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The authors would like to thank the Referee for the very helpful comments and sug-
gestions. The comments have been taken into consideration in the revised manuscript.
We answer all of them individually in the following.

1 Summary of error characteristics

A general summary (e.g. as a table) of the various error characteristics could
help to get a better overview of the results derived in this work (e.g from P2267
L25 – 27; P2268 L14; P2269 L19 – 20). Additionally the authors also could extend
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their descriptions of the prior-residuals, prior-parameter errors and observation
errors beyond the reporting of median values and they could also describe the
spread of these errors derived from the different Fluxnet sites.

In the revised manuscript, was have added Table 1 (Table 2 in the revised manuscript),
and modified the end of the first paragraph in Sect. 4:

’The statistics of the prior residuals (i.e., measurements-minus-simulations) and the
prior-parameter error allowed us to estimate the structure of the observation error (i.e.,
model error + measurement error) whose inferred characteristics in different observa-
tion are summarized in Table 2, and to subsequently derive the model error based on
earlier works regarding the flux measurement error.’

Table 1. Summary of the characteristics of the median observation error (measurement error
+ model error) in the ORCHIDEE model, projected in several observation spaces.

Observation type Structure of the observation error
Standard deviation Time correlation Space correlation

Surface carbon flux 1.7 gC.m−2.d−1 Rapid decrease, below Exponential
(NEE) 0.4 after the first day decrease, e-folding

length of 500km
Atmospheric CO2 1.3 ppm Rapid decrease, below No specific structure
concentration 0.4 after the second day
(surface sample)
Atmospheric CO2 0.5 ppm Rapid decrease, below Exponential
concentration 0.4 after the second day decrease, e-folding
(total column) length of 1200 km

Note that in Table 1, we have chosen to remain focused on the observation error be-
cause it is the main focus of this study. Also, we consider that describing the spread
between sites is interesting but would substantially lengthen the text and overload the
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figures. Meanwhile, to our sense it would not serve significantly the analysis in that our
main focus is to calculate an ’averaged’ estimate of R to represent the mean charac-
teristics of the observation error. Therefore, we find relevant to use only the median as
a metric for this first study.

2 Limitation to DBF

The authors limit their study to deciduous broadleaf forests and also state this
as a limitation. I suggest to further discuss this limitation and where possible the
authors could make an attempt to give some quantitative arguments. Specifically
this could include:

• P2263 L6-8 and P2271 L7: How much does DBF really dominate Northern
Hemisphere (in Orchidee) and what could this mean for the results pre-
sented here?

The sentence P2263 L6-8 is somewhat misleading as we did not imply that the
Northern Hemisphere is dominated by DBF ecosystems, but rather that it is the
dominant vegetation type at the measurements sites used in this study. In the
revised manuscript, we have rephrased the sentence:

’We selected 12 flux tower stations of the Northern Hemisphere located in tem-
perate deciduous broadleaf forests, which correspond to one of the plant func-
tional types (PFT) used in the ORCHIDEE model (Table A1).’

In ORCHIDEE, the DBF ecosystem is not dominant in the Northern Hemisphere
(let alone on continental Earth), so that the extrapolation is a rather strong hy-
pothesis. However, we have adopted it because Krinner et al. (2005) and more
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recently Wang et al. (2012) have shown that the model-data misfit is not signifi-
cantly peculiar for the DBF ecosystem as compared to the other plant functional
types of ORCHIDEE. We have modified the corresponding sentence in the re-
vised manuscript, at the beginning of section 3.5 :

’Assuming similar model-data mismatches across biomes with the ORCHIDEE
model (see for example Wang et al., 2012), the characteristics of the observation
error R diagnosed in temperate deciduous broadleaf forests (e-folding lengths of
500 km and 1 day for space and time correlation, respectively) is prescribed at
the global scale, and we project the inferred R̂prior in the space of atmospheric
concentrations using the LMDZ transport model (see Sect. 2.5).’

• P2268 l16: The uncertainties from Hollinger and Richardson (2005) are de-
rived for one site which is dominated by an evergreen needleleaf forest. The
errors are described to depend on the magnitude of the fluxes themselves.
This should be more prominently stated and the consequences of poten-
tially higher measurement uncertainties on Rmod should be discussed.

Richardson et al. (2008) give a more systematic description of the random mea-
surement error, describing a mean behavior of its standard deviation using ten
site-years, four of which in temperate deciduous broadleaf forests. We acknowl-
edge that this error varies with the flux amplitude, ranging at the half-hourly
timescale from 1 to 6 µmol.m−2.s−1. In the submitted manuscript, the reported
value of 0.4 gC.m−2.d−1 has been calculated by assuming a roughly independent
error from one hour to another (supported by Lasslop et al., 2008), which from a
half-hourly error in the order of 2 µmol.m−2.s−1 gives 2/

√
24≈0.4gC.m−2.d−1 for

daily averages (with here 1 µmol.m−2.s−1≈ 1 gC.m−2.d−1).

In the revised manuscript we have taken into account the variation of the mea-
surement error mentioned above, although restricting the range from 1 to 4
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µmol.m−2.s−1 because 4 µmol.m−2.s−1 corresponds to a negative flux of around
-15 µmol.m−2.s−1, never exceeded on daily average at the sites studied here.

Finally, it leads to an standard deviation ranging from 0.2 to 0.8 gC.m−2.d−1 at
the daily timescale. As recommended, the consequences on the model error
have been better highlighted in the second paragraph of Sect. 3.2 in the revised
manuscript :

’The median standard deviation of the observation error is estimated to be 1.7
gC.m−2.d−1. This number combines measurement and model contributions
(Sect. 2.3). Using measurements across different types of forest ecosystems,
Richardson et al. (2008) found that the random measurement errors range ap-
proximately from 0.2 to 0.8 gC.m−2.d−1 depending on the flux magnitude, which
means that the variance due to the measurement errors accounts for 1 to 25% of
the total observation variance. Additionally, Lasslop et al. (2008) showed that no
significant measurement error correlation remains at the daily time scale. From
these elements, we conclude that the seasonal structure of the model error in
ORCHIDEE is very similar to that of the observation error described above (the
orange curve in Fig. 2), along with a standard deviation ranging from 1.3 to 1.6
gC.m−2.d−1.’

3 Further considerations

p2261 L1 : Scholze et al (2007) have done this as well.

We have added to reference to this study in the revised manuscript.

P2261 L10: What about uncertainties in the surface characteristics (eg.: pft
assignment to grid-cells)

C945

This error is in our opinion part of the forcing error, which should indeed be ex-
tended beyond the mere meteorological forcing (the latter being here considered
part of the model error). We have modified the text accordingly:

’Bayes’ theorem provides a rigorous paradigm to build such CCDASs. Its appli-
cation implies characterizing the uncertainties of each CCDAS component:

– The measurement error,
– The model error, which stems from inappropriate equation forms or from

missing processes in the carbon-cycle model structure,
– The error brought by the meteorological and vegetation forcing data, here

considered as a part of the model error,
– The parameter error, arising from inadequate knowledge about a series of

parameters.’

P2265 L3-4: I assume that R̂prior is the estimation derived from eq. 1 and
R̂eval from eq. 3. The authors should make clearer statements, what they
exactly mean with those terms.

To make it clearer, we first of all added this sentence at the end of the first para-
graph of section 2.3 containing Eq. (1) :

’Note that the estimation of R with this diagnosis will hereafter be noted R̂prior ’.

Also, the mentioned paragraph has been modified to link more explicitly each
term to the corresponding equation:

’The prior and posterior diagnoses proposed in Eqns. (1) and (3) are respectively
the starting points toward a prior estimation of the covariance matrix of obser-
vation errors (i.e., model errors + measurement errors) R̂prior and a posterior
evaluation R̂post.’
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P2271 L14-16 Any reason why the surface stations (flasks and continuous)
do not show a correlation structure but the total column measurements do.

In the revised manuscript, we have added at the end of section 3.5 a suggestion
about what might cause this difference of structure:

’We suggest that the total column smoothens out the surface-originated signals,
which results in much smaller variances and, thus, much larger correlations.’

P2271 L21-21: To my understanding, the model structural error is not equiv-
alent to the aggregation error, even though its misrepresentation might
have similar consequences for the results of the data assimilation system.

The corresponding sentence in the manuscript was meant to point out the analo-
gous nature of these two errors in terms of truncation, although indeed the trun-
cated spaces are different. In the revised manuscript, we have modified the sen-
tence in order to be clearer:

’This term is analogous to the aggregation error that has been rigorously de-
scribed in atmospheric inversions (Bocquet et al., 2011; Kaminski et al., 2001;
Thompson et al., 2011), in that it arises from truncating a given space of vari-
ables.’

P2272 L14-19: This statement is not fully clear to me. Maybe the authors
could describe their intention with more details.

This sentence refers to the results presented P2270 L9-20 where we show that:

– using in the optimization a diagonal R with the standard deviation diagnosed
in the second paragraph of section 3.2 (R̂prior) provides good results based
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on the optimality criterion described in Eq. (6) (Table 1, second row),

– the same optimization yields a posterior estimation R̂post (Eq. 3) which,
when used for a new optimization, improves the results according to the
same optimality criterion (Table 1, third row). It suggest that repeating iter-
atively the posterior diagnosis after each optimization could converges to a
more accurate estimation of R.

In the conclusions, we have modified the sentence, which now reads:

’The same inversions also show that the diagnosed standard deviation of the ob-
servation error complies fairly well with a common optimality criterion used in data
assimilation. We and additionally suggest that an iterative use, in successive in-
versions, of the standard deviation brought by the posterior diagnosis mentioned
above could further improve the estimation of the observation uncertainty.’
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