

Interactive comment on “Source apportionment using LOTOS-EUROS: module description and evaluation” by R. Kranenburg et al.

Anonymous Referee #1

Received and published: 6 December 2012

The paper summarizes a new development of a source labelling technique. The technique is overall well presented. The technique is relevant to many applications and it fits well into the scope of GMD. However there are a couple open questions, ,which should be clarified before considering publication:

- Formulas should be written more precisely and include the units in the text. (see below)
- Some processes presented in Section 3 are not explained in detail. (see below)
- Figures: Labels are far too small, hard to read.
- Section 4.3: Since the brut force method is not valid as a benchmark, which has

been shown nicely by Emmons et al., 2012 (GMDD), Grewe et al. (2010,2012) (GMD and Atmos. Environm.), it is not clear whether this part is of relevance. Please consider a revision of the objective.

- Section 5 includes a major draw back of this method. This has to be addressed in more detail. It is not clear, why this source is not labelled additionally. Taking into account the agricultural emissions change the results totally.
- How does this technique compare to Emmons et al., 2012 (GMD), Grewe et al., 2010, (GMD) and Wang et al., 2009; J. Geophys. Res., 114, D21206.
- For tracking reasons it would be good to have a module name and version number (also in the title).
- I propose to include a supplementary material, which describes the input, etc. some sort of a handbook.

Specific comments:

Abstract Please clarify the wording "origin": A contribution can originate from an emission source, like road traffic or from a location.

3962/17 "shows comparable performance to other European models": Please give a more quantitative summary.

3964/11 please explain what $fr_{emis} >> (l)$ means fr=fraction o emission and what is "l"? (Explanation is coming a couple of lines later, but should occur earlier)

3964/15 The notation seems to be inconsistent. c_f is a concentration change (l 12) c_0 is a concentration, f_a fraction? "(l)" is missing and probably "dt" and shouldn't fr dependent on the concentration? Further: shouldn't be c_0 the concentration at time step n-1 ? (I assume n is the time step?) -> $fr_n^c(l) = (fr_{n-1}(l) * c_{n-1} + fr_{emis(l)} * c_f * dt) / c_n$

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

3964/16 Please indicate the units of each variable. Eg. c_n in (mol/mol).

GMDD

3965/02 Please mention explicitly that advection is principally a linear operator.

5, C994–C997, 2012

3965/17 " F_{in} are taken from the donor cell," Since the flux is related to one cell only, shouldn't the equation include the sum over all neighbouring cells?

Interactive
Comment

Section 3.4 Can you explain how re-evaporation of rain is treated. Since this is a complex non-linear process this seems to be difficult for labelling. I.e. if rain is formed in a column but not reaching the ground water from different levels with different concentrations and fractions might be released at one level.

3966/22 What is meant with "concentrations of all species". Why all? I thought "c" is an arbitrary but specific species. Again inclusion of units would be helpful CI in (1/s) or 1/timestep. Please change "c(t)" into "c" or include "(t)" for all variables.

3968/19 "PAN is taken from both precursor species (C₂O₃ and NO₂)."
Please explain in detail how this is done. Is it the same mechanism as in Grewe et al., (2010) GMD? What is about reaction like NO₂+NO₃ → N₂O₅. Either species might have a different fractions?

Section 3 The details described here do not reflect 1 by 1 the list at page 3963. How is diffusion treated?

3970/22 "shows" "show"

Full Screen / Esc

3971/18 "separate countries" or "all mentioned regions?"

Printer-friendly Version

3984 Please increase the font of the numbers - Hard to read.

Interactive Discussion

Section 4.3 "In principle, it is impossible to validate the functioning of the labeling routine for a full chemistry simulation as the chemistry scheme is non-linear." Why?

Discussion Paper

If you have tracers which have an isotope contribution this actually can be measured. Still a validation can be difficult, but in principle possible. See Gromov et al., GMD. I understand that a comparison between labeled species and a scenario run leads nowhere. So what is the relevance of section 4.3. Please re-consider the objective of this Section.

Section 4.4 : Please explain the sharp decrease for a few labels.

3975/18 Please indicate that you discuss Fig. 8 here.

3975/26 Fig. 1? -> Fig. 9.

3976/27ff But then the results are changed even qualitatively: From largest contribution from transport sector to agricultural sector. Why not labelling this source in addition? What is the use of the labelling, if the method is missing most of the effects?

Interactive comment on Geosci. Model Dev. Discuss., 5, 3957, 2012.

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

