N smaller point
sets Pk , k = 1, . . . ,N, each of which consists of the points in P which are in the spherical
cap Uk . Due to the overlap of the spherical caps Uk , a point in P may end up belonging
to multiple points sets Pk .

At this point in Sect. 2.2, we assigned each of the point subsets Pk to a processor10

and constructed N Delaunay tessellations in parallel. Before doing so in the spherical
case, we project each of the point sets Pk onto the plane tangent at the corresponding
point tk . This additional step allows each processor to construct a planar Delaunay
triangulation instead of spherical one. Specifically, for each k, we construct the planar
point set P̃k = S(Pk ;tk), where S(Pk ;tk) denotes the stereographic projection of the15

points in Pk onto the plane tangent to the sphere at the point tk . We then assign each
of the point sets P̃k to a different processor and have each processor construct the
planar Delaunay triangulation of its point set P̃k . Because stereographic projections
preserve circularity and therefore preserve the Delaunay circumcircle property, it is
then just a simple matter of keeping track of triangle vertex and edge indices to define20

the spherical Delaunay triangulations of the point sets Pk .
As in Sect. 2.2, we now proceed to remove spherical triangles that are not guaran-

teed to be Delaunay with respect to the global point set P . Instead of Eq. (1), in the
spherical case, triangles must satisfy

cos−1 ||tk − ĉi ||+ r̂i < rk ,25

for that guarantee to be in effect, where t̂i and r̂i are the centre and radius, respectively,
of the circumsphere of the i th triangle in the local Delaunay tessellation of Pk . Once the

1441

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/1427/2013/gmdd-6-1427-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/1427/2013/gmdd-6-1427-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 1427–1466, 2013

Parallel algorithms
for Delaunay
construction

D. W. Jacobsen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

possibly unwanted triangles are removed, we can, as in Sect. 2.2, transparently stitch
together the modified Delaunay triangulations into a global one.

In summary, the algorithm for the construction of a spherical Delaunay tessellation
in parallel consists of the following steps, where the italicized steps are the ones added
to the algorithm of Sect. 2.2:5

– define overlapping spherical caps Uk , k = 1, . . . ,N, that cover the given region Ω
on the sphere;

– sort the given point set P into the subsets Pk , k = 1, . . . ,N, each containing the
points in P that are in Uk ;

– for k = 1, . . . ,N, construct in parallel the point set P̃k by stereographically project-10

ing the points in Pk onto the plane tangent to the sphere at the point tk ;

– for k = 1, . . . ,N, construct in parallel the planar Delaunay triangulation T̃k of the
points set P̃k ;

– for k = 1, . . . ,N, construct in parallel the spherical Delaunay triangulation Tk by
mapping the planar Delaunay triangulation T̃k onto the sphere;15

– for k = 1, . . . ,N, construct in parallel the spherical triangulation T̂k by removing
from Tk all simplices that are not guaranteed to satisfy the circumsphere property;

– construct the Delaunay tessellation of P as the union of the N modified spherical
Delaunay tessellations {T̂k}

N
k=1.

See the right plot in Fig. 4 for an illustration of a spherical Delaunay triangulation de-20

termined by this algorithm.
Because of the singularity in Eqs. (4) or (5) for p = f , the serial version of this algo-

rithm, i.e. if N = 1, can run into trouble whenever the antipode f of the tangency point t
is in the spherical domain Ω. Of course, this is always the case if Ω is the whole sphere.
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In such cases, the number of subdomains used cannot be less than two, even if one is
running the above algorithm in serial mode.

In setting the extent of overlap, i.e. the radii of the spherical caps, as the maximum
geodesic distance from the a cap centre tj to neighbouring cap centres ti , the geodesic

distance is given by cos−1(tj · ti ).5

3.3 Application to the construction of spherical centroidal Voronoi tessellations
(SCVTs)

The parallel CVT construction algorithm of Sect. 2.3 is easily adapted for the construc-
tion of centroidal Voronoi tessellations on the sphere (SCVTs). Obviously, one uses the
spherical version of the Delaunay triangulation algorithm as given in Sect. 3.2 instead10

of the version of Sect. 2.2. One also has to deal with the fact that if one computes the
centroid of a spherical Voronoi cell using Eq. (2), then that centroid does not lie on the
sphere; a different definition of a centroid has to be used (Du et al., 2003a). Fortunately,
it is shown in Du et al. (2003a) that the correct centroid can be determined by using
Eq. (2), which yields a point inside the sphere, and then projecting that point onto the15

sphere (actually, this was shown to be true for general surfaces) so that the correct
spherical centroid is simply the intersection of the radial line going through the point
determined by Eq. (2) and the sphere.

4 Results

All results are created using a high performance computing (HPC) cluster with 24 AMD20

Opteron 6176 cores per node and 64GB of RAM per node.

4.1 Delaunay triangulations of the full sphere

We use STRIPACK (Renka, 1997), a serial Fortran 77 Association of Computing
Machinery (ACM) Transactions on Mathematical Software (TOMS) algorithm that
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constructs Delaunay triangulations on a sphere, as a baseline for comparison with
our approach. It is currently one of the few well-known spherical triangulation libraries
available.

Table 1 compares the algorithm described in this paper, referred to as MPI-SCVT,
with STRIPACK for the construction of spherical Delaunay triangulations. The results5

given compare the cost to compute a single triangulation of a 163 842 generator global
grid that corresponds to a roughly 60 km grid on the surface of the Earth. The results
show, for the computation of a full spherical triangulation MPI-SCVT is roughly a factor
of 10 slower than STRIPACK in serial mode, and roughly 60 % slower when using
96 processors. Although this result shows STRIPACK out-preforming MPI-SCVT, this10

is only with respect to a single full triangulation of the sphere.

4.2 Initial generator placement and sorting heuristics for SCVT construction

We now examine the effects of initial generator placement and sorting heuristics with
regards to SCVT generation. The results of this section are intended to guide decisions
about which initial condition or sorting method we use later to generate SCVTs.15

4.2.1 Initial generator placement

Because most climate models are shifting towards global high-resolution simulations,
our target quasi-uniform grid is a global 15 km resolution grid, which corresponds to
2 621 442 grid points or Voronoi cells. We compare SCVT grids constructing starting
with uniform Monte Carlo and bisection initial generator placement. The times for these20

grids to converge to a tolerance 10−6 in the `2 norm are presented. The 10−6 threshold
is the strictest convergence level that the Monte Carlo grid can attain in a reasonable
amount of time, and is therefore chosen as the convergence threshold for this study.
However, the bisection grid can converge well beyond this threshold in a similar amount
of time. Table 2 shows timing results for the parallel algorithm for the two different25

options for initial generator placement. Although the time spent converging a mesh
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with Monte Carlo initial placements is highly dependent on the initial point set, it is
clear from this table that bisection initial conditions provide a significant speedup in
the overall cost to generate an SCVT grid. Based on the results presented in Table 2
and unless otherwise specified, only bisection initial generator placements are used in
subsequent experiments. Bisection initial conditions are not specific to this algorithm,5

and can be used to accelerate any SCVT grid generation method.

4.2.2 Sorting of points for assignment to processors

The heuristic mentioned in Sect. 2.2 determines regions associated with processors
based on the maximum distance from region centres to their neighbouring centres; in
the variable resolution grid setting, this approach does not provide good load balancing10

because in transition regions (where grid spacings can vary significantly), one ends up
with larger region radii than required. To resolve this issue, we develop a new algorithm
for determining regional point sets. We begin by sorting points into the cells of a coarse
Voronoi tessellation of the region centres. For each region centre, the union of the
points in its Voronoi cell and in its neighbouring Voronoi cells gives the final point set15

used for that region centre. This sorting method is more expensive when compared
the method described in Sect. 2.2, but the resulting better load balancing reduces idle
computing time from processors that have small loads. Timings using both approaches
are given in Table 3. Figure 5 shows the number of points that each processor has
to triangulate on a per iteration basis. Timings presented are for 163 842 generators,20

42 regions, 42 processors, and are averages over 3000 iterations. Three sets of timings
are given. Two use the approach of Sect. 2.2, one for a uniform grid and the other for
a grid which, after convergence, has a sixteen to one ratio in its maximum and minimum
grid sizes. Table 3 and Fig. 5 show that there is a significant advantage to the Voronoi-
based decomposition in that it not only speeds up the overall cost per iteration, but also25

provides a more balanced loads across the processors. Note that, in Table 3, timings
are taken relative to processor number 0, and as can be seen in Fig. 5a, processor
0 has a very small load so the majority of its iteration time is spent waiting for the

1445

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/1427/2013/gmdd-6-1427-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/1427/2013/gmdd-6-1427-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 1427–1466, 2013

Parallel algorithms
for Delaunay
construction

D. W. Jacobsen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

processors with large loads to finish and catch up; this idling time is included in the
Communication column of the table.

Based on the results in Table 3, the new Voronoi-based sorting approach is used for
all subsequent results. This should provide appropriate load balancing when generating
SCVT meshes. Using this sorting method should result in comparable quasi-uniform5

and variable resolution SCVT generator performance.

4.3 SCVT generation

We now provide both quasi-uniform and variable resolution SCVT generation results.
The major contributor to the differences in computational performance arises as a result
of load balancing differences. Results in this section make use of the density function10

ρ(xi ) =
1

2(1−γ)

[
tanh

(
β− |xc −xi |

α

)
+1
]
+γ (6)

which is visualized in Fig. 6, where xi is constrained to lie on the surface of the unit
sphere. This function results in relatively large value of ρ within a distance β of the point
xc, where β is measured in radians and xc is also constrained to lie on the surface15

of the sphere. The function transitions to relatively small values of ρ across a radian
distance of α. The distance between xc and xi is computed as |xc −xi | = cos−1(xc ·xi )
with a range from 0 to π.

Figure 7 shows an example grid created using this density function, with xc set to be
φc = 3π/2, λc = π/6, where φ denotes longitude and λ latitude, γ = (1/8)4, β = π/6,20

and α = 0.20 with 10 242 generators. This set of parameters used in Eq. (6) is referred
to as x8. The quasi-uniform version is referred to as x1.

In Sect. 4.1, we showed that MPI-SCVT performs comparably to STRIPACK when
computing a single full triangulation. However, computing a full triangulation is only
part of the story. For SCVT generation, a triangulation needs to be computed at every25

iteration of Lloyd’s algorithm as described in Sect. 2.3. When using STRIPACK, the full
triangulation needs to be computed at every iteration, but with MPI-SCVT only each
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regional triangulation needs to be computed at each iteration. This means the merge
step can be skipped resulting in significantly cheaper triangulations.

Figure 8 shows the performance of a STRIPACK-based SCVT construction as the
number of generators is increased through bisection as mentioned in Sect. 2.3. Values
are averages over 2000 iterations. The green dashed line represents the portion of the5

code that computes the centroids of the Voronoi regions whereas the red solid line
represent the portion of the code that computes the Delaunay triangulation.

Table 4 compares STRIPACK with the triangulation routine in MPI-SCVT that is called
on every iteration. The results presented relative to MPI-SCVT are averages over 2000
iterations.10

As a comparison with Fig. 8, in Figs. 9 and 10 we present timings made for MPI-
SCVT for two and 96 regions and processors, respectively, as the problem size, i.e.
the number of generators, increases. A minimum of two processors are used because
the stereographic projection used in MPI-SCVT has a singularity at the focus point.
Eventually, at around 2 621 442 generators, the triangulation becomes more expensive15

than the integration step.
Whereas Fig. 9 shows performance similar to that of STRIPACK (see Fig. 8), Fig. 10

shows roughly two orders of magnitude faster performance relative to STRIPACK. As
mentioned previously, this is only the case when creating SCVTs as the full triangula-
tion is no longer required when computing a SCVT in parallel.20

4.4 General algorithm performance

This section is intended to showcase some general performance results of MPI-SCVT.
Figure 11a–c shows the timings for a 40 962 generator grid (roughly 120 km global
resolution), a 163 842 generator grid (60 km resolution), and a 2 621 442 generator grid
(15 km resolution), respectively.25

To assess the overall performance of the MPI-SCVT algorithm, scalability results are
presented in Fig. 12. Figure 12a shows that this algorithm can easily under-saturate
processors; when this happens, communication ends up dominating the overall runtime
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for the algorithm which is seen in Fig. 11a; as a result, scalability ends up being sub-
linear. As the number of generators increases (as seen in Fig. 12b, c), the limit for
being under-saturated is higher. Currently in the algorithm, communications are done
asynchronously using non-blocking sends and receives. Also, overall communications
are reduced by only communicating with a region’s neighbours. This is possible be-5

cause points can only move within a region radius on any two subsequent iterations,
and because of this can only move into another region which is overlapping the current
region. More efficiency gains could be realized through improvements in the communi-
cation and integration algorithms and could result in linear scaling. In principle, since all
of the computation is local this algorithm should scale linearly very well up to hundreds10

if not thousands of processors.

5 Summary

A novel technique for the parallel construction of Delaunay triangulations is presented.
This parallel algorithm can be applied to the generation of planar and spherical cen-
troidal Voronoi tessellations. Results were presented for the generation of spherical15

centroidal Voronoi tessellations, with comparisons to STRIPACK, a well-known algo-
rithm for the computation of spherical Delaunay triangulations. The algorithm pre-
sented in the paper (MPI-SCVT) shows slower performance than STRIPACK when
computing a single triangulation in serial and comparable performance when using
roughly 100 processors. When paired with a SCVT generator, the algorithm shows20

significant speed up relative to a STRIPACK based SCVT generator. The implementa-
tion of MPI-SCVT described and explored in this paper can be freely downloaded at
(http://sourceforge.net/projects/mpi-scvt/).
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Table 1. Comparison of STRIPACK with serial and parallel versions of MPI-SCVT for computa-
tion of a full spherical triangulation. Computed using the same initial set of 163 842 generators.

Algorithm Processors Regions Time (ms) Speedup (STRIPACK/MPI-SCVT)

STRIPACK 1 1 410.94 Baseline
MPI-SCVT 1 2 4276.95 10.41
MPI-SCVT 2 2 2216.92 5.39
MPI-SCVT 96 96 679.114 1.65
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Table 2. Timing results for MPI-SCVT with bisection and Monte Carlo initial generator
placements and the speedup of bisection relative to Monte Carlo. Final mesh contains
262 1442 generators.

Timed Portion Bisection (B) Monte Carlo (MC) Speedup MC
B

Total Time (ms) 112 890 358 003 000 3171.25
Triangulation Time (ms) 10 887 48 034 600 4412.11
Integration Time (ms) 30 893 66 374 400 2148.52
Communication Time (ms) 70 878 110 958 000 1565.47
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Table 3. Timings based on sorting approach used. Uniform uses a coarse quasi-uniform SCVT
to define region centres and their associated radii and sorts using maximum distance between
centres and neighbouring centres. x16 uses a coarse SCVT with a 16 to 1 ratio in grid sizes to
effect the same type of sorting. Voronoi uses the same x16 coarse SCVT grid to define regions
centres and sorts using the neighbouring Voronoi cell-based sort.

Sorting Costs Of Different Algorithm Steps Cost Per
Approach Triangulation Integration Communication Iteration Speedup

Uniform 14.5264 37.6193 1314.22 1396.53 Baseline
x16 35.8437 92.9066 865.323 995.039 1.40
Voronoi 39.8263 84.9515 200.721 325.832 4.28
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Table 4. Comparisons of SCVT generators using STRIPACK, serial MPI-SCVT, and parallel
MPI-SCVT. Cost per triangulation and iteration are presented. Speedup is compared using
the cost per iteration. Computed using 163 842 generators. Variable resolution results are pre-
sented for MPI-SCVT only.

Algorithm Procs Regions Triangulation Iteration Speedup Per Iteration
Time (ms) Time (ms) (STRIPACK/MPI-SCVT)

STRIPACK 1 1 410.94 91185.43 Baseline
MPI-SCVT x1 1 2 3732.96 9741.2 9.36
MPI-SCVT x1 2 2 2216.92 5529.16 16.49
MPI-SCVT x1 96 96 37.6262 233.873 389.89
MPI-SCVT x8 96 96 39.8263 325.832 279.85
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points inP that are not inPk. This follows because the points in anyTk are unaware of the triangles

and points outside ofSk so that there may be points inP that are not inPk that lie within the circum-

sphere of a simplex inTk. In fact, only simplices whose circumspheres are completely contained

inside of the ballSk are guaranteed to be globally Delaunay; those points satisfy the criteria

||ck− ĉi||+ r̂i <rk, (1)

wherêci andr̂i are the centre and radius of the circumsphere of theith triangle in the local Delaunay

tessellationTk.

So, at this point, for eachk= 1,...,N , we construct the triangulation̂Tk by discarding all sim-

plices in the local Delaunay tessellationTk whose circumspheres are not completely contained inSk,

i.e., all simplices that do not satisfy (1). Figure 1 shows one of the local Delaunay triangulationsTk120

and the triangulation̂Tk after the deletion of triangles that are not guaranteed to satisfy the Delaunay

property globally.

Fig. 1. A local Delaunay triangulationTk (left) and the triangulation̂Tk after the deletion of triangles that are

not guaranteed to satisfy the Delaunay property globally.

The final step is to merge theN modified tessellationŝTk, k = 1,...,N , that have been con-

structed completely in parallel into a single global tessellation. The key observation here is that

each regional tessellation T̂k is now exactly a portion of the global Delaunay tessellation because if125

two local tessellationŝTi andT̂k overlap, they must coincide wherever they overlap. This follows

from the uniqueness property of the Delaunay tessellations. Thus,the union of the local Delaunay

tessellations is the global Delaunay tessellation; by using an overlapping domain decomposition,

the stitching of the regional Delaunay tessellations into aglobal one is transparent. Of course, some

bookkeeping chores have to be done such as rewriting simplexinformation in terms of global point130

indices and counting overlapping simplices only once.

A final note is that the radii{rk}Nk=1
should be chosen large enough so that there are no gaps

5

Fig. 1. A local Delaunay triangulation Tk (left) and the triangulation T̂k after the deletion of
triangles that are not guaranteed to satisfy the Delaunay property globally.
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Fig. 2. Triangle subdivision used for integrating over Voronoi cells using only the Delaunay triangulation

without any adjacency information. Kite sections contribute to the Voronoi cell associated with its vertex. The

triangle vertices denote generators in the point set. Triangular regions that are shaded similarly form the kites.

tessellations overlap, one has to ensure that each generator is only updated by one region, i.e., by195

only one processor. This can be done using one of a variety of domain decomposition methods. We

use a coarse Voronoi diagram corresponding to the region centresck. Each processor only updates

the generators that are inside of its coarse Voronoi cell. Because Voronoi cells are non-overlapping,

each generator will only get updated by one processor. Afterall the generators are updated, each

coarse region needs to transfer its newly updated points only to its adjacent regions and not to all200

active processors. This limits each processor’s communications to roughly six sends and receives,

regardless of the total number of processors used.

We use two metrics tocheck for the convergence of the Lloyd iteration, namely theℓ2 andℓ∞

norms of generator movement given by

ℓ2 norm=
( 1

n

n∑

j=1

(xold
j −xnew

j )2
)1/2

and ℓ∞ norm= max
j=1,...,n

(|xold
j −xnew

j |),

respectively, are compared with a given tolerance; here, old and new refer to the previous and current

Lloyd iterates. If either norm falls below the tolerance, the iterative process is deemed to have

converged. Theℓ∞ norm is more strict, but both norms follow similar convergence paths when

plotted against the iteration number. Other metrics can be used such as the clustering energy (Du

et al. (1999))

CE=

n∑

j=1

∫

Vj

(ρ(x)‖x−xj‖
2dx).

However, in practice, this choice tends to be less strict andmore computationally expensive when

compared with the use of generator movement.

A variety of point sets can be used toinitiate Lloyd’s method for CVT construction. The obvious205

one is Monte Carlo points (Metropolis and Ulam (1949)). These can either be sampled uniformly

overΩ or sampled according to the point-density functionρ(x). The latter approach usually reduces

the number of iterations required for convergence. One can instead use a bisection method to build

fine grids from a coarse grid (Heikes and Randall (1995)). To create a bisection grid, a coarse CVT

8

Fig. 2. Triangle subdivision used for integrating over Voronoi cells using only the Delaunay
triangulation without any adjacency information. Kite sections contribute to the Voronoi cell
associated with its vertex. The triangle vertices denote generators in the point set. Triangular
regions that are shaded similarly form the kites.
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are preserved, but they also preserve circularity, meaningthat circles on the sphere are mapped to

circles on the plane. Stereographic projections also map the interior of these circles to the interior245

of the mapped circles (Bowers et al. (1998), Saalfeld (1999)). For our purposes, the importance

of circularity preservation is that it implies that stereographic projections preserve the Delaunay

circumcircle property as defined in Sect. 2.1. This follows because triangle circumcircles (along

with their interiors) are preserved. Therefore, Delaunay triangulations on the sphere are mapped to

Delaunay triangulations on the plane and conversely. As a result, stereographic projections can be250

used to construct a Delaunay triangulation of a portion of the sphere by first constructing a Delaunay

triangulation in the plane, which is a simpler and well-studied task.

Without loss of generality, we assume that we are given the unit sphere inR3 centred at the origin.

We are also given a plane tangent to the sphere at the pointt. The focus pointf is defined as the

reflection oft about the centre of the sphere, i.e.,f is the antipode oft. Letp denote a point on the

unit sphere. The stereographic projection ofp onto the plane tangent att is the pointq on the plane

defined by

q= sp+(1−s)f , where s=2
1

f ·(f−p)
. (4)

Figure 3 illustrates the stereographic projection. For ourpurposes, it is more convenient to define

the projection relative tot rather thanf . The simple substitution off =−t into (4) results in

q= sp+(s−1)t, where s=2
1

t ·(p+t)
. (5)

The definitions (4) and (5) can also be used to define stereographic projections inRk for k > 3.

q

p

c

t

f

p

q

Fig. 3. Cross-sectional illustration of the stereographic projectionq of a pointp on the sphere onto the plane

tangent to the sphere at the pointt.

3.2 Parallel algorithm for spherical Delaunay triangulation construction

A spherical Delaunay triangulation (SDT) is the Delaunay triangulation of a point setP defined255

on the surface of the sphere. We adapt the algorithm developed in Sect. 2.2 for domains inRk to

10

Fig. 3. Cross-sectional illustration of the stereographic projection q of a point p on the sphere
onto the plane tangent to the sphere at the point t.
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develop a parallel algorithm for the construction of SDTs. The most important adaptation is to use

stereographic projections so that the actual constructionof Delaunay triangulations is done on planar

domains.

We are now given a set of pointsP = {xj}
n
j=1 on a subsetΩ of the sphere;Ω may be the whole260

sphere. We begin by coveringΩ by a setU = {Uk(tk,rk)}
N
k=1

of N overlapping “umbrellas” or

spherical capsUk, each of which is defined by a centre pointtk and geodesic radiusrk. See the left

plot in Fig. 4. For each spherical capUk, a connectivity (or neighbours) list is defined that consists

of the indices of all the spherical capsUi ∈U , i 6= k, that overlap withUk. From the given point set

P , we then createN smaller point setsPk, k=1,...,N , each of which consists of the points inP265

which are in the spherical capUk. Due to the overlap of the spherical capsUk, a point inP may end

up belonging to multiple points setsPk.

Fig. 4. Left: An overlapping subdivision of the sphere intoN = 12 spherical caps. The cap centrestk are

the projections onto the sphere of the centroids of the 12 pentagons of the inscribed regular icosahedron. Each

coloured ring represents the edge of cap of radiusrk. Right: A 10,242 generator Delaunay triangulation by the

parallel algorithm

At this point in Sect. 2.2, we assigned each of the point subsetsPk to a processor and constructed

N Delaunay tessellations in parallel. Before doing so in the spherical case, we project each of the

point setsPk onto the plane tangent at the corresponding pointtk. This additional step allows each270

processor to construct a planar Delaunay triangulation instead of spherical one. Specifically, for

eachk, we construct the planar point setP̃k =S(Pk;tk), whereS(Pk;tk) denotes the stereographic

projection of the points inPk onto the plane tangent to the sphere at the pointtk. We then assign each

of the point sets̃Pk to a different processor and have each processor construct the planar Delaunay

triangulation of its point set̃Pk. Because stereographic projections preserve circularityand therefore275

preserve the Delaunay circumcircle property, it is then just a simple matter of keeping track of

triangle vertex and edge indices to define the spherical Delaunay triangulations of the point setsPk.

As in Sect. 2.2, we now proceed to remove spherical trianglesthat are not guaranteed to be

Delaunay with respect to the global point setP . Instead of (1), in the spherical case, triangles must

11

Fig. 4. Left: an overlapping subdivision of the sphere into N = 12 spherical caps. The cap
centres tk are the projections onto the sphere of the centroids of the 12 pentagons of the
inscribed regular icosahedron. Each coloured ring represents the edge of cap of radius rk .
Right: a 10 242 generator Delaunay triangulation by the parallel algorithm.
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it not only speeds up the overall cost per iteration, but alsoprovides a more balanced loads across365

the processors. Note that, in Table 3, timings are taken relative to processor number 0, and as can

be seen in Fig. 5(a), processor 0 has a very small load so the majority of its iteration time is spent

waiting for the processors with large loads to finish and catch up; this idling time is included in the

Communication column of the table.

Sorting Costs Of Different Algorithm Steps Cost Per

Approach Triangulation Integration Communication Iteration Speedup

Uniform 14.9779 39.3149 2556.971 2611.35 Base

x16 104.793 276.681 1560.71 1965.56 1.32

Voronoi 98.5482 249.77 288.694 640.472 4.07

Table 3. Timings based on sorting approach used. Uniform uses a coarse quasi-uniform SCVT to define region

centres and their associated radii and sorts using maximum distance between centres and neighbouring centres.

x16 uses a coarse SCVT with a 16 to 1 ratio in grid sizes to effect the same type of sorting. Voronoi uses the

same x16 coarse SCVT grid to define regions centres and sorts using theneighbouring Voronoi cell-based sort.
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(c) Voronoi

Fig. 5. Number of points each processor has to triangulate. 5(a), 5(b), and 5(c) use the sorting approaches

corresponding to the three rows of Table 3. All plots were created with the same set of 163842 generators.

Based on the results in Table 3, the new Voronoi-based sorting approach is used for all subsequent370

15

Fig. 5. Number of points each processor has to triangulate. (a), (b), and (c) use the sorting
approaches corresponding to the three rows of Table 3. All plots were created with the same
set of 163 842 generators.
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results. This should provide appropriate load balancing when generating SCVT meshes. Using

this sorting method should result in quasi-uniform and variable resolution SCVT generation to be

comparable in terms of performance.

4.3 SCVT generation

We now provide both quasi-uniform and variable resolution SCVT generation results. The major

contributor to the differences in computational performance arises as a result of load balancing dif-

ferences. Results in this section make use of the density function

ρ(xi)=
1

2(1−γ)

[
tanh

(
β−|xc−xi|

α

)
+1

]
+γ (6)

which is visualized in Fig. 6, wherexi is constrained to lie on the surface of the unit sphere. This375

function results in relatively large value ofρ within a distanceβ of the pointxc, whereβ is measured

in radians andxc is also constrained to lie on the surface of the sphere. The function transitions

to relatively small values ofρ across a radian distance ofα. The distance betweenxc andxi is

computed as|xc−xi|=cos−1(xc ·xi) with a range from0 to π.
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Fig. 6. Density function that creates a grid with resolutions that differ by a factor of 8 between the coarse and

the fine regions. The maximum value of the density function is 1 whereas theminimum value is(1/8)4.

Figure 7 shows an example grid created using this density function, withxc set to beφc =3π/2,380

λc =π/6, whereφ denotes longitude andλ latitude,γ=(1/8)4, β=π/6, andα=0.20 with 10,242

generators. This set of parameters used in (6) is referred toas x8. The quasi-uniform version is

referred to as x1.

16

Fig. 6. Density function that creates a grid with resolutions that differ by a factor of 8 between
the coarse and the fine regions. The maximum value of the density function is 1 whereas the
minimum value is (1/8)4.
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(a) Coarse region (b) Transition region

(c) Fine region

Fig. 7. Different views of the same variable resolution grid created using the density function (6). Figure 7(a)

shows the coarse region of the grid, 7(b) shows the transition region, and 7(c) shows the fine region.

In Sect. 4.1, we showed that MPI-SCVT performs comparably toSTRIPACK when computing a

single full triangulation. However, computing a full triangulation is only part of the story. For SCVT385

generation, a triangulation needs to be computed at every iteration of Lloyd’s algorithm as described

in Sect. 2.3. When using STRIPACK, the full triangulation needs to be computed at every iteration,

but with MPI-SCVT only each regional triangulation needs tobe computed at each iteration. This

means the merge step can be skipped resulting in significantly cheaper triangulations.

Figure 8 shows the performance of a STRIPACK-based SCVT construction as the number of390

generators is increased through bisection as mentioned in Sect. 2.3. Values are averages over 2000

iterations. The green dashed line represents the portion ofthe code that computes the centroids of

the Voronoi regions whereas the red solid line represent theportion of the code that computes the

Delaunay triangulation.

17

Fig. 7. Different views of the same variable resolution grid created using the density function
Eq. (6). (a) shows the coarse region of the grid, (b) shows the transition region, and (c) shows
the fine region.
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Fig. 8. Timings for STRIPACK-based SCVT construction for 162, 642, 10,242, 40,962, 163,842, 655,362, and

2,621,442 generators. Red solid lines represent the time spent in STRIPACK computing a triangulation whereas

green dashed lines represent the time spent integrating the Voronoi cellsoutside of STRIPACK in one iteration

of Lloyd’s algorithm.

Table 4 compares STRIPACK with the triangulation routine inMPI-SCVT that is called on every395

iteration. The results presented relative to MPI-SCVT are averages over 2000 iterations.

Algorithm Procs Regions Time (ms) Speedup (STRIPACK/MPI-SCVT)

STRIPACK 1 1 410.94 Baseline

MPI-SCVT x1 1 2 439.04 0.936

MPI-SCVT x1 2 2 247.661 1.659

MPI-SCVT x1 96 96 7.99503 51.399

MPI-SCVT x8 96 96 39.2858 10.460

Table 4. Comparison of STRIPACK with serial and parallel versions of MPI-SCVT.

As a comparison with Fig. 8, in Fig. 9 and Fig. 10 we present timings made for MPI-SCVT for

two and 96 regions and processors, respectively, as the problem size, i.e., the number of generators,

increases. A minimum of two processors are used because the stereographic projection used in

MPI-SCVT has a singularity at the focus point. Eventually, at around 2,621,442 generators, the400

triangulation becomes more expensive than the integrationstep.

18

Fig. 8. Timings for STRIPACK-based SCVT construction for 162, 642, 10 242, 40 962, 163 842,
655 362, and 2 621 442 generators. Red solid lines represent the time spent in STRIPACK
computing a triangulation whereas green dashed lines represent the time spent integrating the
Voronoi cells outside of STRIPACK in one iteration of Lloyd’s algorithm.
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Fig. 9. Timings for various portions of MPI-SCVT using 2 processors and 2 regions. As the problem size

increases the slope for both triangulation (red-solid) and integration (green-dashed) remain roughly constant.

The triangulation does not become more expensive than the integration until after roughly 2621442 generators.
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Fig. 10. Same information as in Figure 8 but for 96 processors and 96 regions.

Whereas Fig. 9 shows performance similar to that of STRIPACK (see Fig. 8), Fig. 10 shows

roughly two orders of magnitude faster performance relative to STRIPACK. As mentioned previ-

ously, this is only the case when creating SCVTs as the full triangulation is no longer required when

computing a SCVT in parallel.405

4.4 General algorithm performance

This section is intended to showcase some general performance results of MPI-SCVT. Figures 11(a),

11(b), and 11(c) show the timings for a 40,962 generator grid(roughly 120km global resolution),

a 163,842 generator grid (60km resolution), and a 2,621,442generator grid (15km resolution), re-

spectively.410

19

Fig. 9. Timings for various portions of MPI-SCVT using 2 processors and 2 regions. As the prob-
lem size increases the slope for both triangulation (red-solid) and integration (green-dashed)
remain roughly constant. The triangulation does not become more expensive than the integra-
tion until after roughly 2 621 442 generators.
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Fig. 9. Timings for various portions of MPI-SCVT using 2 processors and 2 regions. As the problem size

increases the slope for both triangulation (red-solid) and integration (green-dashed) remain roughly constant.

The triangulation does not become more expensive than the integration until after roughly 2621442 generators.
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Fig. 10. Same information as in Figure 8 but for 96 processors and 96 regions.

Whereas Fig. 9 shows performance similar to that of STRIPACK (see Fig. 8), Fig. 10 shows

roughly two orders of magnitude faster performance relative to STRIPACK. As mentioned previ-

ously, this is only the case when creating SCVTs as the full triangulation is no longer required when

computing a SCVT in parallel.405

4.4 General algorithm performance

This section is intended to showcase some general performance results of MPI-SCVT. Figures 11(a),

11(b), and 11(c) show the timings for a 40,962 generator grid(roughly 120km global resolution),

a 163,842 generator grid (60km resolution), and a 2,621,442generator grid (15km resolution), re-

spectively.410
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Fig. 10. Same information as in Fig. 9 but for 96 processors and 96 regions.
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(a) 40,962 generators
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(b) 163,842 generators
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(c) 2,621,442 generators

Fig. 11. Timing results for MPI-SCVT vs. number of processors for three different problem sizes. Red

solid-lines represent the cost of computing a triangulation, whereas green-dashed lines represent the cost of

integrating all Voronoi cells, and blue-dotted lines represent the cost ofcommunicating each region’s updated

point set to its neighbours.

To assess the overall performance of the MPI-SCVT algorithm, scalability results are presented

20

Fig. 11. Timing results for MPI-SCVT vs. number of processors for three different problem
sizes. Red solid-lines represent the cost of computing a triangulation, whereas green-dashed
lines represent the cost of integrating all Voronoi cells, and blue-dotted lines represent the cost
of communicating each region’s updated point set to its neighbours.
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(a) 40,962 generators
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(b) 163,842 generators
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Fig. 12. Scalability results based on number of generators. Green is a linear reference whereas red is the

speedup computed using the parallel version of MPI-SCVT compared toa serial version.
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Fig. 12. Scalability results based on number of generators. Green is a linear reference whereas
red is the speedup computed using the parallel version of MPI-SCVT compared to a serial
version.
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