CERFAO)

OASIS3 User Guide
oasis3_3

Edited by:
S. Valcke, CERFACS/CNRS URA Nol875

December 2012

Copyright Notice

(© Copyright 2012 by CERFACS

All rights reserved.

No parts of this document should be either reproduced or commercially used without prior
agreement by CERFACS representatives.

How to get assistance?
Assistance can be obtained as listed below.

Phone Numbers and Electronic Mail Adresses

’ Name \ Phone \ Affiliation e-mail
Sophie Valcke +33-5-61-19-30-76 CERFACS oasishelp(at)cerfacs.fr

How to get documentation ?

The documentation can be downloaded from the OASIS web site under the URL :
https://verc.enes.org/models/software-tools/oasis

Contents

1 Acknowledgments

2 Introduction

2.1

Step-by-stepuse of OASIS3

3 OASIS3 sources, license and Copyright
OASIS3sources oo it
3.2 License and Copyright

3.1

3.2.1
322

OASIS3 license and copyright statement
The SCRIP 1.4 license copyright statement . .

4 Interfacing a model with the PSMILe library

4.1
4.2
43

4.4
4.5
4.6

4.7
4.8

Initialisation
Grid data file definition
Partition definition
43.1 Serial (no partition)
43.2 Applepartition
433 Boxpartition
434 Orange partition

I/O-coupling field declaration
End of definition phase
Sending and receiving actions

A mix of lag and sequence: the sequential coupled model

4.6.1 Sending acouplingfield
4.6.2 Receiving a coupling field
4.6.3 Auxiliary routines
Termination
Coupling algorithms - SEQ and LAG concepts
48.1 Thelagconcept.
4.8.2 Thesequenceconcept
4.8.3

4.8.4

Mixing sequential and parallel runs using prism_put_restart_proto

5 The OASIS3 configuration file namcouple

5.1

An example of a simple namcouple
5.2 First section of namcouple file
5.3 Second section of namcouple file
Second section of namcouple for EXPORTED, AUXILARY and EXPOUT fields

5.3.1
532
533
534

Second section of namcouple for IGNORED and
Second section of namcouple for OUTPUT fields
Second section of namcouple for INPUT fields

IGNOUT fields

10
10
11
11
12
13
14
14
14
15
15
16
17
17
20
22
24

ii

CONTENTS

The transformations and interpolations in OASIS3 32
6.1 Using OASIS3 in the interpolator-onlymode 32
6.2 The time transformations 33
6.3 The pre-processing transformations 33
6.4 Theinterpolation 35
6.5 The “cooking” stage e e e e e 42
6.6 The post-processing L e e e 44
OASIS3 auxiliary data files 46
7.1 Fieldnamesand units e e 46
7.2 Griddatafiles 46
7.3 Couplingrestartfiles L e 48
74 Inputdatafiles. e e 49
7.5 Transformation auxiliary datafiles oL oL 49
7.5.1 Auxiliary data files for EXTRAP /NINENN, EXTRAP /WEIGHT, INTERP /SURFMESH,
INTERP/GAUSSIAN, MOZAIC,and SUBGRID v 49
7.5.2 Auxiliary data filesfor FILLING v v v vttt et et 50
7.5.3 Auxiliary data files for SCRIPR oo vt 51
Compiling and running OASIS3 and TOYOASIS3 52
8.1 Compiling OASIS3 and debugging 52
8.1.1 Compilation with TopMakefileOasis3 52
8.1.2 CPPKeys e 52
8.1.3 Debugging e e e 54
8.2 Running OASIS3 inparallelmode 54
8.2.1 IPSLparallelisation ittt 54
8.2.2 CMCCparallelisation e 55
8.3 Running OASIS3 in coupled mode with TOYOASIS3 55
8.3.1 TOYOASIS3 description o 56
8.3.2 Compiling and Running TOYOASIS3 58
8.4 Running OASIS3 in interpolator-onlymode 59
8.4.1 The “testinterp” test-Case o i i e e e e e 60
8.4.2 The “testNONE” test-case v v v v i v i ittt e e 60
8.5 Known problems when compiling or running OASIS3 on specific platforms 61
The grid types for the transformations 62
Changes between versions 64
B.1 Changes between casis3_3 and casis3_prism2.5 64
B.2 Changes between casis3 prism.2_5and oasis3_prism2.4 67
B.3 Changes between casis3 prism-2_4 and casis3 prism2.3 68
B.4 Changes between casis3 prism2_3and oasis3_prism2.2 69
B.5 Changes between casis3 prism-2_2 and casis3_prism2.1 69
B.6 Changes between oasis3 prism_2_1 and oasis3 prism.1.2 70

The coupled models realized with OASIS 72

Chapter 1

Acknowledgments

We would like to thank the main past or present developers of OASIS are (in alphabetical order, with the
name of their institution at the time of their contribution to OASIS):

Arnaud Caubel (FECIT/Fujitsu)

Damien Declat (CERFACS)

Italo Epicoco (CMCC)

Veronika Gayler (MPI-M&D)

Josefine Ghattas (CERFACS)

Jean Latour (Fujitsu-Fecit)

Eric Maisonnave (CERFACS)

Silvia Mocavero (CMCC)

Elodie Rapaport (CERFACS)

Hubert Ritzdorf (CCRLE-NEC)

Sami Saarinen (ECMWF)

Eric Sevault (Météo-France)

Laurent Terray (CERFACS)

Olivier Thual (CERFACS)

Sophie Valcke (CERFACS)

Reiner Vogelsang (SGI Germany)
We also would like to thank the following people for their help and suggestions in the design of the
OASIS software (in alphabetical order, with the name of their institution at the time of their contribution
to OASIS):

Dominique Astruc (IMFT)

Chandan Basu (NSC, Sweden)

Sophie Belamari (Météo-France)

Dominique Bielli (Météo-France)

Gilles Bourhis (IDRIS)

Pascale Braconnot (IPSL/LSCE)

Sandro Calmanti (Météo-France)

Christophe Cassou (CERFACS)

Yves Chartier (RPN)

Jalel Chergui (IDRIS)

Philippe Courtier (Météo-France)

CHAPTER 1. ACKNOWLEDGMENTS

Philippe Dandin (Météo-France)
Michel Déqué (Météo-France)
Ralph Doescher (SMHI)
Jean-Louis Dufresne (LMD)
Jean-Marie Epitalon (CERFACS)
Laurent Fairhead (LMD)
Marie-Alice Foujols (IPSL)
Gilles Garric (CERFACS)

Eric Guilyardi (CERFACS)
Charles Henriet (CRAY France)
Pierre Herchuelz (ACCRI)
Maurice Imbard (Météo-France)
Luis Kornblueh (MPI-M)
Stephanie Legutke (MPI-M&D)
Claire Lévy (LODYC)

Olivier Marti (IPSL/LSCE)
Claude Mercier (IDRIS)
Pascale Noyret (EDF)

Andrea Piacentini (CERFACS)
Marc Pontaud (Météo-France)
Adam Ralph (ICHEC)

René Redler (MPI-M)

Tim Stockdale (ECMWF)
Rowan Sutton (UGAMP)
Véronique Taverne (CERFACS)
Jean-Christophe Thil (UKMO)
Nils Wedi (ECMWF)

Chapter 2

Introduction

In 1991, CERFACS decided to tackle coupled climate modelling and to develop a software interface to
couple existing numerical General Circulation Models of the ocean and of the atmosphere. Today, the
OASIS3 coupler, which is the result of more than 15 years of evolution is used by about 30 modelling
groups in Europe, Australia, Asia and North America, on the different computing platforms used by the
climate modelling community. The list of coupled models realized with OASIS3 and previous versions
and the platforms onto which they were run on in the few past years can be found in Appendix C.

OASIS3 sustained development is ensured by a collaboration between CERFACS and the Centre National
de la Recherche Scientifique (CNRS) and its maintainance and user support is presently reinforced with
additinal resources coming from IS-ENES project funded by the EU (FP7 - GA no 228203), into which
the parallel OASIS4 version of the coupler is also currently being developed.

OASIS3 is a portable set of Fortran 77, Fortran 90 and C routines. Portability and flexibility are OA-
SIS3 key design concepts. At run-time, OASIS3 acts as a separate executable, which main function is
to interpolate the coupling fields exchanged between the component models, and as a communication li-
brary linked to the component models, the OASIS3 PRISM Model Interface Library (PSMILe). OASIS3
supports 2D coupling fields in the longitude and latitude dimensions. To communicate with OASIS3, or
directly with another model, or to perform I/O actions, a component model needs to include few specific
PSMILe calls. OASIS3 PSMILe supports in particular parallel communication between a parallel com-
ponent model and OASIS3 interpolation executable based on Message Passing Interface (MPI) and file
I/O using the mpp-io library from GFDL. New with this version, the OASIS3 interpolation executable
can be run on many processes, each process interpolating a subset of the coupling fields, resulting in a
parallelisation of OASIS3 on a field-per-field basis. For each coupling exchange, OASIS3 performs the
transformations and regridding needed to express the source field on the grid of the target model. The
current OASIS3_3 version and its toy coupled model TOYOASIS3 were compiled and run on NEC SX6,
IBM Power4, CRAY XD1, and Linux PC (XXX list to be updated).

2.1 Step-by-step use of OASIS3

To use OASIS3 for coupling models (and/or perform I/O actions), one has to follow these steps:
1. Obtain OASIS3 sources (see chapter 3).

2. Identify the coupling or I/O fields and adapt the component models to allow their exchange with the
PSMILe library based on MPI1 or MPI2 message passing'. The PSMILe library is interfaced with
the mpp_io library from GFDL (2) and therefore can be used to perform I/O actions from/to disk
files. For more detail on how to interface a model with the PSMILe, see chapter 4.

The TOYOASIS3 coupled model gives a practical example of a coupled model; the sources are given

'The SIPC, PIPE and GMEM communication techniques available in previous versions are not maintained anymore.

4 CHAPTER 2. INTRODUCTION

in directories /ocasis3/examples/toyoasis3/src ; more detail on TOYOASIS3 and how
to compile and run it can be found in chapter 8.

3. Define all coupling and I/O parameters and the transformations required to adapt each coupling field
from its source model grid to its target model grid; on this basis, prepare OASIS3 configuring file
namcouple (See chapter 5).

OASIS3 supports different interpolation algorithms as is described in chapter 6. We strongly rec-
ommend that one tests off-line the quality of the chosen transformations and regriddings in the
“testNONE” environment (see section 8.4.2).

4. Generate required auxiliary data files (see chapter 7).

5. Compile OASIS3, the component models and start the coupled experiment. Chapter 8 describes
how to compile and run OASIS3 and the TOYOASIS3 coupled model.

If you need extra help, do not hesitate to contact us (see contact details on the back of the cover page).

Chapter 3

OASIS3 sources, license and Copyright

3.1 OASIS3 sources

OASIS3 sources, related libraries, and TOYOASIS3 coupled model sources and data are available from
CERFACS SVN server. To obtain more detail on how to download the sources, please contact us (see
contact details on the back of the cover page).

OASIS3 directory structure is the following one:

- oasis3/src

- oasis3/lib/anaisg
/anaism
/clim
/fscint
/mpp_io
/NAG_dummies
/psmile
/scrip

- oasis3/doc

- oasis3/util/make_dir

OASIS3 main code

GAUSSIAN interpolation library
SURFMESH interpolation library
CLIM/MPI1-MPI2 communication library
INTERP interpolation library

I/0 library

Dummy library for NAG compiler

PRISM System Model Interface Library
SCRIPR interpolation library

OASIS3 documentation

Utilities to compile OASIS3 (see section 8.1)

- oasis3/examples/toyoasis3 environment to run the TOYOASIS3 toymodel

(see section 8.3)

/testinterp environment to test few predefined OASIS3

interpolations (see section 8.4.1)

/testNONE environment to evaluate the quality of

one’s interpolation (see section 8.4.2)

/toysimple environment to test a ping pong exchange

between two coupled models

/tutorial training to learn how to use OASIS3 step

by step by interfacing the two toy models
with the Psmile library.

6 CHAPTER 3. OASIS3 SOURCES, LICENSE AND COPYRIGHT

3.2 License and Copyright

3.2.1 OASIS3 license and copyright statement

Copyright 2012 Centre Europeen de Recherche et Formation Avancee en Calcul Scientifique (CERFACS).

This software and ancillary information called OASIS3 is free software. CERFACS has rights to use,
reproduce, and distribute OASIS3. The public may copy, distribute, use, prepare derivative works and
publicly display OASIS3 under the terms of the Lesser GNU General Public License (LGPL) as published
by the Free Software Foundation, provided that this notice and any statement of authorship are reproduced
on all copies. If OASIS3 is modified to produce derivative works, such modified software should be clearly
marked, so as not to confuse it with the OASIS3 version available from CERFACS.

The developers of the OASIS3 software are researchers attempting to build a modular and user-friendly
coupler accessible to the climate modelling community. Although we use the tool ourselves and have
made every effort to ensure its accuracy, we can not make any guarantees. We provide the software to you
for free. In return, you—the user—assume full responsibility for use of the software. The OASIS3 software
comes without any warranties (implied or expressed) and is not guaranteed to work for you or on your
computer. Specifically, CERFACS and the various individuals involved in development and maintenance
of the OASIS3 software are not responsible for any damage that may result from correct or incorrect use
of this software.

3.2.2 The SCRIP 1.4 license copyright statement

The SCRIP 1.4 copyright statement reads as follows:

“Copyright 1997, 1998 the Regents of the University of California. This software and ancillary infor-
mation (herein called SOFTWARE) called SCRIP is made available under the terms described here. The
SOFTWARE has been approved for release with associated LA-CC Number 98-45. Unless otherwise in-
dicated, this SOFTWARE has been authored by an employee or employees of the University of California,
operator of Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with the United States
Department of Energy. The United States Government has rights to use, reproduce, and distribute this
SOFTWARE. The public may copy, distribute, prepare derivative works and publicly display this SOFT-
WARE without charge, provided that this Notice and any statement of authorship are reproduced on all
copies. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this SOFTWARE. If SOFTWARE is modified to produce
derivative works, such modified SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.”

Chapter 4

Interfacing a model with the PSMILe
library

At run-time, OASIS3 acts as a separate executable which drives the coupled run, interpolates and trans-
forms the coupling fields. To communicate with OASIS3 or directly between the component models,
different communication techniques have been historically developed. The technique used for one par-
ticular run is defined by the user with the keyword SCHANNEL in the configuration file namcouple (see
chapter 5). In OASIS3, the CLIM communication technique based on MPI1 or MPI2 message passing and
the associated model interface library PSMILe, should be used as the SIPC, PIPE and GMEM commu-
nication techniques from previous versions are not maintained anymore. For a practical toy model using
the PSMILe library, see the sources in /oasis3/examples/toyoasis3/src and more details in
chapter 8.

To communicate with OASIS3 or directly with another component model using the CLIM-MPI1/2 com-
munication technique, or to perform I/O actions, a component model needs to be interfaced with the
PRISM System Model Interface library, PSMILe, which sources can be found in casis3/1ib/psmile
directory. PSMILe supports:

e parallel communication between a parallel component model and OASIS3 executable,
e direct communication between two parallel component models when no transformations and no
repartitioning are required,
e automatic sending and receiving actions at appropriate times following user’s choice indicated in
the namcouple,
e time integration or accumulation of the coupling fields,
e [/O actions from/to files.
To adapt a component model to PSMILe, specific calls of the following classes have to be implemented
in the code:
1. Initialisation (section 4.1)
Grid data file definition (section 4.2)
Partition definition (section 4.3)
I/O-coupling field declaration (section 4.4)
End of definition phase (section 4.5)

A e

I/0-coupling field sending and receiving (section 4.6)
7. Termination (section 4.7)
Finally, in section 4.8, different coupling algorithms are illustrated, and explanations are given on how to

reproduce them with PSMILe by defining the appropriate indices of lag and sequence for each coupling
field.

8 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

4.1 Initialisation

All processes of the component model initialise the coupling and, if required, retrieve a local communica-
tor for the component model internal parallelisation.

e USE mod_prism_proto
Module to be used by the component models.

e CALL prism_init_comp_proto (compid, model_name, ierror)

— compid [INTEGER; OUT]: component model ID
— model _name [CHARACTER=%6; IN]:name of calling model (as in namcouple)

— ierror [INTEGER; OUT]: returned error code.

Routine called by all component model processes, which initialises the coupling.'

e CALL prism_get_localcomm_proto (local_comm, ierror)

— local_comm [INTEGER; OUT]: value of local communicator

— lerror [INTEGER; OUT]: returned error code.

If needed, routine called by all model processes to get the value of a local communicator to be used
by the model for its internal parallelisation (CLIM-MPI1 communication technique only).

With CLIM-MPI1, all component models started in a pseudo-MPMD mode share automatically the
same MPI_COMM_WORLD communicator. Another communicator has to be used for the internal
parallelisation of each model. OASIS3 creates this model local communicator based on the name of
the calling model; its value is returned as the first argument of prism_get_localcomm_proto routine.

With CLIM-MPI2, OASIS3 executable spawns the component model executables at the beginning
of the run; the components keep their internal parallelisation context unchanged with respect to
their standalone mode. In this case, calling the prism_get_localcomm_proto routine is useless but if
called, the communicator MPI_COMM_WORLD will be returned as local communicator.

4.2 Grid data file definition

The grid data files grids.nc, masks.nc and areas.nc can be created by the user before the run or can be
written directly at run time by the master process of each component model (except when OASIS3 is used
in “IPSL” parallel mode, see section 8.2.1).

If written by the component models, the writing of those grid files is driven by OASIS3 main process. It
first checks whether the binary file grids or the netCDF file grids.nc exists (if it is the case, it assumes that
areas or areas.nc and masks or masks.nc files exist too), or if writing is needed. If grids or grids.nc exists,
it must contain all grid information from all models; the file will not be completed or overwritten even if
the following routines are explicitely called. If grids or grids.nc does not exist, each model must write its
grid, mask and area definition in the grid data files with the following routines.

The coupler sends the information on whether or not writing is needed to the models following an OA-
SIS3 internal order (below prism_start_grids_writing called by the component master process). If the grid
data files already exist in the working directory, nothing happens when the component model calls the
prismwrite_grid, prismwrite_corner,prismwrite_ang, prismwrite_mask,
prism_write_area routines; the grid information is NOT overwritten in the grid files. If writing is
needed, the first model creates the files, writes the data arrays when calling the appropriate routines, and
then sends a termination flag to the coupler (below

The model may call MPI_Init explicitly, but if so, has to call it before calling prism_init_comp_proto; in this case, the
model also has to call MPI_Finalize explicitly, but only after calling prism_terminate_proto.

4.2. GRID DATA FILE DEFINITION 9

prism terminate _grids_writing call). The coupler will then send the starting flag to the next
model; this ensures that only one model accesses the files at a time.

This section describes the PSMILe routines to be called by the master process of each component model
to write, at run time, the whole grid information to the grid data files. These routines have to be called just
after prism_init_comp_proto.

As an example, see the TOYOASIS3 coupled model components that use these routines to write the grid
data files (effective if gridswr=1 in the running script run_toyoasisa3, see section 8.3).
e USE mod prism.grids_.writing
Module to be used by the component model to call grid writing routines.

e CALL prism._start_grids_writing (flag)
— flag [INTEGER; OUT]:returns 1 or O if grids writing is needed or not needed
Initialisation of grids writing.

e CALL prismwrite_grid (cgrid, nx, ny, lon, lat)

cgrid [CHARACTER«4; IN]: grid name prefix (see 5.3)

— nx [INTEGER; IN] : first grid dimension (x)

— ny [INTEGER; IN] :second grid dimension (y)

— lon [REAL, DIMENSION (nx,ny); IN) :array of longitudes (degrees East)

— lat [REAL, DIMENSION (nx,ny); IN) :array of latitudes (degrees North)
Writing of the model grid longitudes and latitudes. Longitudes must be given in degrees East in
the interval -360.0 to 720.0. Latitudes must be given in degrees North in the interval -90.0 to 90.0.
Note that if some grid points overlap, it is recommended to define those points with the same number
(e.g. 90.0 for both, not 450.0 for one and 90.0 for the other) to ensure automatic detection of overlap

by OASIS (which is essential to have a correct conservative remapping SCRIPR/CONSERV, see
section 6.4).

e CALL prismwrite_corner (cgrid, nx, ny, nc, clon, clat)

cgrid [CHARACTER«4; IN]: grid name prefix
— nx [INTEGER; IN] : first grid dimension (Xx)
— ny [INTEGER; IN] :second grid dimension (y)
— nc [INTEGER; IN] :number of corners per grid cell (always 4 in the version)
- lon [REAL, DIMENSION (nx,ny,nc); IN] :array of cornerlongitudes (in degrees_East)
- lat [REAL, DIMENSION (nx,ny,nc); IN] :array of corner latitudes (in degrees_North)
Writing of the grid cell corner longitudes and latitudes (counterclockwise sense). Longitudes must
be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in degrees North
in the interval -90.0 to 90.0. Note also that cells larger than 180.0 degrees in longitude are not sup-

ported. Writing of corners is optional as corner information is needed only for some transformations
(see section 7.2). If called, prism_write_corners needs to be called after prism_write_grids.

e CALL prismwrite_angle (cgrid, nx, ny, angle)

cgrid [CHARACTERx4; IN]: grid name prefix

nx [INTEGER; IN] : first grid dimension (x)

ny [INTEGER; IN] :second grid dimension (y)

angle [REAL, DIMENSION (nx,ny);IN] :array of angles

Writing of the grid angles; needed only if coupling fields are vector fields defined on a grid which has
a local coordinate system not oriented in the zonal and meridional directions. The angle is defined
as the angle between the vector first component and the zonal direction. See SCRIPR/CONSERV
in section 6.3.

10 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

If called, prism_write_angle needs to be called after prism_write_grids.

e CALL prismwritemask (cgrid, nx, ny, mask)

cgrid [CHARACTER«4; IN]: grid name prefix
— nx [INTEGER; IN] : first grid dimension (X)
- ny [INTEGER; IN] :second grid dimension (y)
— mask [INTEGER, DIMENSION (nx,ny) ; IN] :maskarray (0-notmasked, 1 - masked)
Writing of the model grid mask.
e CALL prismwrite_area (cgrid, nx, ny, area)
— cgrid [CHARACTER=*4; IN]: grid name prefix
— nx [INTEGER; IN] : first grid dimension (X)
— ny [INTEGER; IN] :second grid dimension (y)
— area [REAL, DIMENSION (nx,ny); IN] :array of grid cell areas

Writing of the model grid cell areas. Writing of areas is optional as area information is needed only
for some transformations (see section 7.2).

e CALL prism.terminate_grids_writing/()

Termination of grids writing. A flag stating that all needed grid information was written will be sent
to OASIS3 main process.

4.3 Partition definition

When a component of the coupled system is a parallel code, each coupling field is usually scattered among
the different processes. With the PSMILe library, each process can send directly its partition to OASIS3
interpolation executable, or directly to the other component model if no transformation and no repartition
are required. To do so, each process exchanging coupling data has to define its local partition in the global
index space.

e USE mod_prism.def _partition_proto

Module to be used by the component model to call prism def partition proto.
e CALL prism.def partition_proto (il_part_id, ig_paral, ierror)
— il part_id [INTEGER; OUT]: partition ID

— igparal [INTEGER, DIMENSION(:), IN]: vector of integers describing the local
partition in the global index space

— ierror [INTEGER; OUT]: returned error code.
The vector of integers describing the process local partition, 1g_paral, has a different expression de-

pending on the type of the partition. In OASIS3, 4 types of partition are supported: Serial (no partition),
Apple, Box, and Orange.

4.3.1 Serial (no partition)

This is the choice for a monoprocess model. In this case, we have ig_paral (1:3):
e igparal (1) =0 (indicates a Serial “partition™)
e igparal(2) =0
e ig paral (3) = the total grid size.

4.3. PARTITION DEFINITION 11

AR [0
0000w
0000, [Do0OC

RN
HEEEE
ENEEE

]

Proc 1. Proc 2: Proc 3:
local offset =0 local offset = 4 local offset = 10
local size=4 local size=6 local Sze=5

Figure 4.1: Apple partition. It is assumed here that the index start at O in the upper left corner.

4.3.2 Apple partition

Each partition is a segment of the global domain, described by its global offset and its local size. In this
case, we have ig_paral (1:3):

e ig paral (1) =1 (indicates an Apple partition)
e ig paral (2) =the segment global offset
e ig paral (3) =the segment local size

Figure 4.1 illustrates an Apple partition over 3 processes.

4.3.3 Box partition

Each partition is a rectangular region of the global domain, described by the global offset of its upper left
corner, and its local extents in the X and Y dimensions. The global extent in the X dimension must also

be given. In this case, we have ig_paral (1:5):
e ig paral (1) =2 (indicates a Box partition)
e ig paral (2) =the upper left corner global offset
e ig_paral (3) =the local extent in x

(4)

e igparal = the local extent in y?

’The maximum value of the local extent in y is presently 338; it can be increased by mod-
ifying the value of ClimMaxSegments in oasis3/lib/clim/src/mod.clim.F90 and in

12 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

L NN | | e
BRI DDHER 0000 e
UOHEL) DOOCE) A

Proc 1: Proc 2 Proc 3:

local offset =0 local offset =2 local offset = 10
local x extent =2 local x extent =3 local x extent =5
local y extent =2 local y extent =2 local y extent =1

Figure 4.2: Box partition. It is assumed here that the index start at O in the upper left corner.

e ig paral (5) =the global extent in X.
Figure 4.2 illustrates a Box partition over 3 processes.

4.3.4 Orange partition

WARNING: I/0 do not work for Orange partition, therefore, fields having an Orange partition cannot
have EXPOUT, IGNOUT, INPUT,OUTPUT field status (see section 5.3).

Each partition is an ensemble of segments of the global domain. Each segment is described by its global
offset and its local extent. In this case, we have ig_paral (1:N) where N = 2 + 2xnumber of
segment s3.

e ig paral (1) =3 (indicates a Orange partition)

e ig paral (2) = the total number of segments for the partition (limited to 200 presently, see note

for ig_paral(4) for Box partition above)

e igparal = the first segment global offset

e igparal

)

) = the first segment local extent

) = the second segment global offset
)

(3
(4
e igparal (5
(6

e ig.paral = the second segment local extent

oasis3/lib/psmile/src/modprismproto.F90 and by recompiling OASIS3 and the PSMILe library.
3As for the Box partition, the maximum number of segments is presently 338; it can be increased by modifying the value of
Clim MaxSegments

4.4. I/O-COUPLING FIELD DECLARATION 13

. nbr of segments =3 1% segment size = 5
2nd segment offset = 7
2nd segment size = 2
D D . . D 3rd segment offset = 10

Proc 1: 1¢t segment offset = 0

3rd segment size = 3

Figure 4.3: Orange partition for one process. It is assumed here that the index start at 0 in the upper left corner.

e ig paral (N-1) =the last segment global offset

e ig paral (N) =the last segment local extent

Figure 4.3 illustrates an Orange partition with 3 segments for one process. The other process partitions
are not illustrated.

4.4 1/O-coupling field declaration

Each process exchanging coupling data declares each field it will send or receive during the simulation.

e CALL prism._def_var_proto(var_id, name, il_part_id, var_nodims, kinout,
var_actual_shape, var_type, ierror)

var_id [INTEGER; OUT]: coupling field ID

name [CHARACTER=*8; IN]:field symbolic name (as in the namcouple)

il part_id [INTEGER; IN]:partitionID (returnedbyprism def partition_proto)
var_nodims [INTEGER, DIMENSION (2); IN]:var_nodims(1)is the rank of field ar-
ray (1 or 2); var_nodims(2) is the number of bundles (always 1 for OASIS3).

kinout [INTEGER; IN]: PRISM In for fields received by the model, or PRISM Out
for fields sent by the model

var_actual_shape [INTEGER, DIMENSION (2*xvar_nodims (1)); IN]:vectorof
integers giving the minimum and maximum index for each dimension of the coupling field ar-
ray; for OASIS3, the minimum index has to be 1 and the maximum index has to be the extent
of the dimension.

14 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

— var_type [INTEGER; IN]: type of coupling field array; put PRISM_Real for single or
double precision real arrays*. Note that no automatic conversion is implemented; therefore,
all coupling fields exchanged through OASIS3 main process must be of same type

— lerror [INTEGER; OUT]: returned error code.

4.5 End of definition phase

Each process exchanging coupling data closes the definition phase.
e CALL prism_enddef _proto(ierror)
— ierror [INTEGER; OUT]: returned error code.

4.6 Sending and receiving actions

4.6.1 Sending a coupling field

In the model time stepping loop, each process sends its part of the I/O or coupling field.

e USE mod_prism_put_proto
Module to be used by the component model to call prism_put_proto.

e CALL prism_put_proto(var_-id, date, field.array, info)

var_id [INTEGER; IN]: field ID (from corresponding prism_def_var_proto)
date [INTEGER; IN]:number of seconds in the run at the time of the call

field.array [REAL, IN]:I/O or coupling field array
info [INTEGER; OUT]: returned info code i.e.

x PRISM_Sent(=4) if the field was sent to another model (directly or via OASIS3 main
process)

* PRISM _LocTrans (=5) if the field was only used in a time transformation (not sent, not
output)

* PRISM_ToRest (=6) if the field was written to a restart file only

* PRISM_Output (=7) if the field was written to an output file only

x PRISM_SentOut (=8) if the field was both written to an output file and sent to another
model (directly or via OASIS3 main process)

* PRISM_ToRestOut (=9) if the field was written both to a restart file and to an output file.

* PRISM_Ok (=0) otherwise and no error occurred.

This routine may be called by the model at each timestep. The sending is actually performed only if the
time obtained by adding the field lag (see 4.8) to the argument date corresponds to a time at which it
should be activated, given the coupling or I/O period indicated by the user in the namcouple (see section
5). A field will not be sent at all if its coupling or I/O period indicated in the namcouple is greater than the
total run time.

If a local time transformation is indicated for the field by the user in the namcouple (INSTANT, AVER-
AGE, ACCUMUL, T_MIN or T_ MAX, see section 6), it is automatically performed and the resulting field
is finally sent at the coupling or I/O frequency.

*PRISM standard is to exchange coupling fields declared REAL (kind=SELECTED_REAL_KIND (12,307)). By
default, all real variables are declared as such in OASIS3. To exchange single precision coupling fields, OA-
SIS3 has to be compiled with the CPP key use_realtype_single, and the coupling fields must be declared
REAL (kind=SELECTED_REAL_KIND (6, 37)) in the component models (see also chapter 8).

4.6. SENDING AND RECEIVING ACTIONS 15

For a coupling field with a positive lag (see 4.8), the OASIS3 restart file (see section 7.3) is automatically
written by the last prism put_proto call of the run, if its argument date + the field lag corresponds
to a coupling or I/O period. To force the writing of the field in its coupling restart file, one can use
prismput_restart_proto (see below).

This routine can use the buffered MPI_BSend (by default) or the standard send MPI_Send (if NOBSEND is
specified in the namcouple -see $CHANNEL section 5.2) to send the coupling fields.

4.6.2 Receiving a coupling field

In the model time stepping loop, each process receives its part of the I/O-coupling field.

e USE mod_prism_get_proto
Module to be used by the component model to call prism_get_proto.
e CALL prism_get_proto(var_id, date, field.array, info)
— var_id [INTEGER; IN]: field ID (from corresponding prism_def_var_proto)
— date [INTEGER; IN]:number of seconds in the run at the time of the call
- field.array [REAL, OUT]:I/O or coupling field array
info [INTEGER; OUT]: returned info code
* PRISM_Recvd(=3) if the field was received from another model (directly or via OASIS3
main process)
x PRISM_FromRest (=10) if the field was read from a restart file only (directly or via OA-
SIS3 main process)
* PRISM_Input (=11) if the field was read from an input file only
x PRISM_RecvOut (=12) if the field was both received from another model (directly or via
OASIS3 main process) and written to an output file
* PRISM_FromRestOut (=13) if the field was both read from a restart file (directly or via
OASIS3 main process) and written to an output file

x PRISM_Ok (=0) otherwise and no error occurred.

This routine may be called by the model at each timestep. The date argument is automatically analysed
and the receiving action is actually performed only if date corresponds to a time for which it should be
activated, given the period indicated by the user in the namcouple. A field will not be received at all if its
coupling or I/O period indicated in the namcouple is greater than the total run time.

4.6.3 Auxiliary routines

e CALL prism_put_inquire (var_id, date, info)
- var_id [INTEGER; IN]: field ID (from corresponding prism_def_var_proto)
— date [INTEGER; IN]:number of seconds in the run at the time of the call
— info [INTEGER; OUT]: returned info code.
This routine may be called at any time to inquire what would happen to the corresponding field (i.e. with

same var_id and at same date) below the corresponding prism put_proto. The possible value of
the returned info code are as for prism_put_proto:

o PRISM _Sent(=4) if the field would be sent to another model (directly or via OASIS3 main process)
o PRISM _LocTrans (=5) if the field would be only used in a time transformation (not sent, not output)
o PRISM ToRest (=6) if the field would be written to a restart file only

16 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

PRISM _Output (=7) if the field would be written to an output file only

e PRISM _SentOut (=8) if the field would be both written to an output file and sent to another model
(directly or via OASIS3 main process)

o PRISM _ToRestOut (=9) if the field would be written both to a restart file and to an output file.

PRISM_Ok (=0) otherwise and no error occurred.
This is useful when the calculation of the corresponding field_array is CPU consuming and should
be avoided if the field is not effectively used below the prism_put_proto.
e CALL prism_put_restart_proto(var_.id, date, ierror)
— var_id [INTEGER; IN]: field ID (from corresponding prism_def_var_proto)
— date [INTEGER; IN]:number of seconds in the run at the time of the call
— info [INTEGER; OUT]: returned error code (should be PRISM _ToRest=6 if the restart

writing was successful)

This routine forces the writing of the field with corresponding var_id in its coupling restart file (see
section 7.3). If a time operation is specified for this field, the value of the field as calculated below the last
prism_put_proto is written. If no time operation is specified, the value of the field transferred to the
last prism_put _proto is written.
e CALL prism_get_freq (var-id, period, ierror)
— var_id [INTEGER; IN]: field ID (from corresponding prism_def_var_proto)
— period [INTEGER; OUT]: period of coupling (in number of seconds)
— ierror [INTEGER; OUT]: returned error code
This routine can be used to retrieve the coupling period of field with corresponding var_id, as defined in
the namcouple (see also section 5.3.1).
e CALL prism.abort_proto (compid, routine_name, abort_message)
— compid [INTEGER; IN]:component model ID (from prism_init_comp_proto)
— routine_name; IN]: name of calling routine
— abort message; IN]: message to be written out.
If a process needs to abort voluntarily, it should do so by calling prism_abort_proto. This will ensure
a proper termination of all processes in the coupled model communicator. This routine writes the name

of the calling model, the name of the calling routine, and the message to the job standard output (stdout).
This routine cannot be called before prism_init_comp_proto.

4.7 Termination

e CALL prism_terminate_proto(ierror)
— ierror [INTEGER; OUT]: returned error code.

All processes of the component model must terminate the coupling by calling prism_terminate_proto’
(normal termination). OASIS3 will terminate after all processes called prism_terminate_proto. With

MPI2, the run may be considered finished when OASIS3 terminates; to avoid problem, place the

call to prism_terminate_proto at the very end in the component model code.

5If the process called MPI_Init (before calling prism_init_comp_proto), it must also call MPI_Finalize explicitly,
but only after calling prism_terminate_proto.

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 17
4.8 Coupling algorithms - SEQ and LAG concepts

Using PSMILe library, the user has full flexibility to reproduce different coupling algorithms. In the com-
ponent codes, the sending and receiving routines, respectively prism_put_protoand prism_get_proto,
can be called at each model timestep, with the appropriate date argument giving the actual time (at the
beginning of the timestep), expressed in “number of seconds since the start of the run”. This date
argument is automatically analysed by the PSMILe and depending on the coupling period, the lag and
sequencing indices (LAG and SEQ), chosen by the user for each coupling field in the configuration file
namcouple, different coupling algorithms can be reproduced without modifying anything in the compo-
nent model codes themselves. The lag and sequence concepts and indices are explained in more details
here below. These mechanisms are valid for fields exchanged through OASIS3 main process and for fields
exchanged directly between the component models.

4.8.1 The lag concept

If no lag index or if a lag index equal to O is given by the user in the namcouple for a particular coupling
field, the sending or receiving actions will actually be performed, below the prism_put_proto called
in the source model or below the prism_get _proto called in the target model respectively, each time
the date argument on both sides matches an integer number of coupling periods.

To match aprism_put_proto called by the source model at a particular date withaprism_get _proto
called by the target model at a different date, the user has to define in the namcouple an appropriate lag
index, LAG, for the coupling field(see section 5). The value of the LAG index must be expressed in “num-
ber of seconds”; its value is automatically added to the prism put_proto date value and the sending
action is effectively performed when the sum of the date and the lag matches an integer number of cou-
pling periods. This sending action is automatically matched, on the target side, with the receiving action
performed when the prism_get_proto date argument equals the same integer number of coupling
periods.

Note that when there is a lag, the first instance of the source field is missing in the debug file (EXPOUT
or IGNOUT fields, see section 5.3) because the first source field is not sent by the source model with a
prism_put_proto but directly read by OASIS3 from a coupling restart file.

1. LAG concept first example
A first coupling algorithm, exploiting the LAG concept, is illustrated on figure 4.4.

On the 4 figures in this section, short black arrows correspond to prism put_proto or
prism_get_proto called in the component model that do not lead to any sending or receiv-
ing action; long black arrows correspond to prism put_proto or prism get_proto called
in the component models that do effectively lead to a sending or receiving action; long red arrows
correspond to prism put_proto or prism get_proto called in the component models that
lead to a reading or writing of the coupling field from or to a coupling restart file (either directly or
through OASIS3 main process).

During a coupling timestep, model A receives F5 and then sends F; its timestep length is 4. During
a coupling timestep, model B receives I and then sends F3; its timestep length is 6. F; and F5
coupling periods are respectively 12 and 24. If F/F5 sending action by model A/B was used at a
coupling timestep to match the model B/A receiving action, a deadlock would occur as both models
would be initially waiting on a receiving action. To prevent this, F and F> produced at the timestep
before have to be used to match respectively the model B and model A receiving actions.

This implies that a lag of respectively 4 and 6 seconds must be defined for F; and F5. For Fi,
the prism put_proto performed at time 8 and 20 by model A will then lead to sending ac-
tions (as 8 + 4 = 12 and 20 + 4 = 24 which are coupling periods) that match the receiving ac-
tions performed at times 12 and 24 below the prism_get_proto called by model B. For F5, the

18 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Model B timestep =6
0 12 18 24 30 120

PR AT A

F
{ FlT le FlT le FlT le FlT le FlT le FlT le F1 le le FlT
0 4 8 12 16 20 24 28 120
Model A timestep =4 ——p prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

Cpl_perio d(Fl) —12 —_— prism |_put J:)Iro_to/prism |_get_proto leading to

. _ sending/receiving actions
Cpl_period(F2) = 24 —y prism_put_proto/prism_get_proto not leading to
LAG(F1) =4 sending/receiving actions
LAG(F2) =6

Figure 4.4: LAG concept first example

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 19
Model B timestep =6
o 6 1 18 W H 1
11 e FlTFsT le FlT FST le FlT FST i
F2|F1| Fa F2| Fa| Fa F
F3
A
F
Fs FlT le FsT Fil P2 F3 FlT le FsT Fil F2| F3 le FsT FlT
0 6 2 18 24 | 120
Model A timestep =6 — 5 prism_put_proto/prism_get_proto leading to
. writing/reading to/from coupling restart file
Cpl_per!Od(Fl) =12 — 5 prism_put_proto/prism_get_proto leading to
Cpl_period(F2) = 12 sending/receiving actions
Cpl_period(Fs) = 12 __» prism_put_proto/prism_get_proto NOT leading to
LAG(F1) =6 sending/receiving actions
LAG(F2) = 6
LAG(F3) =0

Figure 4.5: LAG concept second example

prism put_proto performed at time 18 by model B then leads to a sending action (as 18 + 6
= 24 which is a coupling period) that matches the receiving action performed at time 24 below the

prism_get _proto called by model A.

At the beginning of the run, as their LAG index is greater than 0, the first prism_get_proto of
Fy and F» will automatically be fulfilled by OASIS3 with fields read from their respective coupling
restart files. The user therefore has to create those coupling restart files before the first run in the
experiment. At the end of the run, F} having a lag greater than 0, is automatically written to its
coupling restart file below the last '} prism put_proto asthe date + F lag equals a coupling
time. The analogue is true for F». These values will automatically be read in at the beginning of the

next run below the respective prism_get_proto.

2. LAG concept second example

A second coupling algorithm exploiting the LAG concept is illustrated on figure 4.5. During its
timestep, model A receives Fb, sends F3 and then F7; its timestep length is 6. During its timestep,
model B receives F}, receives F3 and then sends Fb; its timestep length is also 6. F, F5 and Fj

coupling periods are both supposed to be equal to 12.

For I and F5 the situation is similar to the first example. If F}/F> sending action by model A/B
was used at a coupling timestep to match the model B/A receiving action, a deadlock would occur
as both models would be waiting on a receiving action. To prevent this, £’ and F5 produced at the
timestep before have to be used to match the model A and model B receiving actions, which means
that a lag of 6 must be defined for both F; and F5. For both coupling fields, the prism_put_proto
performed at times 6 and 18 by the source model then lead to sending actions (as 6 + 6 = 12 and 18

20 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Model B timestep=6

0o 6 L 18 a3 1
4 FllFZT Fsl FllFZT F3l
Fi| F2| F3 F| F2| F3 F| F2| F3
v v v v v v
OASIS3 main process
A
Fif F2 F3 Fll F2TF3l Fif F2 F3 Fli FZTFSl Fi] F2) F3 Fll FZTFsl
\ 4 Y__. 4 \ AT v \ 4 | |
0 6 12 18 24 120
Model A timestep=6 — 5 prism_put_proto/prism_get_proto leading to

sending/recei vin9 actions
—» prism_put_proto/prism_get_proto NOT
leading to sending/receiving actions

Cpl_period(F1) =12 LAG(F1) =0 SEQ(F1) =1
Cpl_period(F2) =12 LAG(F2) =0 SEQ(F2) =2
Cpl_period(F3) =12 LAG(F3) =0 SEQ(F3) =3

Figure 4.6: The SEQ concept

+ 6 = 24 which are coupling periods) that match the receiving action performed at time 12 and 24
below the prism_get_proto called by the target model.

For F3, sent by model A and received by model B, no lag needs to be defined: the coupling field
produced by model A at the coupling timestep can be “consumed” by model B without causing a
deadlock situation.

As in the first example, the prism_get _proto performed at the beginning of the run for F
and F5, automatically read them from their coupling restart files, and the last prism_put_proto
performed at the end of the run automatically write them to their coupling restart file. For F3, no
coupling restart file is needed nor used as at each coupling period the coupling field produced by
model A can be directly “consumed” by model B.

We see here how the introduction of appropriate LAG indices results in receiving in the target
model, coupling fields produced by the source model the timestep before; this is, in some coupling
configurations, essential to avoid deadlock situations.

4.8.2 The sequence concept

To exchange the coupling fields going through OASIS3 main process (i.e. with status EXPORTED, AU-
XILARY, or EXPOUT, see section 5), in a given order at each coupling timestep, a sequence index SEQ
must be defined for each of them. This is not required for I/O fields or for coupling fields exchanged
directly between the component models, i.e. with status IGNOUT, INPUT or OUTPUT. SEQ gives the
position of the coupling field in the sequence.

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 21

A) SEQMODE=1, SEQ=1 for F1 and F2
fast model
F, F F, F
Interpolation
Fi of FI&F2 |2 Fi
OASIS *
F, F F,
F F, F F,
slow model
wall clock time for 1 coupling period

Figure 4.7: Optimisation of a coupled run using the SEQ index : case A

A coupling algorithm, showing the SEQ concept, is illustrated on figure 4.6. All coupling field produced
by the source model at the coupling timestep can be “consumed” by the target model at the same timestep
without causing any deadlock situation; therefore, LAG = 0 for all coupling fields. However, at each
coupling timestep, a particular order of exchange must be respected; F must be received by model A
before it can send F5, which in turn must be received by model B before it can send F3. Therefore, SEQ
=1, 2, 3 must be defined respectively for F, F5 and F3. As all fields can be consumed at the time they
are produced (LAG=0 for all fields), there no reading/writing from/to coupling restart files.

An appropriate use of the SEQ index can optimise a coupled run when one of the component model is
much slower than the other. This is illustrated on figure 4.7 and figure 4.8.

In figure 4.7 , a coupled run with no use of the SEQ index is illustrated. When the fast model reaches
a coupling period, it sends its output coupling fields to OASIS that receives them and then waits until
the slow model has also reaches the coupling period. Once OASIS3 has received the fields from both
the fast and the slow components, it transforms them and send them respectively to the slow and the fast
components. Only then the fast and the slow components are able to go on. The total elapse time for a
coupling period is the sum of the slow model running time and the OASIS3 working time.

In the figure 4.8, an index SEQ = 1 is assigned to the coupling fields going from the fast to the slow
component and an index SEQ = 2 is assigned to the coupling fields going from the slow to the fast
component. When the fast model reaches a coupling period, it sends its output coupling fields to OASIS3
that receives them, treats them and sends them to the slow model. As soon as the slow model also reaches
the coupling period, it sends its output coupling fields to OASIS, receives its input coupling fields right
after, and is then able to go on without any delay. Concurrently, OASIS3 treats the slow model output
component fields and sends them to the fast model that is then able to go on. Here the total elapse time
for a coupling period is very close to the slow model running time only. One can see that using the SEQ
index in this way results in “hiding” OASIS3 working time behind the slow model running time. Note

22 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

B) SEQMODE=2, SEQ=1 for F1, SEQ=2 for F2
fast model
F, F F, F
F 1F, F F,
Interp Interp Interp Interp
of F1 of F2 of F1 of F2
OASIS >
F F, F F,
1 buffered
send
F1 F2 F1 FZ
slow model
wall clock time for 1 coupling period

Figure 4.8: Optimisation of a coupled run using the SEQ index : case B

that in this case, the default buffered send must be used (i.e the NOBSEND option cannot be specified in
the namcouple, see section 5.2).

4.8.3 A mix of lag and sequence: the sequential coupled model

One can run the same component models simultaneously or sequentially by defining the appropriate LAG
and SEQ indices. In the example illustrated on figure 4.9, the models perform their prism put _proto
and prism_get _proto calls exactly as in the first lag example above (see 1. of 4.8.1): model A receives
F5 and then sends F7; its timestep length is 4. During a coupling timestep, model B receives I} and then
sends Fb; its timestep length is 6. F} and F5 coupling periods are both 12. By defining a LAG index of -8
for I, the models will now run sequentially.

As the LAG for F3 is positive (6), a reading of F5 in its coupling restart file is automatically performed
by OASIS3 to fulfill the initial prism_get_proto. As the LAG for F} is negative (-8), no reading
from file is performed initially and model B waits; at time 8, a sending action is effectively performed
below model A F} prism put_proto (as 8 + LAG (-8) = 0 which is the first coupling timestep) and
matches the initial model B F} prism get _proto. Below the last model A F} prism_put_proto of
the run at time 116, a sending action is effectively performed, as 116 + LAG(—8) = 108 is a coupling
period (as the LAG is negative, the field is not written to its coupling restart file). Below the last model
B F, prismput_proto of the run at time 114, a writing of F5 to its restart file is performed, as
114+ LAG(6) = 120 is a coupling period and as the LAG is positive.

If the coupling fields are transformed through OASIS3 executable, it is important to indicate a sequence
index. In fact, at each OASIS3 coupling timestep, F7 must be necessarily treated after F5. Therefore,

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 23

Model B timestep =6

0 6 12 108 114 120
FlA le FlT F2 FlI le FlT le
v
A
F{ FlT le FlT le F sz FlT le FlT
0 4 T8 12 12716 116 120

Model A timestep =4 ——p prism_put_proto/prism_get_proto leading to

writing/reading to/from coupling restart file

SEQ(F2) = 1

Cpl_perio d(Fl) —12 ———p prism_put_proto/prism_get_proto leading to
Cpl_period(F2) = 12
LAG(F1) = -8
LAG(F2) =6
SEQ(F1) = 2

sending/receiving actions
—y prism_put_proto/prism_get_proto not leading to
sending/receiving actions

Figure 4.9: Mix of LAG and SEQ concepts

24

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

First run:
LAG(F1) = -8 0 6 12 10 114 120 Model B
LAG(F2) =6 oA e . F%HT
SEQ(F1) =2 Restart
SEQ(F2) =1 v Restart file F2
A
file F1
F2 F2
F1 F1
\ FlTx l P] l | h 4 FlTx F?i | Mode A
0 4 8§ 12 12 16 116 120
0 6 1 120

L J

2 18 | L
' Model B
Next runs: Restart / le TFle F1 l T .
LAG(F) =4 | fileF1
2

LAG(F2) =6
SEQ(F1) =1 Restart

= fileF2
SEQ(F2) =1 T lFZT lF ZT Moddl A
| 1 ,,J, — L
1
— prisﬁ__put_proyo/prism_get_proto_Ieading —» prism_put_proto/prism_get_proto not
to writing/reading to/from restart file leading to sending/receiving actions
—— Prism_put_proto/prism_get_proto |eading prism_put_restart leading to writing to
to sending/receiving actions coupling restart file

Figure 4.10: An example using prism_put_restart_proto

4.8.4 Mixing sequential and parallel runs using prism put_restart_proto

In the example illustrated on figure 4.10, the models run sequentially for the first run only and then run
simultaneously. For the first run, the LAG and SEQ indices must be defined as in section 4.8.3. After
the first run, the situation is similar to the one of section 4.8.1, and positive LAG must be defined for
F1 and F5. As their lag is positive, their corresponding first prism_get _proto will automatically lead
to reading F and F> from coupling restart files. In this case, model A has to write F} to its restart file
explicitly by calling prism put_restart_proto (illustrated on the figure by an orange arrow) at the
end of the first run; in fact, F7 lag being then negative, such writing is not automatically done below the
last prism_put_proto of the first run.

Chapter 5

The OASIS3 configuration file namcouple

The OASIS3 configuration file namcouple contains, below pre-defined keywords, all user’s defined infor-
mation necessary to configure a particular coupled run.

If the OASIS3 executable runs on many processes with the ‘IPSL’ type of parallelisation (resulting in a
parallelisation of OASIS3 on a field-per-field basis), one namcouple file per process must be provided by
the user. In this case, OASIS3 must be compiled with the CPP key use_oasis_para and the namcouple
files must be named namcouple_x where x is the number of the corresponding OASIS3 process. For
more details on using OASIS3 in this parallel mode, see section 8.2.1.

The namcouple is a text file with the following characteristics:

o the keywords used to separate the information can appear in any order;
o the number of blanks between two character strings is non-significant;
e all lines beginning with # are ignored and considered as comments.

e blank lines are not allowed.

The first part of namcouple is devoted to configuration of general parameters such as the number of
models involved in the simulation, the number of fields, the communication technique, etc. The second
part gathers specific information on each coupling or I/O field, e.g. their coupling period, the list of
transformations or interpolations to be performed by OASIS3 and associated configuring lines (described
in more details in chapter 6), etc.

In the next sections, a simple namcouple example is given and all configuring parameters are described.
The additional lines containing the different parameters required for each transformation are described in
section 6. An example of a realistic namcouple can be found in casis3/examples/toyoasis3/input/
directory.

5.1 An example of a simple namcouple

The following simple namcouple configures a run in which an ocean, an atmosphere and an atmospheric
chemistry models are coupled. The ocean provides only the SOSSTSST field to the atmosphere, which in
return provides the field CONSFTOT to the ocean. One field (COSENHFL) is exchanged directly from
the atmosphere to the atmospheric chemistry, and one field (SOALBEDO) is read from a file by the ocean.

ARt a4 44 A A A A A A A AT A4 4 4 A A A A A ARS8
First section

#

26 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

SSEQMODE

1
#

SCHANNEL
MPI2 NOBSEND
1 1 argl
3 1 argz
3 1 arg3

SNFIELDS
4 9
#
$ JOBNAME
JOB
#
SNBMODEL
3 ocemod atmmod chemod 55 70 99
#
SRUNTIME
432000
#
SINIDATE
00010101
#
SMODINFO
NOT
#
SNLOGPRT
2
#
SCALTYPE
1
#
idda it ssdsditddsa i atddsd it tdsdAEdddd AR RS A L
Second section
#
SSTRINGS
#
Field 1
#
SOSSTSST SISUTESU 1 86400 5 sstoc.nc EXPORTED
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P2PO
LOCTRANS CHECKIN MOZAIC BLASNEW CHECKOUT
#
AVERAGE
INT=1
at3ltopa 91 2 48
CONSTANT 273.15
INT=1

5.2. FIRST SECTION OF NAMCOUPLE FILE 27
Field 2
#

CONSFTOT SOHEFLDO 6 86400 4 flxat.nc EXPORTED
atmo toce LAG=+14400 SEQ=+2
POP 2
LOCTRANS CHECKIN SCRIPR CHECKOUT
#
ACCUMUL
INT=1
CONSERV LR SCALAR LATLON 10 FRACAREA FIRST
INT=1
#
Field 3
#
COSENHFL SOSENHFL 37 86400 1 flda3.nc IGNOUT
atmo atmo LAG=+7200
LOCTRANS
AVERAGE

#

Field 4

#

#

SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT

FH A R R R R 4

5.2 First section of namcouple file

The first section of namcouple uses some predefined keywords prefixed by the $ sign to locate the related
information. The $ sign must be in the second column. The first ten keywords are described hereafter:

e $SSEQMODE: On the line below this keyword is the maximum value of the coupling field SEQ index

specified in the namcouple (or 1 if no SEQ indices are specified for the coupling fields, see below
and also section 4.8).

$CHANNEL: On the line below this keyword is the communication technique chosen. Choices are
MPI1 or MPI2 for the CLIM communication technique and related PSMILe library. To run OASIS3
as an interpolator only, put NONE (see also section 6.1). The communication techniques available
in previous OASIS version, i.e. SIPC, PIPE, or GMEM are not officially supported anymore.

To use the CLIM/MPI2 communication technique, the lines below SCHANNEL are, e.g. for 3
models:

$CHANNEL

MPI2 NOBSEND
1 1 argl
3 1 argz
3 1 arg3

where MPI2 is the message passing used in CLIM and PSMILe, and NOBSEND indicates that
standard basic send MPI_Send should be used in place of the default buffered MPI_BSend to send
the coupling fields. The standard basic send MPI_Send can be used only if the coupling fields are
sent and received in the same order by the different component models, i.e. the order into which they
are listed in the namcouple, or on platforms for which MP I _Send is implemented with a sufficiently
large mailbox. The less efficient default buffered send MPI_BSend should be used on platforms

28

CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

for which MPI_Send is not implemented with a mailbox! if the coupling fields are not sent and
received in the order into which they are listed in the namcouple®.

The following lines (one line per model listed on the $SNBMODEL line) indicate for each model the
total number of processes, the number of processes implied in the coupling, and possibly launching
arguments>. Here the first model runs on one process which is of course implied in the coupling and
the argument passed to the model is ”arg1”; the second and third models run on 3 processes but only
one process is implied in the coupling (i.e. exchanging information with OASIS3 main process),
and the argument passed to the models are respectively “arg2” and “arg3”.

To use the CLIM/MPI1 communication technique, the SCHANNEL lines are as for MPI2 except
that MPI2 is replaced by MPI1 and there is no launching arguments. With MPI1, models have to
be started by the user in a pseudo-MPMD mode in the order they are introduced in the namcouple.
The way to do this depends on the computing platform. With MPI1, OASIS3 main process and
the component models automatically share the same MPI_.COMM_WORLD communicator; in this
communicator OASIS3 main process is assumed to have rank 0 and the other component models
are assumed to have ranks in the order of which they are introduced in namcouple. If this is not the
case, a deadlock may occur.

SNFIELDS: On the line below this keyword is the total number of fields exchanged and described
in the second part of the namcouple.

In some cases, an additional number has to be specified on the same line after the total number
of fields exchanged. This number, corresponding to the maximum number of prism_def_var_proto
called by ANY component model in the coupled system, is mandatory if it is greater than twice the
number of fields listed in the namcouple; this may be the case if OASIS3 is used in IPSL parallel
mode (see section 8.2.1) or if fields declared with prism_def_var_proto call in the component code
are not activated in the namcouple (in this case, the corresponding sending and receiving calls in the
component code simply return without any action performed).

$ JOBNAME: On the line below this keyword is a CHARACTER*3 or CHARACTER%4 variable giving
an acronym for the given simulation.

SNBMODEL: On the line below this keyword is the number of models running in the given ex-
periment followed by CHARACTER«X6 variables giving their names, which must correspond to the
name announced by each model when calling prism_init_comp_proto (second argument, see
section 4.1). In MP I2 mode, these names also have to correspond to the model executable names.
Then the user may indicate the maximum Fortran unit number used by the models. In the example,
Fortran units above 55, 70, and 99 are free for respectively the ocean, atmosphere, and atmospheric
chemistry models. If no maximum unit numbers are indicated, OASIS3 PSMILe will suppose that
units above 1024 are free. If SCHANNEL is NONE, SNBMODEL has to be 0 and there should be no
model name and no unit number.

SRUNTIME: On the line below this keyword is the total simulated time of the run, expressed in
seconds. If SCHANNEL is NONE, SRUNTIME has to be the number of time occurrences of the field
to interpolate from the restart file.

$INIDATE: On the line below this keyword is the initial date of the run. The format is YYYYMMDD.
This date is important only for the F I LI ING transformation and for printing information in OASIS3

"Note that it was observed that the MPI_Bsend does not work correctly on NEC SX8 with MPI libraries versions 7.2.0 et

7.2.1; this problem was solved with MPI version 7.2.4.

2Note that below the call to prism_enddef_proto, the PSMILe tests whether or not the model has already attached to an

MPI buffer. If it is the case, the PSMILe detaches from the buffer, adds the size of the pre-attached buffer to the size needed
for the coupling exchanges, and reattaches to an MPI buffer. The model own call to MPI_Buf fer_Attach must therefore be
done before the call to prism_enddef_proto. Furthermore, the model is not allowed to call MPI_BSend after the call to
prism_terminate_proto, as the PSMILe definitively detaches from the MPI buffer in this routine. See the example in the
atmoa3.F90 model in casis3/examples/toyoal3/atmoal/src.

3The cases that have been fully tested are: 1- when all processes participate in the coupling; 2- when only the master process

participate in the coupling. The case where a subset of more than one process participate in the coupling has not been tested.

5.3. SECOND SECTION OF NAMCOUPLE FILE 29

log file cplout.

e SMODINFO: If coupling restart files are binary files (see section 7.3), the line below this keyword
indicates if a header is encapsulated or not: it can be YES or NOT.

e SNLOGPRT: The line below this keyword refers to the amount of information that will be written
to the OASIS3 log file cplout during the run. With 0, there is practically no output written to the
cplout; with 1, only some general information on the run, the header of the main routines, and the
names of the fields when treated appear in the cplout. Finally, with 2, the full output is generated.

e SCALTYPE: This keyword gives the type of calendar used. The calendar type is important only if
FILLING analysis is used for a coupling field in the run and for printing information in OASIS3
log file cplout. Below this keyword, a number (0, 1 or n) must be indicated by the user:

— 0: a 365 day calendar (no leap year)

— 1: a 365 or 366 (leap years) day calendar A year is a leap year if it can be divided by 4;
however if it can be divided by 4 and 100, it is not a leap year; furthermore, if it can be divided
by 4, 100 and 400, it is a leap year.

— n:n > 1 day month calendar.

5.3 Second section of namcouple file

The second part of the namcouple, starting after the keyword $STRINGS, contains coupling information
for each coupling (or I/O) field. Its format depends on the field status given by the last entry on the field
first line (EXPORTED, IGNOUT or INPUT in the example above). The field may be :

e AUXILARY: sent by the source component, received and used by OASIS3 for the transformation of
other fields, but not sent to any target component.

e EXPORTED: exchanged between component models and transformed by OASIS3 .

e EXPOUT: exchanged, transformed and also written to two output files, one before the sending action
in the source model below the prism_put_proto call, and one after the receiving action in the
target model below the prism_get _proto call (should be used when debugging the coupled
model only)

e IGNORED: exchanged directly between the component models without being transformed by OA-
SIS3 (the grid and the partitioning of the source and target models have to be identical)

e IGNOUT: exchanged directly between the component models without being transformed by OA-
SIS3 and written to two output files, one before the sending action in the source model below
the prism_put_proto call, and one after the receiving action in the target model below the
prism_get _proto call (the grid and the partitioning of the source and target models have to
be identical)

e INPUT: simply read in from the input file by the target model PSMILe below the prism_get_proto
call at appropriate times corresponding to the input period indicated by the user in the namcouple.
See section 7.4 for the format of the input file.

e OUTPUT: simply written out to an output file by the source model PSMILe below the prism_put_proto
call at appropriate times corresponding to the output period indicated by the user in the namcouple.
The name of the output file (one per field) is automatically built based on the field name and initial
date of the run (SINIDATE).

5.3.1 Second section of namcouple for EXPORTED, AUXILARY and EXPOUT fields

The first 3 lines for fields with status EXPORTED, AUXILARY and EXPOUT are as follows:

SOSSTSST SISUTESU 1 86400 5 sstoc.nc sstat.nc EXPORTED
182 149 128 64 toce atmo LAG=+14400 SEQ=+1

30

CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

P2PO

where the different entries are:

e Field first line:

SOSSTSST : symbolic name for the field in the source model (CHARACTER=8). It has to
match the argument name of the corresponding field declaration in the source model; see
prism_def var_proto in section 4.4.

SISUTESU : symbolic name for the field in the target model (CHARACTER=«8). It has to
match the argument name of the corresponding field declaration in the target model; see
prism_def var_proto in section 4.4.

1 : index in auxiliary file cf_name_table.txt used by OASIS3 and PSMILe to identify corre-
sponding CF standard name and units (see 7.1).

86400 : coupling and/or I/O period for the field, in seconds. If SCHANNEL is NONE (see
section 6.1), put “1”.

5 : number of transformations to be performed by OASIS3 on this field.

sstoc.nc : name of the coupling restart file for the field (CHARACTER« 8); it may be a binary
or netCDF file (for more detail, see section 7.3); mandatory even if no coupling restart file is
effectively used.

sstat.nc : name of the field output file*, may be indicated for NONE (and PIPE) communication
techniques only. It may be a binary of netCDF file (see section 7.3).

EXPORTED : field status.

e Field second line:

182 : number of points for the source grid first dimension (optional if a netCDF coupling
restart file is used).

149 : number of points for the source grid second dimension (optional if a netCDF coupling
restart file is used).

128 : number of points for the target grid first dimension (optional if a netCDF coupling restart
file is used).

64 : number of points for the target grid second dimension (optional if a netCDF coupling
restart file is used).

toce : prefix of the source grid name in grid data files (see section 7.2) (CHARACTER~*4)
atmo : prefix of the target grid name in grid data files (CHARACTER*4)
LAG=+14400: optional lag index for the field expressed in seconds

SEQ=+1: optional sequence index for the field (see section 4.8)

e Field third line

P : source grid first dimension characteristic (‘P’: periodical; ‘R’: regional).
2 : source grid first dimension number of overlapping grid points.
P : target grid first dimension characteristic (‘P’: periodical; ‘R’: regional).

0 : target grid first dimension number of overlapping grid points.

The fourth line gives the list of transformations to be performed for this field. There is then one or more
additional configuring lines describing some parameters for each transformation. These additional lines
are described in more details in the chapter 6.

“In interplator-only mode (i.e. $CHANNEL = NONE), there must be one input file and one output file per field.

5.3. SECOND SECTION OF NAMCOUPLE FILE 31

5.3.2 Second section of namcouple for TGNORED and IGNOUT fields

The first 2 lines for fields with status TGNORED or IGNOUT are as follows:

COSENHFL SOSENHFL 37 86400 1 flda3.nc IGNOUT
atmo toce LAG=+7200

where the different entries are as for EXPORTED fields, except that there is no output file name on the first
line and no SEQ index at the end of the second line.

For IGNORED fields, the name used in the coupling restart file (if any) must be the target symbolic name.

The third line is LOCTRANS if this transformation is chosen for the field. Note that LOCTRANS is the
only transformation supported for ITGNORED, IGNOUT and OUTPUT fields (as it is performed directly in
the PSMILe below the prism_put_proto call). If LOCTRANS is chosen, a fourth line giving the name
of the time transformation is required. For more detail on LOCTRANS, see section 6.2.

5.3.3 Second section of namcouple for OUTPUT fields

The first 2 lines for fields with status OUTPUT are as follows:

COSHFTOT COSHFETOT 7 86400 0 OUTPUT
atmo atmo

where the different entries are as for IGNORED fields, except that the source symbolic name must be
repeated twice on the field first line, that there is no coupling restart file name, no LAG index and no SEQ
index. The name of the output file is automatically determined by the PSMILe.

The third line is LOCTRANS if this transformation is chosen for the field. Note that LOCTRANS is the
only transformation supported for OUTPUT fields (see section 5.3.2).

5.3.4 Second section of namcouple for INPUT fields

The first and only line for fields with status INPUT is:
SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT

e SOALBEDO: symbolic name for the field in the target model (CHARACTER* 8 repeated twice)
e 17: index in auxiliary file cf_name_table.txt (see above for EXPORTED fields)

e 86400: input period in seconds

e (: number of transformations (always 0 for INPUT fields)

e SOALBEDO.nc: CHARACTER«*32 giving the input file name (for more detail on its format, see
section 7.4)

e INPUT: field status.

Chapter 6

The transformations and interpolations in
OASIS3

Different transformations and 2D interpolations are available in OASIS3 to adapt the coupling fields from
a source model grid to a target model grid. They are divided into five general classes that have precedence
one over the other in the following order: time transformation (with CLIM/MPI1-MPI2 communication
technique only), pre-processing, interpolation, “cooking”, and post-processing. This order of precedence
is conceptually logical, but is also constrained by the OASIS3 software internal structure.

In the following paragraphs, it is first described how to use OASIS3 in an interpolator-only mode. Then a
description of each transformation with its corresponding configuring lines is given.

6.1 Using OASIS3 in the interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model. It is recommended to use first OASIS3 in this mode to test different transformations and interpola-
tions without having to run the whole coupled system. In the interpolator-only mode, all transformations,
except the time transformations, are available.

To run OASIS3 in an interpolator-only mode, the user has to prepare the namcouple as indicated in sections
5.2 and 5.3. In particular, NONE has to be chosen below the keyword $CHANNEL; “0” (without any model
name and Fortran unit number) must be given below the keyword SNBMODEL; SRUNTIME has to be the
number of time occurrences of the field to interpolate from the NetCDF input file'; finally, the “coupling”
period of the field (4th entry on the field first line) must be always “1”. Note that if SRUNTIME is
smaller than the total number of time ocurrences in the input file, the first SRUNT IME occurrences will be
interpolated.

The name of the input file which contains the fields to interpolate is given by the 6th entry on the field first
line (see 5.3). After their transformation, OASIS3 writes them to their output file which name is the 7th
entry on the first line. Note that there must be one input file and one output file per field.

The time variable in the input file, if any, is recognized by the its attribute ~units”. The acceptable units
for time are listed in the udunits.dat file (3). This follows the CF convention.
To compile OASIS3 in interpolator-only mode, see section 8.1.1. Practical examples on how to use OA-

SIS3 in a interpolator-only mode are given in oasis3/examples/testinterp (see also section
8.4.1) and casis3/examples/testNONE (see also section 8.4.2)

The configuring parameters that have to be defined in the namcouple for each transformation in the
interpolator-only mode or in the coupling mode are described here after.

"For binary input file, only one time occurence may be interpolated

6.2. THE TIME TRANSFORMATIONS 33

6.2 The time transformations

Transformation LOCTRANS? requires one configuring line on which a time transformation, automatically
performed below the call to PSMILe prism_put_proto, should be indicated:

INSTANT: no time transformation, the instantaneous field is transferred;

e ACCUMUL: the field accumulated over the previous coupling period is exchanged (the accumulation
is simply done over the arrays field_array provided as third argument to the prism_put_proto
calls, not weighted by the time interval between these calls);

e AVERAGE: the field averaged over the previous coupling period is transferred (the average is simply
done over the arrays field_array provided as third argument to the prism_put_proto calls,
not weighted by the time interval between these calls);

e T_MIN: the minimum value of the field for each source grid point over the previous coupling period
18 transferred;

e T _MAX: the maximum value of the field for each source grid point over the previous coupling period
is transferred;

e ONCE: only one prism put_proto orprism.get_proto will be performed; this is equivalent
to giving the length of the run as coupling or I/O period.

6.3 The pre-processing transformations

The following transformations are available in the pre-processing part of OASIS3, controlled by preproc. f.

¢ REDGLO

This transformation is deprecated in the current OASIS3 version as interpolations for Gaussian
Reduced grid now exist; this transformation should not be used anymore.

REDGLO (routine redglo. f) performs the interpolation from a Reduced grid to a Gaussian one.
The interpolation is linear and performed latitude circle per latitude circle. When present, REDGLO
must be the first pre-processing transformation performed. The configuring line is as follows:

REDGLO operation
SNNBRLAT S$SCDMSK

where xxx is half the number of latitude circles of the Gaussian grid. For example, for a T42
with 64 latitude circles, SNNBRLAT is “NO32”. In the current version, it can be either NO16,
NO24, NO32, NO48, NO80, NO160. $CDMSK is a flag indicating if non-masked values have to
be extended to masked areas before interpolation ($CDMSK = SEALAND) using the Reduced grid
mask (see section 7.2) or if the opposite has to be performed (SCDMSK = LANDSERA). If SCDMSK
= NOEXTRAP, then no extrapolation is performed.

o INVERT:

This transformation is deprecated in the current OASIS version and should be used anymore. The
fields and corresponding grids can be given in any direction as long as they are coherent.

INVERT (routine invert . f) reorders a field so that it goes from south to north and from west to
east (the first point will be the southern and western most one; then it goes parallel by parallel going
from south to north). Note that INVERT does not transform the associated grid or mask. INVERT
should be used only for fields associated to A, B, G, L, Z, or Y grids (see annexe A) but produced
by the source model from North to South and/or from East to West. INVERT does not work for
Reduced (’D’) or unstructured ("U’) grids (see annexe A).

The generic input line is as follows:

Note that LOCTRANS cannot be chosen with the deprecated SIPC, P IPE, or GMEM communication techniques.

34

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

INVERT operation
SCORLAT SCORLON

SCORLAT = NORSUD or SUDNOR and $CORLON = ESTWST or WSTEST describes the orien-
tation of the source field in longitude and latitude, respectively.

MASK:

MASK (routine masq. f) is used before the analysis EXTRAP. A given REAL value VALMASK is
assigned to all masked points following the source grid mask (see section 7.2), so they can be
detected by EXTRAP.

The generic input line is as follows:

MASK operation
SVALMASK

Make sure that SVALMASK conforms to a REAL value, e.g. “99999999.” not “99999999” . Prob-
lems may arise if the value chosen approaches the maximum value that your computing platform
can represent; choose a value well outside the range of your field values but not too large.

EXTRAP:

EXTRAP (routine extrap . f) performs the extrapolation of a field over its masked points. The
analysis MASK must be used just before, so that EXTRAP can identify masked points. Note that
EXTRAP does not work for Reduced (’D’) or unstructured (*U’) grids (see appendix A).

Two methods of extrapolation are available. With NINENN, a N-nearest-neighbour method is used.
The procedure is iterative and the set of remaining masked points evolves at each iteration. The
configuring line is:
EXTRAP operation for S$CMETH = NINENN
SCMETH SNV $NIO SNID

$CMETH = NINENN; $NV is the minimum number of neighbours required to perform the extrap-
olation (with a maximum of 4)3; $NTO is the flag that indicates if the weight-address-and-iteration-
number dataset will be calculated and written by OASIS3 ($NIO= 1), or only read ($NIO= 0) in
file nweights (see section 7.5); SNID is the identificator for the weight-address-iteration-number
dataset in all the different EXTRAP /NINENN datasets in the present coupling.*

With SCMETH = WEIGHT, an N-weighted-neighbour extrapolation is performed. In that case, the
user has to build the grid-mapping file, giving for each target grid point the weights and addresses
of the source grid points used in the extrapolation; the structure of this file has to follow the OASIS3
generic structure for transformation auxiliary data files (see section 7.5).

The configuring line is:

EXTRAP operation for S$SCMETH = WEIGHT
SCMETH SNV S$CFILE SNUMLU SNID
SCMETH = WEIGHT; $NV is the maximum number of neighbours required by the extrapolation
operation; $CFILE and $SNUMLU are the grid-mapping file name and associated logical unit; SNID
is the identificator for the relevant grid-mapping dataset in all different EXTRAP /WEIGHT transfor-
mations in the present coupling.
CHECKIN:

CHECKIN (routine chkfld. f) calculates the mean and extremum values of the source field and
prints them to the coupler log file cplout (this operation does not transform the field).

The generic input line is as follows:

CHECKIN operation
INT=$NINT

3For some grids, the extrapolation may not converge if $NV is too large.
*An EXTRAP /NINENN analysis is automatically performed within GLORED analysis but the corresponding datasets have to

be distinct; this is automatically checked by OASIS3 at the beginning of the run.

6.4. THE INTERPOLATION 35

SNINT =1 or 0, depending on whether or not the source field integral is also calculated and printed.
e CORRECT:

CORRECT (routine correct . f) reads external fields from binary files and uses them to modify
the coupling field. This transformation can be used, for example, to perform flux correction on the
field.

This transformation requires at least one configuration line with two parameters:

CORRECT operation
$SXMULT SNBFIELDS

S$SXMULT is the multiplicative coefficient of the current field, and SNBFIELDS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional configur-
ing line is required:
nbfields lines
SCLOC S$AMULT SCFILE S$NUMLU

$CLOC and $AMULT, SCFILE and $SNUMLU are respectively the symbolic name, the multiplicative
coefficient, the file name and the associated logical unit on which the additional field is going to be
read. The structure of the file has to follow the structure of OASIS3 binary coupling restart files
(see section 7.3).

6.4 The interpolation

The following transformations, controlled by interp. £, are available in OASIS3.

e BLASOLD:
BLASOLD (routine blasold. f) performs a linear combination of the current coupling field with
other coupling fields or with a constant before the interpolation per se.
This transformation requires at least one configuring line with two parameters:
BLASOLD operation
$XMULT $SNBFIELDS

SXMULT is the multiplicative coefficient of the current field, and $SNBFIELDS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional input line
is required:
nbfields lines

$CNAME $AMULT
where SCNAME and SAMULT are the symbolic name and the multiplicative coefficient for the ad-
ditional field. To add a constant value to the original field, put $XMULT = 1, SNBFIELDS = 1,
SCNAME = CONSTANT, SAMULT = value to add.

e SCRIPR:

SCRIPR gathers the interpolation techniques offered by Los Alamos National Laboratory SCRIP
1.4 library>(1). SCRIPR routines are in oasis3/1ib/scrip. See the SCRIP 1.4 documentation
in oasis3/doc/SCRIPusers.pdf for more details on the interpolation algorithms.

The following types of interpolations are available:
— DISTWGT performs a distance weighted nearest-neighbour interpolation (N neighbours). All
types of grids are supported.

* Masked target grid points: the zero value is associated to masked target grid points.

3See the copyright statement in appendix 3.2.2.

36 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

* Non-masked target grid points having some of the N source nearest neighbours masked:
a nearest neighbour algorithm using the remaining non masked source nearest neighbours
is applied.

* Non-masked target grid points having all of the N source nearest neighbours masked:
by default, the nearest non-masked source neighbour is used. Warning: this default be-
haviour has changed since release casis3_prism_2_5°.

The configuring line is:

SCRIPR/DISWGT
SCMETH $CGRS SCFTYP SREST SNBIN $NV SASSCMP S$SPROJCART

* SCMETH = DISTWGT.

* SCGRS is the source grid type (LR, D or U)- see annexe A.

* SCETYP is the field type: SCALAR if the field is a scalar one, or VECTOR_I or VECTOR_J
whether the field represents respectively the first or the second component of a vector field
(see paragraph Support of vector fields below). The option VECTOR, which is fact leads
to a scalar treatment of the field (as in the previous versions), is still accepted.

* SREST is the search restriction type: LATLON or LATITUDE (see SCRIP 1.4 documen-
tation SCRIPusers.pdf). Note that for D or U grid, the restriction may influence sligthly
the result near the borders of the restriction bins. (XXX to be checked)

* SNBIN the number of restriction bins (see SCRIP 1.4 documentation SCRIPusers.pdf).

* SNV is the number of neighbours used.

* $ASSCMP: optional, for VECTOR_I or VECTOR_J vector fields only; the source symbolic
name of the associated vector component.

* $SPROJCART: optional, for vector fields only; should be PROJCART if the user wants the
vector components to be projected in a Cartesian coordinate system before interpolation
(see paragraph Support of vector fields below).

— GAUSWGT performs a N nearest-neighbour interpolation weighted by their distance and a
gaussian function. All grid types are supported.

* Masked target grid points: the zero value is associated to masked target grid points.

*x Non-masked target grid points having some of the N source nearest neighbours masked:
a nearest neighbour algorithm using the remaining non masked source nearest neighbours
is applied.

* Non-masked target grid points having their N nearest neighbours all masked: the zero
value will be associated to these target points. The value 1.0E+20 will however be as-
signed to these non-masked target grid points if routines scriprmp. f or vector.F90
(for vector interpolation) in casis3/1ib/scrip/src/ are compiled with
11 _weightot=.true.. Furthermore,if oasis3/lib/scrip/src/remap_gauswgt.f
is compiled with 11 _nnei=.true., the non-masked nearest neighbour value will be
given to these target grid points.

The configuring line is:
SCRIPR/GAUSWGT

SCMETH $CGRS SCFTYP SREST SNBIN SNV $VAR SASSCMP S$SPROJCART
* SCMETH = GAUSWGT

* SVAR, which must be given as a REAL value (e.g 2.0 and not 2), defines the weight given
to a neighbour source grid point as proportional to exp(—1/2 - d?/o?) where d is the

8To reproduce the previous default behaviour, one has to compile with CPP key NOT_NNEIGHBOUR. In this case, the zero
value is associated to the target points having all of the N source nearest neighbours masked. However, the value 1.0E+20
will be assigned to these non-masked target grid points if routines scriprmp. f or vector.F90 (for vector interpolation) in
oasis3/lib/scrip/src/ are compiled with 11_weightot=.true..

6.4. THE INTERPOLATION 37

distance between the source and target grid points, and 02 = $V AR - d° where d_ is the
average distance between two source grid points (calculated automatically by OASIS3).
— BILINEAR performs an interpolation based on a local bilinear approximation (see details in
chapter 4 of SCRIP 1.4 documentation SCRIPusers.pdf)
— BICUBIC performs an interpolation based on a local bicubic approximation (see details in
chapter 5 of SCRIP 1.4 documentation SCRIPusers.pdf)
For BILINEAR and BICUBIC, Logically-Rectangular (LR) and Reduced (D) source grid
types are supported.

* Masked target grid points: the zero value is associated to masked target grid points.

* Non-masked target grid points having some of the source points normally used in the
bilinear or bicubic interpolation masked: a N nearest neighbour algorithm using the re-
maining non masked source points is applied.

* Non-masked target grid points having their N nearest neighbours all masked: the zero
value will be associated to these target points. The value 1.0E+20 will however be as-
signed to these non-masked target grid points if routines scriprmp. f or vector.F90
(for vector interpolation) in casis3/1ib/scrip/src/ are compiled with
11 weightot=.true.. Furthermore,if casis3/1lib/scrip/src/remap_bicubic.f
or remap_bilinear.f iscompiled with 11 nnei=.true., the non-masked near-
est neighbour value will be given to these target grid points.

The configuring line is:
SCRIPR/BILINEAR or SCRIPR/BICUBIC
SCMETH S$CGRS SCEFTYP SREST S$NBIN $ASSCMP S$SPROJCART
* SCMETH = BILINEAR or BICUBIC
* $CGRS is the source grid type (LR or D)
% SCFTYP, SNBIN, SASSCMP SPROJCART are as for DISTWGT.
* SREST is as for DISTWGT, except that only LATITUDE is possible for a Reduced (D)
source grid.
— CONSERV performs 1st or 2nd order conservative remapping, which means that the weight of
a source cell is proportional to area intersected by the target cell.

The configuring line is:

SCRIPR/CONSERV
SCMETH SCGRS SCEFTYP S$REST SNBIN SNORM S$ORDER $ASSCMP S$SPROJCART

* SCMETH = CONSERV

* $SCGRS is the source grid type: LR, D and U are supported for first-order remapping
if the grid corners are given by the user in the grid data file grids.nc ; only LR is
supported if the grid corners are not available in grids.nc and therefore have to be
calculated automatically by OASIS3. For second-order remapping, only LR is supported
because the gradient of the coupling field used in the transformation has to be calculated
automatically by OASIS3.

x* SCFTYP, SREST, SNBIN, SASSCMP,and $SPROJCART are as for DISTWGT.
* SNORM is the NORMalization option:

- FRACAREA: The sum of the non-masked source cell intersected areas is used to
NORMalise each target cell field value: the flux is not locally conserved, but the
flux value itself is reasonable.

- DESTAREA: The total target cell area is used to NORMalise each target cell field

value even if it only partly intersects non-masked source grid cells: local flux conser-
vation is ensured, but unreasonable flux values may result.

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

- FRACNNEI: as FRACAREA, except that at least the source nearest unmasked neigh-
bour is used for unmasked target cells that intersect only masked source cells. Note
that a zero value will be assigned to a target cell that does not intersect any source
cells (masked or unmasked), even with FRACNNETI option.

* SORDER: FIRST or SECOND for first or second order remapping respectively (see SCRIP
1.4 documentation). Note that CONSERV/SECOND is not positive definite and has not
been fully validated yet.

Precautions related to the use of the SCRIPR/CONSERYV remapping in particular

— For the 1st order conservative remapping: the weight of a source cell is proportional to area
of the source cell intersected by target cell. Using the divergence theorem, the SCRIP li-
brary evaluates this area with the line integral along the cell borders enclosing the area.
As the real shape of the borders is not known (only the location of the 4 corners of each
cell is known), the library assumes that the borders are linear in latitude and longitude be-
tween two corners. In general, this assumption becomes less valid closer to the pole and
for latitudes above the north_thresh or below the south_thresh values specified in
oasis3/lib/scrip/remap_conserv.F, the library evaluates the intersection between
two border segments using a Lambert equivalent azimuthal projection. Problems have been
observed in some cases for the grid cell located around this north_threshor south_thresh
latitude.

— Another limitation of the SCRIP Ist order conservative remapping algorithm is that is also
supposes, for line integral calculation, that sin(latitude) is linear in longitude on the cell
borders which again is in general not valid close to the pole.

— For a proper consevative remapping, the corners of a cell have to coincide with the corners of
its neighbour cell.

— If two cells of a grid overlay, at least the one with the greater numerical index must be masked
(they also can be both masked) for a proper conservative remapping. For example, if the grid
line with i=1 overlaps the grid line with i=imax, it is the latter that must be masked. When
this is not the case with the mask defined in masks.nc, OASIS must be compiled with the CPP
key TREAT_OVERLAY which will ensure that these rules are respected. This CPP key was
introduced in casis3_3 version.

— A target grid cell intersecting no source cell (either masked or non masked) at all i.e. falling
in a “hole” of the source grid will in all cases get a zero value.

— If a target grid cell intersects only masked source cells, it will still get a zero value unless:

- the FRACNNE I normalisation option is used, in which case it will get the nearest non masked
neighbour value, or

- the routines casis3/1lib/scrip/src/scriprmp.f or vector.F90 - for vector
interpolation - are compiled with 11 _weightot=.true. in which case, the value 1.0E+20
will be assigned to these target grid cell intersecting only masked source cells (for easier
identification).

Precautions related to the use of the SCRIPR remappings in general

— For using SCRIPR interpolations, linking with the NetCDF library is mandatory and the grid
data files (see section 7.2) must be NetCDF files (binary files are not supported).

— When the SCRIP library performs a remapping, it first checks if the file containing the corres-
ponding remapping weights and addresses exists. If it exists, it reads them from the file;
if not, it calculates them and store them in a file. The file is created in the working direc-
tory and is called rmp_srcg_to_tgtg INTTYPE_NORMAOPT . nc, where srcg and tgtg are the
acronyms of respetively the source and the target grids, INTTYPE is the interpolation type (i.e.
DISTWGT, GAUSWGT, BILINEA, BICUBIC, or CONSERV) and NORMAOPT is the normal-

6.4. THE INTERPOLATION 39

ization option (i.e. DESTAREA, FRACAREA or FRACNNEI for CONSERV only). The problem
comes from the fact that the weights and addresses will also differ whether or not the MASK
and EXTRAP transformations are first activated during the pre-processing phase (see section
6.3) and this option is not stored in the remapping file name. Therefore, the remapping file
used will be the one created for the first field having the same source grid, target grid, and
interpolation type (and the same normalization option for CONSERV), even if the MASK and
EXTRAP transformations are used or not for that field. (This inconsistency is however usually
not a problem as the MASK and EXTRAP transformations are usually used for all fields having
the same source grid, target grid, and interpolation type, or not at all.)

Support of vector fields with the SCRIPR remappings

SCRIPR supports 2D vector interpolation. Note however that this functionality has been validated
only in a reduced number of test cases. The two vector components have to be identified by assign-
ing VECTOR_I or VECTOR_J to SCFTYP and have to be associated by giving, for each component
field, the source symbolic name of the associated vector component to $ASSCMP (see above). The
grids of the two vector components can be different but have to have the same number of points, the
same overlap, the same mask; the same interpolation must be used for the two components. A proper
example of vector interpolation is given in the interpolator-only mode example testinterp (see
section 8.4.1). The details of the vector treatment, performed by the routines
scriprmp_vector.F90 and rotations.F90 in oasis3/1lib/scrip/src are the fol-
lowing:

— If the angles of the source grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the local to the geographic spherical coordinate
system is performed.

— If the two source vector components are not defined on the same source grid, one component is
automatically interpolated on the grid of the other component. Note that if the components are
not given in a Cartesian coordinate system, this operation is not exact as the coordinate system
is not fixed spatially (for grids not covering the North or South poles, the error is however
small at the scale of the grid mesh).

— If the user puts the PROJCART keyword at the end of the SCRIPR configuring line (see
above), projection of the two vector components in a Cartesian coordinate system, interpola-
tion of the resulting 3 Cartesian components, and projection back in the spherical coordinate
system are performed. In debug mode (compilation with __DEBUG pre-compiling key), the
resulting vertical component in the spherical coordinate system after interpolation is written
to a file projection.nc; as the source vector is horizontal, this component should be very
close to 0.

— If the user did not put the PROJCART keyword at the end of the SCRIPR configuring line, the
two spherical coordinate system components are interpolated. Note that this operation is not
exact as the coordinate system is not fixed spatially (in most cases, the error is however small
at the scale of the grid mesh).

— If the angles of the target grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the geographic spherical to the local coordinate
system is performed.

— The first and second components of the interpolated vector field are then present in the target
fields associated respectively to the first and second source vector component. The target grids
for the two vector components can be different.

o INTERP:

40 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

INTERP gathers different techniques of interpolation controlled by routine fiasco. f. The fol-
lowing interpolations are available:

— BILINEAR performs a bilinear interpolation using 4 neighbours.

— BICUBIC performs a bicubic interpolation.

— NNEIBOR performs a nearest-neighbour interpolation.

These three interpolations are performed by routines in /oasis3/1ib/fscint and sup-
port only A, B, G, L, Y, or Z grids (see appendix A). All sources grid points, masked or not,
are used in the calculation. To avoid the ‘contamination’ by masked source grid points, trans-
formations MASK and EXTRAP should be used. Values are calculated for all target grid points,
masked or not.
The configuring line is as follows:
BILINEAR or BICUBIC or NNEIBOR interpolation

SCMETH SCGRS S$SCFETYP

* SCMETH = BILINEAR, BICUBIC or NNEIBOR

* SCGRS is the source grid type (A, B, G, L, Y, or Z, see appendix A)

* SCETYP the field type (SCALAR or VECTOR). VECTOR has an effect for target grid
points located near the pole: the sign of a source value located on the other side of the
pole will be reversed.

— SURFMESH (routines in /oasis3/1ib/anaism) is a first-order conservative remapping
from a fine to a coarse grid (the source grid must be finer over the whole domain) and supports
only Lat-Lon grids (see appendix A). For a target grid cell, all the underlying not masked
source grid cells are found and the target grid field value is the sum of the source grid field val-
ues weighted by the overlapped surfaces. No value is assigned to masked cells. Note that it is
not recommended to use this interpolation anymore, as the more general SCRIPR/CONSERV
remapping is now available. The configuring line is as follows:

SURFMESH remapping

SCMETH S$CGRS S$CFTYP S$NID SNV $NIO
* $SCMETH = SURFMESH
% SCGRS and SCFTYP are as for BILINEAR

* S$NID isthe identificator for the weight-address dataset in all the different INTERP / SURFMESH
datasets in the present coupling. This dataset will be calculated by OASIS3 if $NI0=1,
or only read if $NIO=0.

* SNV is the maximum number of source grid meshes used in the remapping.

— GAUSSIAN (routines in /oasis3/1ib/anaisg)is a gaussian weighted nearest-neighbour
interpolation technique. The user can choose the variance of the function and the number of
neighbours considered. The $NV non masked nearest source grid points are automatically
used and no value are calculated for masked target grid points.

The configuring line is:

GAUSSIAN interpolation
SCMETH S$CGRS SCFTYP S$SNID SNV SVAR SNIO

* SCMETH = GAUSSIAN
* SCGRS is the source grid type; all grids are supported’
* SCETYP is the field type SCALAR or VECTOR.

. . . .2 . . .

"Note that for “U” grids, the average distance between two source grid point d_, used in the calculation of the Gaussian

weighting function, is not exact but this has only a limited impact as this value is in all cases multiplied by the $VAR value
defined by the user (see SCRIPR/GAUSWGT above).

6.4. THE INTERPOLATION 41

* $NID isthe identificator for the weight-address dataset in all the different INTERP /GAUSSIAN
datasets in the present coupling. This weight-address dataset will be calculated by OA-
SIS3 if $NIO= 1, or only read if SNIO=0.

* SNV is the number of neighbours used in the interpolation.
x SVAR s as for SCRIPR/GAUSWGT (see above).

e MOZAIC:

MOZAIC performs the mapping of a field from a source to a target grid. The grid-mapping dataset,
i.e. the weights and addresses of the source grid points used to calculate the value of each target
grid point are defined by the user in a file (see section 7.5). The configuring line is:

MOZAIC operation
SCFILE S$NUMLU S$NID SNV

— SCFILE and $NUMLU are the grid-mapping file name and associated logical unit on which
the grid-mapping dataset is going to be read),

— SNID the identificator for this grid-mapping dataset in all MOZATIC grid-mapping datasets in
the present coupling

— SNV is the maximum number of target grid points use in the mapping.

¢ NOINTERP:

NOINTERP is the analysis that has to be chosen when no other transformation from the interpolation
class is chosen. There is no configuring line.

e FILLING:

FILLING (routine oasis3/src/filling. f) performs the blending of a regional data set with
a climatological global one for a Sea Surface Temperature (SST) or a Sea Ice Extent field. This
occurs when coupling a non-global ocean model with a global atmospheric model. FILLING can
only handle fields on Logically Rectangular grid (LR, but also A, B, G, L, Y, and Z grids, see section
A.

The global data set has to be a set of SST given in Celsius degrees (for the filling of a Sea Ice Extent
field, the presence or absence of ice is deduced from the value of the SST). The frequency of the
global set can be interannual monthly, climatological monthly or yearly.

The blending can be smooth or abrupt. If the blending is abrupt, only model values are used within
the model domain, and only the global data set values are used outside. If the blending is smooth, a
linear interpolation is performed between the two fields within the model domain over narrow bands
along the boundaries. The linear interpolation can also be performed giving a different weight to
the regional or and global fields.

The smoothing is defined by parameters in oasis3/src/mod_smooth.F90. The lower smooth-
ing band in the global model second dimension is defined by nsi/tb (outermost point) and nslte (in-
nermost point); the upper smoothing band in the global model second dimension is defined by nnltb
(outermost point) and nnlte (innermost point). The parameter galfa controls the weights given to
the regional and to the global fields in the linear interpolation. galfa has to be 1/(nslte — nsitb)
or 1/(nnltb — nnlte). For the outermost points (nsltb or nnitb) in the smoothing band, the weight
given to the regional and global fields will respectively be 0 and 1; for the innermost points (nsite
or nnlte) in the smoothing band, the weight given to the regional and global fields will respectively
be 1 and 0; within the smoothing band, the weights will be a linear interpolation of the outermost
and innermost weights.

The smoothing band in the global model first dimension will be a band of nliss points following the
coastline. To calculate this band, OASIS3 needs nwigmyx, the greater first dimension index of the
lower coastline and nelgmx, the smaller first dimension index on the upper coastline. The parameter
gbeta controls the weights given to the regional and to the global fields in the linear interpolation.

42

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

gbeta has to be 1/(nliss — 1). The weights given to the regional and global fields in the global
model first dimension smoothing bands will be calculated as for the second dimension.

The user must provide the climatological data file with a specific format described in 7.5. When one
uses FILLING for SST with smooth blending, thermodynamics consistency requires to modify the
heat fluxes over the blending regions. The correction term is proportional to the difference between
the blended SST and the original SST interpolated on the atmospheric grid and can be written out
on a file to be read later, for analysis CORRECT for example. In that case, the symbolic name of
the flux correction term read through the input file namcouple must correspond in FILLING and
CORRECT analyses.

In case the regional ocean model includes a coastal part or islands, a sea-land mask mismatch may
occur and a coastal point correction can be performed if the field has been previously interpolated
with INTER/SURFMESH. In fact, the mismatch could result in the atmosphere undesirably “seeing”
climatological SST’s directly adjacent to ocean model SST’s. Where this situation arises, the coastal
correction consists in identifying the suitable ocean model grid points that can be used to extrapolate
the field, excluding climatological grid points.

This analysis requires one configuring line with 3, 4 or 6 arguments.

1. If FILLING performs the blending of a regional data set with a global one for the Sea Ice
Extent, the 3-argument input line is:

Sea Ice Extent FILLING operation
SCFILE SNUMLU $CMETH

the file name for the global data set, SNUMLU the associated logical unit. $SCMETH, the
FILLING technique, is a CHARACTER=« 8 variable: the first 3 characters are either SMO,
smooth filling, or RAW, no smoothing ; the next three characters must be SIE for a Sea Ice
Extent filling operation; the last two define the time characteristics of the global data file, re-
spectively MO, SE and AN for interannual monthly, climatological monthly and yearly. Note
that in all cases, the global data file has to be a Sea Surface Temperature field in Celsius
degrees.

2. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature without any smoothing, the 4-argument input line is:

#Sea Surface Temperature FILLING operation without smoothing
SCFILE SNUMLU S$SCMETH S$NFCOAST

SCFILE, $NUMLU are as for the SIE filling. In this case however, SCMETH (1:3) = RAW,
SCMETH (4:6) = SST, and the last two characters define the time characteristics of the
global data file, as for the SIE filling. SNFCOAST is the flag for the calculation of the coastal
correction (0 no, 1 yes).

3. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature with smoothing, the 6-argument input line is:

#Sea Surface Temperature FILLING operation with smoothing
SCFILE SNUMLU S$CMETH SNEFCOAST SCNAME SNUNIT

where SCFILE, SNUMLU and SNFCOAST are as for the SST filling without smoothing. In this
case, SCMETH (1:3) = SMO, SCMETH (4:6) = SST, and the last two characters define
the time characteristics of the global data file, as for the SIE filling. $CNAME is the symbolic
name for the correction term that is calculated by OASIS3 and $NUNIT the logical unit on
which it is going to be written.

6.5 The “cooking” stage

The following transformations are available in the “cooking” part of OASIS3, controlled by cookart. f.

6.5. THE “COOKING” STAGE 43

e CONSERYV:

CONSERV (routine oasis3/src/conserv. f) ensures a global modification of the coupling
field. This ‘cooking” stage operation should not be mixed with SCRIPR/CONSERV conservative
remapping (see section 6.4).

This analysis requires one input line with one argument:

CONSERV operation
SCMETH

where SCMETH is the method required:

— with SCMETH = GLOBAL, the field is integrated on both source and target grids, without
considering values of masked points, and the residual (target - source) is uniformly distributed
on the target grid; this option ensures global conservation of the field

— with SCMETH = GLBPOS, the same operation is performed except that the residual is dis-
tributed proportionally to the value of the original field; this option ensures the global conser-
vation of the field and does not change the sign of the field

— with SCMETH = BASBAL, the operation is analogous to GLOBAL except that the non masked
surface of the source and the target grids are taken into account in the calculation of the resid-
ual; this option does not ensure global conservation of the field but ensures that the energy
received is proportional to the non masked surface of the target grid

— with SCMETH = BASPOS, the non masked surface of the source and the target grids are
taken into account and the residual is distributed proportionally to the value of the original
field; therefore, this option does not ensure global conservation of the field but ensures that
the energy received is proportional to the non masked surface of the target grid and it does not
change the sign of the field.

Note that for this operation to be correct, overlapping grid cells on the source grid or on the target
grid must be masked.

e SUBGRID:

SUBGRID can be used to interpolate a field from a coarse grid to a finer target grid (the target
grid must be finer over the whole domain). Two types of subgrid interpolation can be performed,
depending on the type of the field.

For solar type of flux field ($SUBTYPE = SOLAR), the operation performed is:

_1—Oé7;

®; F

C1l-a
where ®; (F') is the flux on the fine (coarse) grid, ; (o) an auxiliary field on the fine (coarse) grid
(e.g. the albedo). The whole operation is interpolated from the coarse grid with a grid-mapping
type of interpolation; the dataset of weights and addresses has to be given by the user.

For non-solar type of field ($SUBTYPE = NONSOLAR), a first-order Taylor expansion of the field
on the fine grid relatively to a state variable is performed (for instance, an expansion of the total

heat flux relatively to the SST):
oF
¢ =F+ 87T(TZ =T)
where ®; (F') is the heat flux on the fine (coarse) grid, T; (') an auxiliary field on the fine (coarse)
grid (e.g. the SST) and g—g the derivative of the flux versus the auxiliary field on the coarse grid.
This operation is interpolated from the coarse grid with a grid-mapping type of interpolation; the

dataset of weights and addresses has to be given by the user.

This analysis requires one input line with 7 or 8 arguments depending on the type of subgrid inter-
polation.

1. If the the SUBGRID operation is performed on a solar flux, the 7-argument input line is:

44 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

SUBGRID operation with $SUBTYPE=SOLAR
SCFILE SNUMLU SNID SNV S$SUBTYPE SCCOARSE SCFINE
SCFILE and $NUMLU are the subgrid-mapping file name and associated logical unit (see sec-
tion 7.5 for the structure of this file); SNID the identificator for this subgrid-mapping dataset
within the file build by OASIS based on all the different SUBGRID analyses in the present
coupling; SNV is the maximum number of target grid points use in the subgrid-mapping;
SSUBTYPE = SOLAR is the type of subgrid interpolation; SCCOARSE is the auxiliary field
name on the coarse grid (corresponding to o) and $CF INE is the auxiliary field name on fine
grid (corresponding to «;). These two fields needs to be exchanged between their original
model and OASIS3 main process, at least as AUXILARY fields. This analysis is performed
from the coarse grid with a grid-mapping type of interpolation based on the SCFILE file.
2. If the the SUBGRID operation is performed on a nonsolar flux, the 8-argument input line is:

SUBGRID operation with $SUBTYPE=NONSOLAR
SCFILE S$NUMLU S$NID SNV $SUBTYPE S$CCOARSE S$CFINE $CDQDT

SNV are as for a solar subgrid interpolation; $SSUBTYPE = NONSOLAR; $CCOARSE is the
auxiliary field name on the coarse grid (corresponding to 7") and $CFINE is the auxiliary field
name on fine grid (corresponding to 7;); the additional argument SCDQDT is the coupling ratio
on the coarse grid (corresponding to 2—5) These three fields need to be exchanged between their
original model and OASIS3 main process as AUXILARY fields. This operation is performed
from the coarse grid with a grid-mapping type of interpolation based on the SCFILE file.

e BLASNEW:

BLASNEW (routine oasis3/src/blasnew. £) performs a linear combination of the current cou-
pling field with any other fields after the interpolation. These can be other coupling fields or constant
fields.

This analysis requires the same input line as BLASOLD.
¢ MASKP:

A new analysis MASKP can be used to mask the fields after interpolation. MASKP has the same
generic input line as MASK.

6.6 The post-processing

The following analyses are available in the post-processing part of OASIS3, controlled by casis3/src/postpro. £.
e REVERSE:

This transformation is obsolete in the current OASIS version.
REVERSE (routine casis3/src/reverse. f) reorders a field.
This analysis requires the same input line as INVERT, with SCORLON and $CORLAT being now
the resulting orientation. REVERSE does not work for U and D grids (see appendix A). Note that
INVERT does not transform the associated grid or mask.

e CHECKOUT:
CHECKOUT (routine casis3/src/chkfld. f) calculates the mean and extremum values of an
output field and prints them to the coupler output cplout (this operation does not transform the field).
The generic input line is as for CHECKIN (see above).

e GLORED

This transformation is obsolete in the current OASIS version as coupling fields can be directly
interpolated to a target Reduced grid, if needed; this transformation should not be used anymore.

6.6. THE POST-PROCESSING 45

GLORED performs a linear interpolation of field from a full Gaussian grid to a Reduced grid. When
present, GLORED must be the last analysis performed.

Before doing the interpolation, non-masked values are automatically extrapolated to masked points
with EXTRAP /NINENN method (see above); to do so, the masked grid points are first replaced with
a predefined value. The required global grid mask must be present in data file masks ormasks.nc
(see section 7.2).

The generic input line is as follows:

GLORED operation
SNNBRLAT SNV SNIO SNID

is as for REDGLO (see REDGLO description above). The next 3 parameters refer to the EXTRAP /NINENN
extrapolation (see EXTRAP /NINENN description above). The value assigned to all land points be-

fore interpolation is given by amskred in casis3/src/blkdata. f; as for the SVALMASK in
MASK analysis, it has to be chosen well outside the range of your field values but not too large to
avoid any representation problem.

Chapter 7

OASIS3 auxiliary data files

OASIS3 needs auxiliary data files describing coupling and I/O field names and units, defining the grids
of the models being coupled, containing the field coupling restart values or input data values, as well as a
number of other auxiliary data files used in specific transformations.

7.1 Field names and units

The text file cf_name_table.txt, that can be found in directory oasis3/examples/toyoasis3/
input directory, contains a list of CF standard names and associated units identified with an index. The
appropriate index has to be given by the user for each coupling or I/O field as the third entry on the field
first line (see 5.3). This information will be used by OASIS3 for its log messages to cplout file and by the
PSMILe to produce CF compliant NetCDF files.

7.2 Grid data files

The grids of the models being coupled must be given by the user, or directly by the model through PSMILe
specific calls in grid data files. Note that if the grid data files exist in the working directory, they are not
overwritten by the PSMILe specific calls (see section 4.2). These files can be all binary or all NetCDF. In
oasis3/examples/toyoasis3/data, NetCDF examples can be found.

The arrays containing the grid information are dimensioned (nx, ny), where nx and ny are the grid
first and second dimension, except for Unstructured (U) and Reduced (D) grid, for which the arrays are
dimensioned (nbr_pts, 1), where nbr_pts is the total number of grid points.

1. grids or grids.nc: contains the model grid longitudes, latitudes, and local angles (if any) in single or
double precision REAL arrays (depending on OASIS3 compilation options). The array names must
be composed of a prefix (4 characters), given by the user in the namcouple on the second line of each
field (see section 5.3), and of a suffix (4 characters); this suffix is “.lon” or “.1at” for respectively the
grid point longitudes or latitudes (see casis3/src/mod_label.F90.)

For SCRIPR interpolations, the grid data files must be NetCDF files. If the SCRIPR/CONSERV
remapping is used, longitudes and latitudes for the source and target grid corners must also be
available in the grids.nc file as arrays dimensioned (nx,ny, 4) or (nbr_pts, 1,4) where 4 is
the number of corners (in the counterclockwize sense). The names of the arrays must be composed
of the grid prefix and the suffix “.clo” or “.cla” for respectively the grid corner longitudes or lati-
tudes. As for the other grid information, the corners can be provided in grids.nc before the run by
the user or directly by the model through PSMILe specific calls (see section 4.2). For source grids
of Logically Rectangular LR type only, the grid corners will however be automatically calculated

7.2. GRID DATA FILES 47

and stored by OASIS if they are not initially available in grids.nc'.

Longitudes must be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in
degrees North in the interval -90.0 to 90.0. Note that if some grid points overlap, it is recommended
to define those points with the same number (e.g. 360.0 for both, not 450.0 for one and 90.0 for the
other) to ensure automatic detection of overlap by OASIS.

The corners of a cell cannot be defined modulo 360 degrees. For example, a cell located over
Greenwich will have to be defined with corners at -1.0 deg and 1.0 deg but not with corners at 359.0
deg and 1.0 deg.

Cells larger than 180.0 degrees in longitude are not supported.

If vector fields are defined on a grid which has a local coordinate system not oriented in the usual
zonal and meridional directions, the local angle of the grid coordinate system must be given in
grids.nc file in an array which name must be composed of the grid prefix and the suffix “.ang”. The
angle is defined as the angle between the first component and the zonal direction (which is also the
angle between the second component and the meridional direction). For example, the angles of the
torc grid are given in array torc. ang in the grids.nc filein casis3/examples/testinterp/
input. If one of the SCRIPR interpolations is requested for a vector field, OASIS3 automatically
performs the rotation from the local coordinate system to the geographic spherical coordinate sys-
tem for a source grid, or vice-versa for a target grid.

File grids or grids.nc must be present with at least the grid point longitudes and latitudes for all
component model.

2. masks or masks.nc: contains the masks for all component model grids in INTEGER arrays (0 -not
masked i.e. active- or 1 -masked i.e. not active- for each grid point). The array names must be
composed of the grid prefix and the suffix “.msk”. This file, masks or masks.nc, is mandatory.

3. areas or areas.nc: this file contains mesh surfaces for the component model grids in single or
double precision REAL arrays (depending on OASIS3 compilation options). The array names must
be composed of the grid prefix and the suffix “.srf”. The surfaces may be given in any units but
they must be all the same (in INTERP /GAUSSTAN, it is assumed that the units are m? but they
are used for statistics calculations only.) This file areas or areas.nc is mandatory for CHECKIN,
CHECKOUT or CONSERV, and used for statistic calculations in INTERP/GAUSSIAN; it is not
required otherwise.

4. maskr or maskr.nc: (this file is obsolete with the current OASIS3 version and should not be used any-
more) this file contains Reduced (D) grid mask in INTEGER arrays dimensioned array (nbr_pts)
where nbr_pts is the total number of the Reduced grid points (0 -not masked- or 1 -masked- for
each grid point). This file is required only for grids to which the REDGLO or GLORED transfor-
mation is applied. As mentionned above, these transformations should not be used anymore as
interpolations are now available for Reduced grids directly. If used, the mask array name must be
“MSKRDxxx” where “xxx” is half the number of latitude circles of the reduced grid (032 for a T42
for example).

If the binary format is used, grids, masks, areas, and maskr must have the following structure. The array
name is first written to the file to locate a data set corresponding to a given grid. The data set is then
written sequentially after its name. Let us call “brick” the name and its associated data set. The order in
which the bricks are written doesn’t matter. All the bricks are written in the grid data file in the following
way:

WRITE (LU) array_name
WRITE (LU) auxildata

ITip: to automatically calculate the corners of a Logically Rectangular LR target grid, use the corresponding reverse remap-
ping in which the current target grid becomes the source grid.

48 CHAPTER 7. OASIS3 AUXILIARY DATA FILES

e LU is the associated unit,
e array_name is the name of the array (CHARACTER*8),

e auxildata is the REAL or INTEGER array dimensioned (nx, ny) or (nbr_pts,1) con-
taining the grid data.

7.3 Coupling restart files

At the beginning of a coupled run, some coupling fields may have to be initially read from their coupling
restart file on their source grid (see section 4.8). When needed, these files are also automatically updated
by the last prism put_proto call of the run (see section 4.6.1) . To force the writing of the field
in its coupling restart file, one can use the routine prism_put._restart_proto (see section 4.6.3).
Warning: the date is not written or read to/from the restart file; therefore, the user has to make sure that
the appropriate restart file is present in the working directory.

Note that all restart files have to be present in the working directory at the beginning of the run even if one
model is delayed with respect to the others.

The name of the coupling restart file is given by the 6th character string on the first configuring line for
each field in the namcouple (see section 5.3). Coupling fields coming from different models cannot be in
the same coupling restart files, but for each model, there can be an arbitrary number of fields written in
one coupling restart file. (Note that in the NONE techniques, output files with the same format are also
created for writing the resulting field after transformation.)

In the coupling restart files, the fields must be provided on the source grid in single or double precision
REAL arrays (depending on PSMILe and OASIS3 compilation options) and, as the grid data files, must
be dimensioned (nx, ny), where nx and ny are the grid first and second dimension, except for fields
given on Unstructured ("U’) and Reduced (D) grid, for which the arrays are dimensioned (nbr_pts, 1),
where nbr_pts is the total number of grid points. The shape and orientation of each restart field (and of
the corresponding coupling fields exchanged during the simulation) must be coherent with the shape of its
grid data arrays.

Both binary and NetCDF formats are supported; for NetCDF file the suffix .nc is not mandatory. If the
coupling restart file for the first field is in NetCDF format, OASIS3 will assume that all coupling restart
files (and output files for NONE communication techniques) are NetCDF?,

In the NetCDF restart files, the field arrays must have the source symbolic name indicated in the namcou-
ple, except for IGNORED fields for which the target symbolic name must be used. (see section 5.3).

In binary restart file, each field is written in the following way:

WRITE (LU) array_name
WRITE (LU) restartdata

e LU is the associated unit,

e array-_name is the source symbolic name of the field (CHARACTER*8),

e restartdata is the restart field REAL array dimensioned (nx, ny) or (nbr_pts,1) 3
Note that if using OASIS in the IPSL parallel mode (see section 8.2.1), the different OASIS3 executables

cannot share the same coupling restart file. The recommendation here is to use one separate coupling
restart file per coupling field.

“Note that even if the grid auxiliary data files are in NetCDF format, the restart coupling files may be in binary format, or
vice-versa.

3If REDGLO is the first transformation applied on a Reduced grid field, the Reduced field must be given is an array
restartdata (nxxny) where nx and ny are the global Gaussian grid dimensions and the Reduced field is completed by
trailing zeros. Note that this transformation is obsolete in the current OASIS3 version and should not be used anymore.

7.4. INPUT DATA FILES 49
7.4 Input data files

Fields with status INPUT in the namcouple will, at runtime, simply be read in from a NetCDF input file
by the target model PSMILe below the prism_get_proto call, at appropriate times corresponding to
the input period indicated by the user in the namcouple.

The name of the file must be the one given on the field first configuring line in the namcouple (see section
5.3.4). There must be one input file per INPUT field, containing a time sequence of the field in a single
or double precision REAL array (depending on PSMILe compilation options), named with the field sym-
bolic name in the namcouple and dimensioned (nx,ny,time) or (nbr_pts,1,time). The time
variable as to be an array time (time) expressed in “seconds since beginning of run”. The “time”
dimension has to be the unlimited dimension. For a practical example, see the file SOALBEDO.nc in
oasis3/examples/toyoasis3/data.

7.5 Transformation auxiliary data files

Many transformation need auxiliary data files, such as the grid-mapping files used for an interpolation.
Some of them are created automatically by OASIS3, others have to be generated by the user before starting
the coupled run.

7.5.1 Auxiliary data files for EXTRAP /NINENN, EXTRAP /WEIGHT, INTERP /SURFMESH,
INTERP/GAUSSIAN, MOZAIC, and SUBGRID

The auxiliary data files containing the weights and addresses used in these transformations have a similar
structure; their names are given in Table 7.1.

File name | Description

nweights | weights, addresses and iteration number for EXTRAP/NINENN interpolation
any name | weights and addresses for EXTRAP/WEIGHT extrapolation

mweights | weights and addresses for INTERP/SURFMESH interpolation

gweights | weights and addresses for INTERP/GAUSSIAN interpolation

any name | weights and addresses for MOZAIC interpolation

any name | weights and addresses for SUBGRID interpolation

Table 7.1: Analysis auxiliary data files

The files nweights, mweights and gweights can be created by OASIS3 if their corresponding $NIO = 1
(see EXTRAP/NINENN, INTERP/SURFMESH, INTERP/GAUSSIAN in sections 6.3 and 6.4).

The name of the (sub)grid-mapping files for MOZAIC, EXTRAP/WEIGHT and SUBGRID analyses can
be chosen by the user and have to be indicated in the namcouple (see respectively sections 6.3 and 6.4 and
6.5). These files have to be generated by the user before starting the coupled run.

The structure of these files is as follows:

CHARACTER%*8 cladress,clweight

INTEGER iadress (Jjpnb, jpo)

REAL weight (jpnb, jpo)

OPEN (unit=90, file="at3ltopa’, form="unformatted’)
WRITE (clweight,’ (" "WEIGHTS’’,I1)’) knumb

WRITE (cladress,’ (" "ADRESSE’’,I1)’) knumb

WRITE (90) clweight

50 CHAPTER 7. OASIS3 AUXILIARY DATA FILES

WRITE (90) weight
WRITE (90) cladress
WRITE (90) iadress

where
e Jpnb is the maximum number of neighbors used in the transformation ($NVOISIN in the nam-
couple)
e 7po is the total dimension of the target grid
e at31topa is the name of the grid-mapping data file (SCFILE in namcouple)
e knumb is the identificator of the data set (SNID in namcouple)
e cladress is the locator of the address dataset
e clweight is the locator of the weight dataset

e iadress (i, j) isthe address on the source grid of the ¢® neighbor used for the mapping of the
7€ target grid point. The address is the index of a grid point within the total number of grid points.
e weight (i, J) isthe weight affected to the ¢® neighbor used for the transformation of the j° target
grid point
For file nweights, there is an additional brick composed of a CHARACTER=« 8 variable (formed by the
characters INCREME and by the data set identificator) and of an INTEGER array (N) which is the
iteration number within EXTRAP /NINENN at which the extrapolation of the n° grid point is effectively
performed.

7.5.2 Auxiliary data files for FILLING

For the FILLING analysis, the global data set used can be either interannual monthly, climatological
monthly or yearly (see 6.4). The name of the global data file can be chosen by the user and has to be
indicated in the namcouple have to be given to OASIS through the input file namcouple. In case of
monthly data, the file must be written in the following way:

REAL field_january_year_ 01 (jpi, JpJj)

WRITE (NLU_fil) field_january_year_ 01
WRITE (NLU_fil) field_ february_year_01
WRITE(NLU_fil) field_march_year_01
etc...
WRITE (NLU_fil) field_december_year_01
C
C if climatology, one stops here
C
WRITE (NLU_fil) field_january_year_ 02
etc...

where
e field._... isthe global dataset
e jpi and jp7 are the dimensions of the grid on which FILLING is performed

e NLU_fil is the logical unit associated to the global data file and is defined in the input file nam-
couple
Note that the first month needs not to be January. This is the only file within OASIS in which the fields
are not read using a locator.

7.5. TRANSFORMATION AUXILIARY DATA FILES 51

7.5.3 Auxiliary data files for SCRIPR

The NetCDF files containing the weights and addresses for the SCRIPR remappings (see section 6.4) are
automatically generated at runtime by OASIS3. Their structure is described in detail in section 2.2.3 of
the SCRIP documentation available in casis3/doc/SCRIPusers.pdf.

Chapter 8

Compiling and running OASIS3 and
TOYOASIS3

8.1 Compiling OASIS3 and debugging

8.1.1 Compilation with TopMakefileOasis3

Compiling OASIS3 can be done in directory oasis3/util/make_dir with Makefile

TopMakefileOasis3 which must be completed with a header file make . your_platform specific to the
compiling platform used and specified in casis3/util/make_dir/make.inc. One of the header
files distributed with the release can by used as a template. The root of the OASIS3 tree can be anywere
and must be set in the variable COUPLE in the make . your_platform file. The choice of MPI1, MPI2
or NONE (interpolator-only mode, see section 6.1) is done by prescribing the value of CHAN and by
activating the CPP key -Duse_comm_$ (CHAN) in the make . your_platform header file.

The following commands are available:

e make —-f TopMakefileOasis3

compiles OASIS3 libraries clim, anaisg, anaism, fscint, scrip and main sources and creates OASIS3
main executable casis3.S$SCHAN. x (where SCHAN isMPI1, MPI2 or NONE) ;

e make —-f TopMakefileOasis3 oasis3_psmile

creates OASIS3 main executable as above, and compiles mpp_io and psmile sources to create the
PSMILe library 1ibpsmile.$CHAN. a (where SCHAN is MPI1, MPI2) that needs to be linked
to the component executables;

e make realclean —-f TopMakefileOasis3:

removes OASIS3 and PSMILe library compiled sources and librairies.

Log and error messages from compilation are saved in the files COMP.log and COMP.err in make_dir.

During compilation, a new compiling directory, defined by variable ARCHD IR is created. After successful
compilation, resulting executables are found in the compiling directory in /bin, libraries in /1ib and
object and module files in /build.

The different pre-compiling flags used for OASIS3 and its associated PSMILe library are described in
section 8.1.2.

8.1.2 CPP keys

The following CPP keys are coded in OASIS3 and associated PSMILe library and can be specified in
CPPDEF in make . your_platform file.

e Mandatory to indicate which communication technique will be used (see sections 4.1 and 5.2):

8.1. COMPILING OASIS3 AND DEBUGGING 53

— use_comm_MPI2 (by default): CLIM/MPI2

— use_comm_MPI1 : CLIM/MPI1

— use_comm_NONE : no communication technique for OASIS (interpolator-only mode NONE)
The previous SIPC, PIPE and GMEM communication techniques are not available anymore.

e Mandatory when linking OASIS3 and PSMILe with a netCDF library (which is highly recom-
mended')

— use_netCDF
e Mandatory for compiling the mpp_io and psmile libraries:
— use_libMPI
e Mandatory for compiling the mpp_io library if LAM implementation of MPI is used:
- use_LAM MPT
e To compile OASIS3 in IPSL or CMCC pseudo-parallel mode (see section 8.2 for details and restric-
tions).
— use_oasis_paraoruse_oasis_cmcc_para

e To ensure, in SCRIPR/CONSERV remapping (see section 6.4), that if two cells of the source grid
overlay, at least the one with the greater numerical index is masked (they also can be both masked);
this is mandatory for this remapping. For example, if the grid line with i=1 overlaps the grid line
with i=imax, it is the latter that must be masked; when this is not the case with the mask defined in
masks.nc, this CPP key forces these rules are to be respected.

— TREAT_OVERLAY

e To reproduce default behaviour of SCRIPR/DISTWGT before version oasis3_3, i.e. the zero
value is associated to the target points having all of the N source nearest neighbours masked (see
section 6.4 for details).

— NOT_NNEIGHBOUR
e To indicate the precision for REAL variables:
— use_realtype_double (by default): to exchange double precision coupling fields de-
clared as REAL (kind=SELECTED_REAL_KIND (12, 307))
— use_realtype_single: to exchange single precision coupling fields declared as
REAL (kind=SELECTED_REAL_KIND (6, 37))
Note that if use_realtype_single is activated the compiling option promoting reals should be
removed from FOOFLAGS_1.

e For more information in cplout and in log files *prt* during the psmile library exchanges (in par-
ticular, a message is printed when entering and leaving each main routine):

— _VERBOSE
e For more debugging information to the log files * prt* from the mpp_io library:
— DEBUG
e The CPP key __DEBUG to activate :
— deadlock detection in clim and psmile librairies at reception of a coupling field: a (non-
standard) sleep function is called for one second in a loop testing if the field has been received,;

the code aborts after 1countmax seconds if not (the length of the loop can be ajusted with
the value of icountmax in CLIM_Import.F and mod_prism_get_proto.F90).

— more debugging information in log files * prt* during the psmile library I/Os;

— in SCRIPR vector transformation, for writing the resulting vertical component in the spherical
coordinate system after interpolation to a file projection.nc (see section 6.4).

"Linking with netCDF is mandatory when using SCRIPR transformations (see section 6.4).

54 CHAPTER 8. COMPILING AND RUNNING OASIS3 AND TOYOASIS3

e To get some statistics on the wall clock time spent in the coupling
— balance

e To compile the PSMILe communication library without the I/O functionality (see section 5.3), i.e
to compile only empty routines in oasis3/1ib/mpp-io:

— key_noIO
e For compiling without linking the SCRIP interpolation library:
- key_noSCRIP
e To compile on NEC SX platforms (optimisation in oasis3/src/extrap.F and proper value
for ip_.i8 pinocasis3/lib/psmile/src/mod kinds model.F90 and
oasis3/lib/mpp_io/src/mod_kinds mpp.F90:
- SX
e Other platform dependent CPP keys are used in casis3/1lib/mpp-io/include/os.h,

oasis3/lib/psmile/include/psmile_os.handoasis3/src/mod_kinds_oasis.F90;

they should be automatically activated on the corresponding platforms.

8.1.3 Debugging

If you experience problems while running your coupled model with OASIS3, you can obtain more infor-
mation on what is happening with:

e Putting SNLOGPRT = 2 in your namcouple (see section 5.2)

e Compiling with CPP key __VERBOSE which will result in more information printed in cplout and
in log files * prt* during the psmile library exchanges (in particular, a message is printed when
entering and leaving each main routine)

e Compiling with CPP key DEBUG which will result in more information printed in the log files *.prt*
from the mpp_io library

8.2 Running OASIS3 in parallel mode

Two modes of parallelisation, both working on a field-per-field basis, were developed concurrently for
OASIS3, one by IPSL finalized by CERFACS, and one by CMCC. These modes allows different OASIS3
processes to treat different subsets of coupling fields. These parallelisation modes can be applied with any
number of OASIS3 processes; they are in fact only limited by the number of coupling fields exchanged
within the coupled model.

With both modes, OASIS3 log file (i.e. cplout_x) and auxiliary files for transformations EXTRAP /NINENN,
INTERP/SURFMESH and INTERP /GAUSSIAN (i.e. mweights_x, nweights_x, gweights_x, anaisout x,

see 7.5.1) , and for SCRIPR (see 7.5.3) are suffixed with the number of the corresponding OASIS3 process

performing the transformation. This is done automatically by the OASIS3 process when the file is created

by OASIS3 or has to do so by the user if he provides the file before hand.

Note that if the CPP keys use_oasis_para or use_oasis_cmcc_para are not activate, these new
parallelisation modes have no impact on the use of OASIS3. Here are the details on the two modes.

8.2.1 IPSL parallelisation

To run the OASIS3 executable on more than one process in IPSL parallelisation mode, OASIS3 must be
compiled with the CPP key use_oasis_para (see 8.1.2).
With IPSL parallelisation mode, each OASIS3 process is totally independent of the others. Therefore,

the user has to provide one separate configuration file per process and the different files must be named
namcouple_x where x is the number of the corresponding OASIS3 process. Each OASIS3 process will

8.3. RUNNING OASIS3 IN COUPLED MODE WITH TOYOASIS3 55

receive, treat, and send the coupling fields described in its configuration file namcouple x. Note that if
OASIS3 was compiled with the CPP key use_oasis_para, the configuration file suffix is mandatory,
even if OASIS3 runs in fact with only one process - in this case, the suffix is _0.

Although this parallelisation mode presents the advantage of removing the bottleneck that can appear when
only one OASIS process receives and sends all the coupling fields, there are few constraints associated:

o As stated above, the configuration file namcouple has to be splitted into different namcouple_x,

one per process. In one namcouple_x the total number of coupling fields treated by OASIS3
process x must be given on the line below the SNFIELDS keyword and only these coupling fields
must be detailed.
If the maximum number of prism_def_var_proto called by ANY component model in the coupled
system is greater than twice the number of fields listed in the namcouple_x (which is often the case
when OASIS3 is used in parallel mode), this maximum number of prism_def_var_proto has to
be specified on the same line (below the $SNFIELDS keyword) after the total number of fields
exchanged (see also section 5.2).

e This mode is available only with the MPT1 CLIM communication technique (see 5.2).

o In this mode, the grid data files have to be created by the user before the run (see also 4.2).

o Binary restart files do not work with this mode; NetCDF files have to be used

e The different OASIS3 executables cannot share the same coupling restart file (see section 7.3).

Therefore, the same coupling restart file cannot be indicated in different namcouple x configuration
files. The recommendation here is to use one separate coupling restart file per coupling field.

8.2.2 CMCC parallelisation

To run the OASIS3 executable on more than one process in CMCC parallelisation mode, OASIS3 must be
compiled with the CPP key use_ocasis_cmcc_para (see 8.1.2). (XXX to be completed)

8.3 Running OASIS3 in coupled mode with TOYOASIS3

In order to test the OASIS3 coupler in a light coupled configuration, CERFACS has written 3 “toy” com-
ponent models, mimicking an atmosphere model (atmoa3), an ocean model (oceoa3), and a chemistry
model (cheoa3), which sources can be found in casis3/examples/toyoasis3/src. These “toy”
component models are ‘empty’ in the sense that they do not model any real physics or dynamics. The cou-
pled combination of these 3 “toy” component models through OASIS3 coupling software is refered to as
the TOYOASIS3 coupled model; the TOYOASIS3 coupling is realistic as the coupling algorithm linking
the toy component models, the size and the grid of the 2D coupling fields, and the operations performed
by OASIS3 on the coupling fields are realistic.

The current version of OASIS3 and its TOYOASIS3 example coupled model was successfully compiled
and run on:

e Linux neolithl 2.6.18-194.8.1.el5, with ifort/icc and openmpi - 1.4 and scalimpi 3.13.8, thanks to
C. Basu from NSC (Sweden)

o cluster BULLX based on Intel/westmere, with Intel 11.1.073 compiler and “bullxmpi 1.0.2” MPI
library (compilation only)

e CRAY XT platforms, with Cray Fortran Compiler crayftn and MPI library xt-mpt, thanks to C.
Henriet from Cray

o (XXX to be completed)

Previous versions were compiled and run on many other platforms.

56 CHAPTER 8. COMPILING AND RUNNING OASIS3 AND TOYOASIS3

Compiling OASIS3 was described in section 8.1. In the following section, the TOYOASIS3 example
coupled model is first described in more detail (see section 8.3.1), then instructions on how to compile and
run TOYOASIS3 are given in section 8.3.2.

8.3.1 TOYOASIS3 description
The oceoa3 model

The oceoa3 model has a 2D logically-rectangular, streched and rotated grid of 182x149 points, which
corresponds to a real ocean model grid (with two poles of convergence over America and Asia). Oceoa3
timestep is 14400 seconds; it performs therefore 36 timesteps per 6-day run.

OASIS3 PSMILe routines are detailed in section 4. At the beginning of a run, oceoa3 performs appropriate
PSMILe calls to initialize the coupling, define its grids, and declare its I/O or coupling fields. As oceoa3 is
not parallel, it calls the PSMILe prism_def_partition routine to define only one Serial partition containing
the 182X149 grid points.

Then, oceoa3 starts its timestep loop. At the beginning of its timestep, oceoa3 calls the PSMILe prism_get
routine 6 times to request the fields named Field3, Field4, Field6 to Field9 on table 8.1. At the end of its
timestep, oceoa3 calls PSMILe prism_put routine to send fields named Field1 and Field2 on table 8.1. The
fields will be effectively received or sent only at the coupling frequency defined by the user (see section
5.3).

Finally, at the end of the run, oceoa3 performs the PSMILe finalization call.

The atmoa3 model

The atmoa3 model has a realistic atmospheric Gaussian reduced grid with 6232 points. Its timestep is
3600 seconds; it therefore performs 144 timesteps per 6-day run.

As oceoa3, atmoa3 performs, at the beginning of a run, appropriate PSMILe calls to initialize the coupling,
define its grids, and declare its I/O or coupling variables. Then atmoa3 retrieves a local communicator
for its internal parallelization with a call to PSMILe prism_get_localcomm routine, useful if the MPI1
communication technique is chosen by the user (see section 4.1), and defines its local partition calling the
PSMILe prism_def_partition routine.

Then, atmoa3 starts its timestep loop. At the beginning of its timestep, atmoa3 calls the PSMILe prism_get
routine 3 times to request the fields named Fieldl, Field2 and Field11 on table 8.1. At the end of its
timestep, atmoa3 calls PSMILe prism_put routine to send fields named Field4 to Field10 on table 8.1. The
fields will be effectively received or sent only at the coupling frequency defined in the namcouple (see
section 5.3) of the coupled model that one can find in casis3/examples/toyoasis3/input.

Finally, at the end of the run, atmoa3 performs the PSMILe finalization call.

The cheoa3 model

Cheoa3 is integrated on the same atmospheric model grid than atmoa3. Its timestep is 7200 seconds; it
therefore performs 72 timesteps per 6-day run.

As the other toymodels, cheoa3 performs, at the beginning of a run, appropriate PSMILe calls to initialize
the coupling, define its grids, and declare its I/O or coupling variables; it also retrieves a local communi-
cator if needed. As cheoa3 has the same grid than atmoa3, a direct exchange of coupling fields can occur
between those two models, without going through OASIS3 interpolation process. To insure this, the cou-
pling field must have a field status ‘IGNORED’ or ‘IGNOUT” in the OASIS3 configuration file namcouple
(see section 5.3) and the two models must have also the same parallel decomposition. Cheoa3 decompo-
sition is hardcoded the same way than atmoa3, and if the user modifies the atmoa3 decomposition, he has

8.3. RUNNING OASIS3 IN COUPLED MODE WITH TOYOASIS3 57

to modify the cheoa3 decomposition the same way by changing cheoa3 values for 11 _nbcplproc and
cdec (see below).

At the beginning of its timestep, cheoa3 calls the PSMILe prism_get routine to request Field10 (see table
8.1). At the end of its timestep, cheoa3 calls PSMILe prism_put routine to send Field11.

Finally, at the end of the run, cheoa3 performs the PSMILe finalisation call.

TOYOASIS3 coupling algorithm

The coupling algorithm between the TOYOASIS3 component models oceoa3, atmoa3, and cheoa3 is
described here.

Table 8.1 lists the coupling fields exchanged between those 3 model components, giving the symbolic
name used in each component and indicating whether the model produces the field (src) or receives it

(tgt).

’ ‘ oceoa3 ‘ atmoa3 ‘ cheoa3 restart
Field1l SOSSTSST (src) SISUTESU (tgt) fldo1.nc
Field2 SOICECOV (src) | SHCECOV (tgt) fldo2.nc
Field3 | SOALBEDO (tgt) SOALBEDO.nc
Field4 | SONSHLDO (tgt) | CONSFTOT (src) fldal.nc
Field5 COSHFTOT (src)

Field6 | SOWAFLDO (tgt) | COWATFLU (src) flda3.nc
Field7 | SORUNOFF (tgt) | CORUNOFF (src) fldad.nc
Field8 | SOZOTAUX (tgt) | COZOTAUX (src) flda5.nc
Field9 | SOMETAUY (tgt) | COMETAUY (src) flda6.nc
Field10 COSENHFL (src) | SOSENHFL (tgt) | flda7.nc
Fieldl1 COTHSHSU (tgt) | SOTHSHSU (src) | flda8.nc

Table 8.1: Coupling and I/O fields of the TOYOASIS3 coupled model. The symbolic name used in each toy model
is given and it is indicated whether the model produces the field (src) or receives it (tgt).

Figure 8.1 illustrates the coupling algorithm between the 3 TOYOASIS3 toy models for Field;, Fields,
Field4, Fieldlo, and Fieldll.

Flield; is sent from oceoa3 component to atmoa3 component at the coupling frequency dtF; defined by
the user in the configuring file namcouple. As interpolation is needed between oceoa3 and atmoa3 grids,
this exchange must go through OASIS3 interpolation process. In the namcouple, Field; field status must
therefore be EX PORT E D and the interpolation must be defined. If the user wants the field to be also
automatically written to files before being sent (below the prism_put), and after being received (below the
prism_get), he can choose the field status EX POUT. In oceoa3 and atmoa3 codes, the prism_put and
prism_get routines are respectively called every timestep with an argument corresponding to the time at
the beginning of the timestep. The lag of Field;, defined as 4 hours (14400 seconds) in the namcou-
ple, is automatically added to the prism_put time argument; the prism_put called at the oceoa3 timestep
preceeding the coupling period therefore matches the prism_get called in atmoa3 at the coupling period.

At the beginning of the run (i.e. at time = 0), the oceoa3 prism_put for F'ield; is not activated (as a positive
lag is defined for F'ield;) and OASIS3 automatically read F'ield; in its coupling restart file, fldo1l.nc, and
sends it to atmoa3 component after interpolation.

The exchange of F'ieldy from oceoa3 to atmoa3 and F'ieldy, Fields, Flieldy, Fieldgs and Fieldg from
atmoa3 to oceoa3 follow exactly the same logic as for F'ield;.

Flields as a status INPUT in the namcouple. Fields will therefore not be exchanged between two models
but will be read from a file automatically below the target model oceoa3 prism_get calls, at the user-defined
frequency in the input file also specified in the namcouple, SOALBEDO . nc.

58 CHAPTER 8. COMPILING AND RUNNING OASIS3 AND TOYOASIS3

Fields as a status of OUTPUT in the namcouple. It will therefore be only automatically written to a file at
the user-defined frequency, below the source model atmoa3 prism_put calls. The name of the file will be
automatically composed of the field symbolic name (here COSHFTOT) and of the begin and end dates of
the run.

Fieldyp and Flield;; are exchanged respectively from atmoa3 to cheoa3 and from cheoa3 to atmoa3.
The fields status chosen by the user for those fields in the namcouple should therefore be TGNORED (or
IGNOUT if the user wants the fields also automatically be written to files below the prism_put and after
the prism_get). At the beginning of the run (i.e. at time = 0), the oceoa3 prism_get called to receive those
fields will automatically read the fields in their corresponding coupling restart files flida7.nc and flda8.nc.

dtF10
dtF11
1
CHE 0 2. 4. - ——— 3 -== ___Alv;n
T T
10 < dtCHE
+2h +1h @

dtATM

Fu <——>
F11 F10 F10

ATM 0 FIOT Flll FIOT Flll FIOT Flll FIOT FIL

} F4l 'F1‘|‘ F4l
F1

FIT F4l'F1T K ' F4

1
3 4

1
1 2

a,
OASIS +4h) 1h
Cidol.nc)

@ ™
fldol.nc
dtOCE

OCE 0 Y FIT |F4l Il " | |F4w "
F3| 479 F3 144
dtF3
dtF1
dtF4

SOALBEDO.nc SOALBEDO.nc

Figure 8.1: Exchange algorithm between the 3 TOYOASIS3 component models for fields Field;, Fiields, Fieldy,
Fieldlo, and Fi@ldll.

8.3.2 Compiling and Running TOYOASIS3

The TOYOASIS3 compiling and running environment is available in oasis3/examples/toyoasis3.

Subdirectory /data contains auxiliary grid data files (see 7.2) and coupling restart files (see 7.3). Subdi-
rectory /input contains the file cf _name_table.txt (see 7.1) the configuration file (see chapter 5)
used in the classic (not parallel) mode, namcouple, and the configuration files used in the IPSL parallel
mode, namcouple_0 and namcouple_1.

To run TOYOASIS3, first compile OASIS3 and the 3 TOYOASIS3 component models (see section 8.1).
Go in directory oasis3/examples/toyoasis3/src and type make. This will automatically com-
pile OASIS main executable and PSMILe library, if not done before hand, and the three component models
atmoa3.x, cheoa3.x and oceoa3. x, using the header file specified in oasis3/util/make _dir

8.4. RUNNING OASIS3 IN INTERPOLATOR-ONLY MODE 59

/make.inc.

The next step is to adapt the “User’s section” of the running script run_toyoasis3 in subdirectory
/script and to launch it. The script run_toyoasis3 supports Linux PC, NEC SX, IBM Power4,
CRAYX1, CRAYXDI1 and CRAYXT platforms (see arch variable). If your platform is not supported,
the script will have to be adapted.

Different modes can be tested.

e To run in the classic (not parallel) mode, compile without the CPP key use_oasis_para or
use_oasis_cmcc_para, and set ipsl_comp_para=0 and cmcc_comp_para=0 in the run-
ning script. One can now choose between running atmoa3 and cheoa3 toy models on one process
only (nproc_atmche=1 and ncpl_atmche=1) or on 3 processes each (nproc_atmche=3
and ncpl_atmche=3). The results for the first and second cases are respectively available in
oasis3/examples/toyoasis3/outdata/resultsmono_111 and
oasis3/examples/toyoasis3/outdata/results mono_313 (XXX this last directory
is not updated yet).

Atmoa3 can run on 1 or 3 processes, depending on the value of the variable nproc_atmche in
script run_toyoasis3. When running on 3 processes, atmoa3 can either exchange coupling data
through its 3 processes (ncpl_atmche = 3 in run_toyoasis3 and il nbcplproc = 3
in atmoa3.F90) or only through the master process (ncpl_atmche = 1 in run_toyoasis3
and 11 nbcplproc = 1 in atmoa3.F90). When atmoa3 runs or exchanges data with only one
process, it defines one Serial partition containing the 96X48 grid points. If it runs and exchanges
coupling data with 3 processes, its decomposition depends on the cdec parameter hard coded in
routine decomp_def.F90. When cdec = APPLE, each of the 3 atmoa3 processes calls the
PSMILe prism_def_partition routine to define 1 segment of an APPLE decomposition (1536 grid
points per segment). If cdec = BOX, each process will define 1 ‘box’ of a BOX decomposition
and will treat a box of 32X48 points. If the user hardcodes cdec = ORANGE, each process will
define a partition of two segments of 768 points distant of 1536 points.

e Setting gridswr=1 in the script run_toyoasis3 will make the toy models to create the grid
data files grids.nc, masks.nc and areas.nc and to write their grids, corners, areas and masks in
these files using the prism write_grid, prismwrite_corner, prismwrite_mask and
prism_write_area routines (see 4.2). This does not change the results.

e To run in IPSL parallelisation mode, set ipsl_comp_para=1. In this case, make sure that the CPP
key use_oasis_para was used for compilation. The script will launch OASIS3 on two processes
treating each one a subset of the coupling fields; the first OASIS3 process will treat the coupling
fields listed in namcouple_0 while the second will treat the coupling fields listed in namcouple_I.
For more details in the IPSL parallelisation mode, see section 8.2.1. The results one should get with
ipsl_comp_para=1 (in the case the atmoa3 and cheoa3 toy models run on one process only) are
available in casis3/examples/toyoasis3/outdata/results_para. (XXX This last
directory is not updated yet XXX).

e To run in CMCC parallelisation mode, set cmcc_comp_para=1. In this case, make sure that
the CPP key use_oasis_cmcc_para was used for compilation. For more details in the CMCC
parallelisation mode, see section 8.2.2. The results one should get with cmcc_comp_para=1 are
available in ... (XXX to be completed)

8.4 Running OASIS3 in interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model (see section 6.1). Two test-cases are provided with OASIS3 to illustrate its uses in this mode, the
“testinterp” test-case (see section 8.4.1) and the “testNONE” test-case (see section 8.4.2).

60 CHAPTER 8. COMPILING AND RUNNING OASIS3 AND TOYOASIS3

8.4.1 The “testinterp” test-case

The “testinterp” test-case can be run to test the interpolation of different source fields corresponding
to analytical functions and to evaluate the error between the interpolated fields and the same analytical
functions calculated on the different target grids.

All files needed to run this test-case can be found in oasis3/examples/testinterp/input and
ocasis3/examples/testinterp/restart.

To run “testinterp”, OASIS3 first has to be compiled (see section 8.1.1) in interpolator-only mode NONE,
i.e. by putting CHAN = NONE in the TopMakefileOasis3 header file. Then the programs that will calcu-
late the interpolation error, i.e. gen_error.£90 and gen_error_vector. £90 (for vector fields) in
directory casis3/examples/testinterp/error have to be compiled (see script sc_comp_error).
Then, one has to adapt and execute the running script casis3/examples/testinterp/
sc_run_testinterp. With TIME=0NE, the configuration file casis3/examples/testinterp/
input/namcouple_ONE, the input files f1dal.nc, flda2.nc, flda3.nc, fldbl.nc,
fldol.nc and f1dz1l.nc from casis3/examples/testinterp/restart and the input files
aalin.ncandcaJin.ncfromoasis3/examples/testinterp/restart/vector areused.
This example also shows one vector interpolation (field components a_at42_T and c_at42_J). The test-
case automatically writes the error fields in error_x . nc files and error statistics in 1og_~ files.

To run the example into which OASIS3 interpolates many time occurrences from one input file, put
TIME=MANY in sc_run_testinterp. The configuration file casis3/examples/testinterp/
input/namcouple MANY and the input file f1din.nc in casis3/examples/testinterp/
restart are then used.

The results obtained after running the testinterp test-case should match the ones in oasis3/examples/
testinterp/outdata. (XXX this directory is not updated yet).

8.4.2 The “testNONE” test-case

All files to run the “testNONE” test-case can be found in casis3/examples/testNONE. This test-
case provides a flexible environnement to test the interpolation specified in the INPUT/namcouple
configuration file from a source grid to a target grid, both grids being defined in regular OASIS3 grid data
files grids.nc, masks.nc, areas.nc (see section 7.2).

To run “testNONE”, OASIS3 first has to be compiled (see section 8.1.1) in interpolator-only mode NONE,
i.e. by putting CHAN = NONE in the TopMakefileOasis3 header file. The user then has to adapt the “User
specifications” part of the running script sc_run_NONE. In particular, he has to specify:

e DIRWORK : the directory where to run the test-case

e BINDIR : the directory containing OASIS3 executable

e SRCROOT : the source of the oasis3 directory

e ARCH : the platform onto which the test-case will run

e DIR_GRD : the directory for the grid data files

e DIR_INP : the directory for the namcouple and cf_name_table.txt files

e SRC_GRID and TGT_GRID : the source and target grid prefixes in the namcouple and in the grid
data files (see section 5.3.1),

e FLD_NBR : the number of the analytic function chosen,

e MASKERROR : whether or not the error on the target grid will be calculated on all points (MASKERROR=NOT)
or only on non masked points (MASKERROR=YES).

When launched, the running script sc_run_NONE:

e creates a working directory

8.5. KNOWN PROBLEMS WHEN COMPILING OR RUNNING OASIS3 ON SPECIFIC
PLATFORMS 61

e compiles and runs the program PROG/create_inputfield. £90 that creates an input field
using the chosen analytical function on the specified source grid in file f1din.nc

e copy all required input and data file to the working directory

o run OASIS3 that interpolates the analytical field from £1din.nc with the interpolation specified
in the namcouple

e compile and run the program PROG/create_errorfield.£90 that calculates the error be-
tween the resulting interpolated field and the field defined by the chosen analytical function on the
specified target grid, and writes it to the file error.nc

8.5 Known problems when compiling or running OASIS3 on specific plat-
forms

e Notes on porting to BlueGeneL (XXX to be detailed):
e Notes on porting to BlueGeneP (XXX to be detailed):

Appendix A

The grid types for the transformations

As described in section 6, the different transformations in OASIS3 support different types of grids. The
characteristics of these grids are detailed here.

1. Grids supported for the INTERP interpolations (see section 6.4)

‘A’ grid: this is a regular Lat-Lon grid covering either the whole globe or an hemisphere,
going from South to North and from West to East. There is no grid point at the pole and at the
equator, and the first latitude has an offset of 0.5 grid interval. The first longitude is 0° (the
Greenwhich meridian) and is not repeated at the end of the grid (SCPER = P and SNPER= ().
The latitudinal grid length is 180/NJ for a global grid, 90/NJ otherwise. The longitudinal grid
length is 360/NI.

‘B’ grid: this is a regular Lat-Lon grid covering either an hemisphere or the whole globe,
going from South to North and from West to East. There is a grid point at the pole and at
the equator (if the grid is hemispheric or global with NJ odd). The first longitude is 0° (the
Greenwhich meridian), and is repeated at the end of the grid (SCPER =P and $SNPER=1). The
latitudinal grid length is 180/(NJ-1) for a global grid, 90/(NJ-1) otherwise. The longitudinal
grid length is 360/(NI-1).

‘G’ grid: this is a irregular Lat-Lon Gaussian grid covering either an hemisphere or the
whole globe, going from South to North and from West to East. This grid is used in spectral
models. It is very much alike the A grid, except that the latitudes are not equidistant. There is
no grid point at the pole and at the equator. The first longitude is 0° (the Greenwhich meridian)
and is not repeated at the end of the grid (SCPER = P and $SNPER= 0). The longitudinal grid
length is 360/NI.

‘L’ grid: this type covers regular Lat-Lon grids in general, going from South to North and
from West to East.. The grid can be described by the latitude and the longitude of the southwest
corner of the grid, and by the latitudinal and longitudinal grid mesh sizes in degrees.

*Z’ grid: this is a Lat-Lon grid with non-constant latitudinal and longitudinal grid mesh
sizes, going from South to North and from West to East. The deformation of the mesh can
be described with the help of 1-dimensional positional records in each direction. This grid is
periodical ($CPER = P) with $NPER overlapping grid points.

‘Y’ grid: this grid is like “Z’ grid except that it is regional (SCPER =R and $NPER = 0).

2. Grids supported for the SCRIPR interpolations

‘LR’ grid: The longitudes and the latitudes of 2D Logically-Rectangular (LR) grid points
can be described by two arrays longitude (i, j) and latitude (i, j), where i and j
are respectively the first and second index dimensions. Streched or/and rotated grids are LR
grids. Note that A, B, G, L, Y, or Z grids are all particular cases of LR grids.

63

e ‘U’ grid: Unstructured (U) grids do have any particular structure. The longitudes and the
latitudes of 2D Unstructured grid points must be described by two arrays 1ongitude (nbr_pts, 1)
and latitude (nbr_pts, 1), where nbr_pts is the total grid size.

e ‘D’ grid The Reduced (D) grid is composed of a certain number of latitude circles, each
one being divided into a varying number of longitudinal segments. In OASIS3, the grid data
(longitudes, latitudes, etc.) must be described by arrays dimensioned (nbr_pts, 1), where
nbr_pts is the total number of grid points. There is no overlap of the grid, and no grid point
at the equator nor at the poles. There are grid points on the Greenwich meridian.

Appendix B

Changes between versions

Here is a list of changes between the different official OASIS3 versions.

B.1 Changes between oasis3 3 and oasis3 prism 2.5

The changes between version oasis3_3 and version oasis3_prism_2_5 delivered in September 2006
are the following:

e Bug corrections:

— In oasis3/lib/scrip/src/remap bilinear.f, remapbicubic.f,
remap_bilinear_reduced.f, remap_bicubic_reduced.F90: (r2084)we observed
a wrong behaviour of routines remap_bilinear.f and remap_bicubic.f on the NEC SX9 when
compiled with NEC SX compiler revision 400. We got round this problem by adding an
explicit instruction to prevent the vectorisation of one loop.

As remap_bilinear_reduced.f and remap_bicubic_reduced.F90 have a very similar loop, we in-
troduced the same instruction in these routines, although nothing specific was observed with
them.

— oasis3/lib/scrip/src/remap-bicubic_reduced.F90: (r1883) Two bugfixes: 1)
Memory fault when a target point was falling on the before-last latitude circle or in the before-
last latitude band of the source reduced grid; 2) Wrong neighbours for target points south of
the before-last latitude circle (i.e in the last latitude band or Southern).

— oasis3/lib/psmile/src/mod_psmile_io.F90: (r2380) correction to ensure that
when INVERT is used, the corner latitudes and longitudes are also inverted (and not only
the center latitudes and longitudes as before).

— oasis3/lib/scrip/src/scriprmp.F: (r1547) the calculation of the average for the
line of points at the pole was bugged and did not have any effect. It is now debugged but
commented.

— Inoasis3/1lib/scrip/src/vector.F90:

- correction of wrong sequences in declarations, at least for Intel & NAG compilers (thanks
to L. Kornblueh from MPI); bug fix announced to the mailing list diff-oasis@cerfacs.fr on
31/10/2006.

- (r1698 - 2008-08-20) bugfix to make sure that OASIS does not automatically calculates
corners of target grid as this calculation is correct only for LR grids and target grid type is not
known (thanks to S. Calmanti from Météo-France)

- Modifications so that last 4 arguments of call to grid_init are always arrays even when corners
are not defined (error detected with Intel Fortran V10.1.012 by Mike Rezny, SGI, Australia)

B.1. CHANGES BETWEEN OASIS3_3 AND OASIS3_PRISM 2.5 65

Inoasis3/1ib/clim.GSIP/src/CLIM_Init_Oasis.F, correction of a wrongly po-
sitioned #endif (thanks to L. Kornblueh from MPI); bug fix announced to the mailing list
diff-oasis @cerfacs.fr on 31/10/2006.

Incasis3/lib/psmile/src/prism_enddef _proto.F,the call to MPI_Errhandler_set
was moved after the test on the value of mpi_err returned by MPI_Buffer_Detach (thanks
to I. Bethke from NERSC); bug fix announced to the mailing list diff-oasis@cerfacs.fr on
14/12/2006.

Routine casis3/1lib/psmile/src/prism_terminate_proto.F90 was modified to
ensure proper deallocation of all allocated arrays (thanks to Adam Ralph from ICHEC)

In casis3/1lib/scrip/remap_conserv.F, small bugfix having no impact on the re-
sults, it just avoids misleading messages of type “Error sum wts mapl:grid2_add ...” to be
printed in the cplout log file.

Incasis3/src/getfld.F,givfld.F,driver.f and closerst.F, correction of a
bug observed by A.Caubel from CEA for coupling fields having a sequence index greater than
1. For first iteration, closing of netcdf restart files is done in driver.f by calling new routine
closerst.F. Closing is therefore removed from getfld.F. A minor correction (useless opening
and closing of first netcdf restart file) was also added to givfld.F. Bug fix announced to the
mailing list diff-oasis@cerfacs.fr on 09/02/2006.

Inocasis3/src/inipar.F, bugfix for SEQMODE greater than 9 (thanks to T. Silva, Ore-
gon State U.) and to avoid array overbound.
Inocasis3/util/make_dir/TopMakefileOasis3: typo error: libmpp_io.ainstead of
libmppio.a (thanks to J.M. Epitalon from CERFACS)
Incasis3/lib/psmile/src/prism_init_comp_proto.F:initialisation of iprcou
(bug fix thanks to J.M. Epitalon).

Inoasis3/src/filling. f: rewind of file in the "AN” case (thanks to S. Calmanti from
Météo-France)

In casis3/lib/psmile/src/mod prism put_proto.F90: bug fix to avoid array
overbounds (bug identified T. van Noije from KNMI).

In casis3/lib/psmile/src/mod_psmile_io.F90: thanks to A. Caubel from CEA,
modification so that the grid point longitudes and latitudes do not have to appear before the
corner longitudes and latitudes in the grids.nc file (revision 13/01/2009).

Bugfix in oasis3/examples/testNONE/PROG/calc_errorfield.£90 to use the
absolute value of the error in the non masked point mean error calculation.

Modifications in casis3/1ib/clim/src/CLIM.Init Oasis.F and casis3/1ib/
psmile/src/prism_init_comp_proto.F toallow communication log file (*.prt* files)
for OASIS and/or component models to run on up to 9999 processes.

e Other major modifications

New directory structure. See section 3 for details.

Modification of many routines to allow using more than one OASIS3 executable in a coupled
model resulting in pseudo-parallelisation of OASIS3 on a field-per-field basis. See section 8.2
for more detail.

New directory structure and update of compiling environement to work with the new directory
structure. In particular, the location of directory created for compilation (see ARCHDIR in the
Makefile headers make .xxx in casis3/util/make_dir) can be arbitrarily chosen by
the user.

Modification of routine casis3/1ib/scrip/src/remap_distwgt.F so that
SCRIPR/DISTWGT that has by default the same behaviour than SCRIPR/BILINEAR, /BICU-
BIC and /CONSERYV (with FRACNNETI option) i.e. the non-masked nearest neighbour is used

66

APPENDIX B. CHANGES BETWEEN VERSIONS

for target grid points having their N nearest neighbour all masked. To reproduce the previous
default behaviour, one has to compile with CPP key NOT_NNE IGHBOUR. See section 6.4 for
details.

Inclusion of an additional number below the SNFIELDS keyword in the namcouple (after
the total number of fields exchanged, on the same line). This number, corresponding to the
maximum number of prism_def_var_proto called by ANY component model in the coupled
system, is needed only if it is greater than twice the number of fields listed in the namcouple;
this may be the case if OASIS3 is used in pseudo-parallel mode or if fields declared with
prism_def_var_proto call (and corresponding to sending - prism_put_proto call- or receiving -
prism_get_proto call - actions in the component models) do not appear in the namcouple (in
this case, the sending and receiving calls simply return without any action performed).

added options GLBPOS, BASPOS, BASBAL for the cooking stage transformation CONSERV.
For details, see section 6.5.

New CPP key TREAT_OVERLAY : to ensure that if two cells of the source grid overlay, at
least the one with the greater numerical index is masked (they also can be both masked). For
example, if the grid line with i=1 overlaps the grid line with i=imax, it is the latter that must be
masked. When this is not the case with the mask defined in masks.nc, this CPP key ensures that
these rules are respected. This is mandatory for SCRIPR/CONSERV remapping, see section
6.4.

Optimisation of SCRIPR (XXX to be detailed) interpolation weigths-and-address files, thanks
to CMCC. The weights and addresses are now read once per run and stored.

mode stats consommation Eric M (XXX to be detailed)
mod_prism_get_comm (XXX to be detailed)

Release of a new toy coupled model TOYOASIS3. This new toy model is described in 8.3. The
toy model sources are available in ocasis3/src/mod/oceoa3/, atmoa3, cheoa3. It
running environment is available in oasis3/src/mod/oasis3/examples/toyoasis3.
The grids of the TOYOASIS3 component models and the interpolation performed have been
updated compared to the previous toy coupled model TOYCLIM (which is no longer dis-
tributed with the official release).

Inoasis3/src/mod/oasis3/src/extrap.F: optimisation (thanks to T. Schoenemeyer
from NEC) and 1doitold changed from 1000000 to 10000000 to support higher resolution
grids (thanks to E.Maisonnave from CERFACS). XXX and CMCC

In oasis3/lib/psmile/src/mod prism. grids writing.F90:

- routine prism_write_angle was added to to allow a component model to write the angle of its
grid (see section 4.2 for more detail).

- changed logical netcdf for 1_netcdf (to run on NEC SX9, thanks to E. Maisonnave,
CERFACS)

In may 2007, we moved from CVS to SVN for source management.

e Other modifications

The names of the log files for the communication information *.prt* are now always end-
ing with 4 digits indicating the rank of the component process (e.g. modell.prt0002 or
model1.prt9999) or the rank of the oasis process (e.g. Oasis.prt0001 or Oasis.prt0010). These
modifications impacted routines ocasis3/1ib/clim/src/CLIM_Init _Oasis.F and
oasis3/lib/psmile/src/prism_init_comp_proto.F.

The following routines were modified for the NAG compiler: oasis3
/src/getfld.F, inipar.F, interp.F and oasis3/lib/scrip/src/
remap._write.F

B.2. CHANGES BETWEEN OASIS3_ PRISM_2_5 AND OASIS3_ PRISM 2.4 67

— Some routines in casis3/lib/mpp-io/src/ were modified so that all debug and log
messages are now written to stdout unit and to include modifications done in the OASIS4
version for CRAY pointers and for bundles.

— Added CPP key __SILENT CPP key to reduce log outputs to .prt files during the psmile library
exchanges (thanks to S. Lorenz from MPI)

— In casis3/src/chkfld. f, modified misleading comment about masked points written
to cplout log file (thanks to T. Craig from BOM).

— In casis3/1lib/psmile/src/mpp-io/src/mpp-io.mod-oa.F90 modified “lower-
case” function so to avoid using “’transfer” function (thanks to Mike Rezny for SGI Melbourne)
which causes problem with pgf90 5.2.4, 6.1.3 or 7.0 in 64 bit mode, and with gfortran 4.2.1
and 4.2.5 SUSE Linux.

B.2 Changes between casis3 prism 2.5and oasis3 prism. 2.4

The changes between version casis3_prism_2_5 and version oasis3 prism_2_4 delivered in De-
cember 2004 are listed here after. Please note that those modifications should not bring any difference in
the interpolation results, except for SCRIPR/DISTWGT (see below).

e Bug corrections:

— Inprism/src/lib/scrip/src/scriprmp.F: initialisation of dst_array (:); bug
fix announced to the mailing list diff-oasis @cerfacs.fr on 02/02/2006.

— Inprism/src/lib/psmile/src/prism_enddef_proto.Fandprism/src/lib/
clim/src/CLIM_Start_MPTI.F:the call to MPI_ barrier (that created a deadlock when not
all processes of a component model were exchanging data with the coupler) was changed for
a call to MPI_wait on the previous MPI Isend; bug fix announced to the mailing list diff-
oasis @cerfacs.fr on 02/23/2006.

— For SCRIPR/DISTWGT, in prism/src/lib/scrip/src/remap_distwgt.f: line
190 was repeated without epsilon modification; bug fix announced to the mailing list diff-
oasis @cerfacs.fr on 03/21/2006.

— In prism/src/lib/psmile/src/mod prismput_proto.F90, for prism_put
proto_r28 and prism put_proto_r24, the reshape of the 2d field was moved after the
test checking if the field is defined in the namcouple (thanks to Arnaud Caubel from LSCE).

e Modification in SCRIP interpolations

— For SCRIPR interpolations (see section 6.4), the value 1.0E+20 is assigned to target grid
points for which no value has been calculated if prism/src/lib/scrip/src/scriprmp. £
or vector.F90 (for vector interpolation) are compiled with 11_weightot = .true..

— For SCRIPR/GAUSWGT: ifroutine prism/src/lib/scrip/src/remap_gauswgt.f
is compiled with 11 _nnei=.true., the non-masked nearest neighbour is used for target
point if all original neighbours are masked (see section 6.4).

— For SCRIPR/BICUBIC (routine prism/src/lib/scrip/src/remapbicubic. f),
the convergence criteria was modified so to ensure convergence even in single precision.

— For SCRIPR/CONSERV (routine prism/src/lib/scrip/src/remap_conserv. f),
a test was added for non-convex cell so that integration does not stall.

— The routine prism/src/lib/scrip/src/corners.F was modified so to abort if it is
called for the target grid, as the automatic calculation of corners works only for Logically-
Rectangular (LR) grids and as the target grid type is unknown. If needed, the reverse remap-
ping, in which the current target grid become the source grid, can be done .

e Other important modifications

68

APPENDIX B. CHANGES BETWEEN VERSIONS

A new PSMILe routine prism/src/lib/psmile/src/prism_get_freq.F was added;
this routine can be used to retrieve the coupling period of field (see section 4.6.3).

The routines of the mpp_io library in prism/src/lib/mpp_io changed name and were
merged with the OASIS4 mpp_io library.

Routine prism/src/mod/ocasis3/src/extrap.F was modified to ensure that the ex-
trapolation works even if the MASK value is very big (thanks to J.M. Epitalon).

In the namcouple, there is no need anymore to define a lag greater than O (e.g. LAG=+1) for
fields in mode NONE.

Diverse modifications were included for successful compilation with NAGW compiler: non
portable use of “kind”, etc. (thanks to Luis Kornblueh from MPI).

Inprism/src/lib/psmile/mod prism get_proto.F90, a potential deadlock was
removed (the master process was sending a message to itself)(thanks to Luis Kornblueh from
MPI).

Routineprism/src/lib/scrip/src/scriprmp_vector.F90 was completely rewrit-
ten for more clarity.

Obsolete transformations INVERT and REVERSE were removed from the toy coupled model
TOYCLIM (infileprism/util/running/toyclim/input/namcouple. This change
does not affect the statistics printed in the cplout but changes the orientation of some fields
in the NetCDF ouput files (see the results in prism/data/toyclim/outdata).

e Other minor modifications:

— Inprism/src/lib/psmile/src/prism_enddef _proto.F, allocation is done only

for rg_field_trans or dg_field_trans depending on precision for REAL (but not for both, to save
memory).

— In few routines in prism/src/lib/climand in prism/src/mod/oasis3, parenthe-

ses were added to make sure that && has priority over || in CPP instructions (thanks to A.
Caubel from LSCE).

— Routines scrip/src/corners. f,netcdf.f,and scriprmp. f were renamed

corners.F,netcdf.F, scriprmp.F and the line “INCLUDE ’netcdf.inc’ ” was changed
for “#include <netcdf.inc>

B.3 Changes between casis3 prism 2 4 and oasis3 prism.2_3

The changes between versions tagged casis3 prism_2_4 and casis3_prism_2_3 delivered in July
2004 are the following:

e Update of compiling and running environments with version prism_2-4 of PRISM Standard Com-
piling Environment (SCE) and PRISM Standard Running Environment (SRE), which among other
improvements include the environments to compile and run on the CRAY X1 (see the directories
with <node>=balticl), thanks to Charles Henriet from CRAY France, and on a Linux station
from Recherche en Prévision Numérique (Environnement Canada, Dorval, Canada) (see the direc-
tories with <node>=armc28).

prism/src/mod/oasis3/src/iniiof.F: the opening of the coupling restart files is done
only if the corresponding field has a lag greater than O; note that this implies that all fields in mode
NONE must now have a lag greater than 0 (e.g. LAG=+1) (thanks to Veronika Gayler from M&D).

prism/src/lib/psmile/src/prism.def var_proto.F:contrary to what was previously
described in the documentation, PRISM_Double is not supported as 7" argument to describe the
field type; PRISM_Real must be given for single or double precision real arrays.

B.4. CHANGES BETWEEN OASIS3_PRISM_2_3 AND OASIS3_ PRISM 2.2 69

e prism/src/mod/oasis3/src/inipar.F90: For upward compatibility of SCRIPR inter-
polation, “VECTOR” is still accepted in the namcouple as the field type and leads to the same
behaviour as before (i.e. each vector component is treated as an independent scalar field). To have
a real vector treatment, one has to indicate "VECTOR _I” or ”"VECTOR_J” (see section 6.4).

e Bug corrections in:

— prism/src/lib/scrip/src/scriprmp_vector.F90: In some cases, some local
variables were not deallocated and variable dimid was declared twice.

— prism/src/lib/psmile/src/mod_psmile_io.F90: correctallocation of array host-
ing the longitudes (thanks to Reiner Vogelsang from SGI Germany).

— prism/src/lib/psmile/src/write_file.F90: to remove a deadlock on some ar-
chitecture (thanks to Luis Kornblueh from MPI).

— prism/src/lib/psmile/src/prism_enddef proto.F: the error handler is now
explicitely set to MPT_ERRORS_RETURN before the call to MPI_Buffer_Detach to avoid
abort on some architecture when the component model is not previously attached to any buffer
(thanks to Luis Kornblueh from MPI).

— prism/src/lib/scrip/src/remap_conserv. f (thanks to Veronika Gayler from M&D).

— prism/src/mod/ocasis3/src/inicmc.F

— prism/src/lib/scrip/src/remap_distwgt.f

B.4 Changes between casis3 prism 2 3 and oasis3 prism 2.2

The changes between versions tagged oasis3 _prism_2_3 delivered in July 2004 and casis3 prism. 2.2
delivered in June 2004 are the following:

e Bug correction of the previous bug fix regarding ordering of grid and data information contained in
I/0 files when INVERT or REVERSE transformations are used: the re-ordering now occurs only for
source field if INVERT is used, and only for target field if REVERSE is used.

e LGPL license: OASIS3 is now officially released under a Lesser GNU General Public License
(LGPL) as published by the Free Software Foundation (see prism/src/mod/oasis3/COPYRIGHT
and prism/src/mod/ocasis3/src/couple.f)

e Upgrade of compiling and running environments: The compiling and running environments have
been upgraded to the PRISM Standard Compiling and Running Environment version dated August
5th 2004, that should be very close to “prism_2-3".

e Treament of vector fields: The interpolation algorithms using the SCRIP library now support vector
fields, including automatic rotation from local to geographic coordinate system, projection in Carte-
sian coordinate system and interpolation of 3 Cartesian components, and support of vector compo-
nents given on different grids. New routines have been added in prism/src/1lib/scrip/src:
scriprmp_vector.F90 and rotations.F90. For more detail, see SCRIPR in section 6.4.

e All include of mpif.h are now written ‘#include <mpif.h>".

e The output format of CHECKIN and CHECKOUT results is now E22.7

B.5 Changes between casis3 prism 2 2 and oasis3 prism2_1
The changes between versions tagged oasis3 _prism_2_2 delivered in June 2004 and casis3 prism 2_1
delivered to PRISM in April 2004 are the following:

e Bug corrections

— INTERP/GAUSSIAN and SCRIPR/GAUSWGT transformations work for ‘U’ grids.

70 APPENDIX B. CHANGES BETWEEN VERSIONS

— The grid and data information contained in I/O files output by the PSMILe library have now a
coherent ordering even if INVERT or REVERSE transformations are used.

o OASIS3 and the TOYCLIM coupled model are ported to IBM Power4 and Linux Opteron, which
are now included in the Standard Compiling and Running Environments (SCE and SRE).

e SIPC technique communication is re-validated.

e Clim MaxSegments = 338inprism/src/lib/clim/src/mod._clim.F90andinprism/src/lib/ps
338 is presently the largest value needed by a PRISM model.
e MPI BSend: below the call to prism_enddef _proto, the PSMILe tests whether or not the
model has already attached to an MPI buffer. If it is the case, the PSMILe detaches from the buffer,
adds the size of the pre-attached buffer to the size needed for the coupling exchanges, and reattaches
to an MPI buffer. The model own call to MPI _Buf fer_Attach must therefore be done before the
call to prism_enddef_proto. Furthermore, the model is not allowed to call MPT_BSend after
the call to prism_terminate_proto, as the PSMILe definitively detaches from the MPI buffer
in this routine. See the example in the toyatm model in prism/src/mod/toyatm/src.

B.6 Changes between casis3 prism 2.1 and oasis3 prism.1.2

The changes between versions tagged oasis3 prism_1_2 delivered in September 2003 and casis3 prism 2_1
delivered to PRISM in April 2004 are the following:

e Bug corrections

— Thanks to Eric Maisonnave, a bug was found and correctedin /prism/src/lib/scrip/src/scriprmp.f:
“sou_mask” and “tgt_-mask” were not properly initialised if weights and addresses were not
calculated but read from file.

99 6

— Some deallocation were missing in prism_terminate_proto.F (“ig_def_part”, “ig_length_part”,
“cg_ignout_field”).

— Thanks to Arnaud Caubel, a bug was found and correctedin /prism/src/lib/psmile/src/write_file.F9O0.
In case of parallel communication between a model and OASIS3 main process, the binary cou-
pling restart files were not written properly (NetCDF coupling restart files are OK).

e Routines renamed

The routines preproc.f, extrap.f, iniiof.finprism/src/mod/oasis3/src were
renamed to preproc.F, extrap.F, iniiof.F, as a CPP key ‘key_openmp’ was added.
Please note that this key, allowing openMP parallelisation, is not fully tested yet.

e Modifications in the namcouple

— The third entry on the field first line now corresponds to an index in the new auxiliary file
cf-name_table.txt (see sections 5.3 and 7.1).

— For IGNORED, IGNOUT and OUTPUT fields, the source and target grid locator prefixes must
now be given on the field second line (see section 5.3.2)

e A new auxiliary file ¢f-name_table.txt

For each field, the CF standard name used in the OASIS3 log file, cplout, is now defined in an
additional auxiliary file cf-name_table.txt not in inipar.F anymore. This auxiliary file must be
copied to the working directory at the beginning of the run. The user may edit and modify this file
at her own risk. In cf_.name_table.txt, an index is given for each field standard name and associated
units. The appropriate index has to be indicated for each field in the namcouple (third entry on the
field first line, see section 5.3).

This standard name and the associated units are also used to define the field attributes “long_name”

and “units” in the NetCDF output files written by the PSMILe for fields with status EXPOUT,
IGNOUT and OUTPUT.

B.6. CHANGES BETWEEN OASIS3_ PRISM 2.1 AND OASIS3_ PRISM.1.2 71

For more details on this auxiliary file, see section 7.1.
e Many timesteps for mode NONE

In mode NONE, OASIS3 can now interpolate at once all time occurrences of a field contained in
an input NetCDF file. The time variable in the input file is recognized by its attribute “units”. The
acceptable units for time are listed in the udunits.dat file (3). This follows the CF convention.

The keyword SRUNTIME in the namcouple has to be the number of time occurrences of the field to
interpolate from the input file. The “coupling” period of the field (4th entry on the field first line)
must be always “1”. Note that if SRUNTIME is smaller than the total number of time ocurrences in
the input file, the first SRUNT IME occurrences will be interpolated.

For more details, see section 6.1.
e Model grid data file writing

The grid data files grids.nc, masks.nc and areas.nc can now be written directly at run time by
the component models, if they call the new routines prism_start_grids_writing, prism_write_grid,
prism_write_corner prism_write_mask, prism_write_area, prism_terminate_grids_writing.

The writing of those grid files by the models is driven by the coupler. It first checks whether the
binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that areas or areas.nc
and masks or masks.nc files exist too) or if writing is needed. If grids or grids.nc exists, it must
contain all grid information from all models; if it does not exist, each model must write its grid
informations in the grid data files.

See section 4.2 for more details.
e Output of CF compliant files

The NetCDF output files written by the PSMILe for fields with status EXPOUT, IGNOUT and
OUTPUT are now fully CF compliant.

In the NetCDF file, the field attributes “long_name” and “units” are the ones corresponding to the
field index in cf_-name_table.txt (see above and section 7.1). The field index must be given by the
user as the third entry on the field first line in the namcouple.

Also, the latitudes and the longitudes of the fields are now automatically read from the grid aux-
iliary data file grids.nc and written to the output files. If the latitudes and the longitudes of the
mesh corners are present in grids.nc, they are also written to the ouput files as associated “bounds”
variable. This works whether the grids.nc is given initially by the user or written at run time by the
component models (see above). However, this does not work if the user gives the grid definition in
a binary file grids.

e Removal of pre-compiling key “key_BSend”

The pre_compiling key “key_BSend” has been removed. The default has changed: by default, the
buffered MPI_BSend is used, unless NOBSEND is specified in the namcouple after MPI1 or MPI2,
in which case the standard blocking send MPI_Send is used to send the coupling fields.

Appendix C

The coupled models realized with OASIS

Here is a list of (some of) the coupled models realized with OASIS within the past 5 years or so in Europe

and in other institutions in the world: XXX to be updated XXX

Lab Cnt \ Vrs \ Atm Oce Comp

Environment Canada | Canada | 3.0 | MEC GOM IBM Power4

IRI USA 2.4 | ECHAM4 MOM3 SGI Origin
IBM Power3

JPL(NASA) USA 24 | QTCM Trident SGI

JAMSTEC Japan 2.4 | ECHAM4 OPA 8.2 ES SX5

U. of Aus- 3.0 | Data atm. model | MOM4 SGI 03400

Tasmania tral. Compaq

BMRC Aus- 3.0 | BAM4 MOM4

tral. 2.4 | BAM3 T47L34 | ACOM?2 180X194X25
CAS-IIT India 3.0 | MM5 POM
IAP-CAS China AGCM LSM

Table C.1: List of couplings realized with OASIS within the past 5 years in institutions outside Europe . The
columns list the institution, the country, the OASIS version used, the atmospheric model, the ocean

model, and the computing platform used for the coupled model run.

73

Lab ‘ Cnt ‘ Vrs ‘ Atm Oce Comp
IPSL Fr 3.0 | LMDz 96x71x19 ORCA?2 182x149x31 | SX6
+ ORCH/INCA + LIM
2.4 | LMDz 96x71x19 ORCA?2 182x149x31 | VPP5000
2.4 | LMDz 72x45x19 ORCA4 92x76x31 VPP5000
2.4 | LMDZ 120X90X1 OPA ATL3 1/3 deg
2.4 | LMDZ 120X90X1 OPA ATL1 1 deg
Lodyc-ISAO Frlt | 2.3 | ECHAM4 T30/T42 L14 | ORCA2 182x149x31 | SX4,SX5
Météo-Fr Fr 3.0 | ARPEGE 4 ORCA2 VPP5000
2.4 | ARPEGE medias OPA med 1/8e VPP5000
2.2 | ARPEGE 3 OPA 8.1 + Gelato VPP5000
Mercator Fr 3.0 | interp. mode PAM (OPA)
CERFACS Fr 3.0 | ARPEGE 4 OPA9/NEMO VPP5000
CRAY XDl1
PC Linux
2.4 | ARPEGE 3 ORCA2-LIM VPP5000
2.2 | ARPEGE 3 OPA 8.1 VPP700
ECMWF UK | 2.2 | IFS T63/T255 E-HOPE 2deg/1deg | IBM Power 4
2.2 | IFS Cy23r4 T159L40 E-HOPE 2561.29 VPP700
2.2 | IFS Cy23r4 T95L40 E-HOPE 2561.29 VPP700
MPI Ger- | 3.0 | ECHAMS MPI-OM IBM Power4
ma- | 2.4 | ECHAMS T42/L19 C-HOPE T42+L20 NEC-SX
ny 2.4 | PUMAT42/L.19 C-HOPE 2deg GIN NEC-SX
2.4 | EMAD E-HOPE T42+L.20 CRAY C-90
2.4 | ECHAMS T42/L19 E-HOPE T42+L.20 NEC-SX
IFM-GEOMAR | D 3.0 | ECHAMS NEMO
CGAM UK | 3.0 | HadAM3 2.5x3.75L20 | ORCA2 182x149x31 | NEC SX6
2.4 | HadAM3 2.5x3.75 L20 | ORCA 182x149x31 T3E
SMHI Sw | 3.0 | ECHAM-RCA(reg.) SGI 03800
2.3 | RCA-HIRLAM (reg.) RCO-OCCAM (reg.)
INGV It 3.0 | ECHAMS MPIOM NEC SX6
KNMI NI 3.0 | ECHAMS MPIOM SGI IRIX64
DMI Dk | 3.0 | ECHAM (glob.) NEC SX6
U.Bergen Nw | 3.0 | MM5 ROMS
NERSC Nw ARPEGE MICOM

Table C.2: List of couplings realized with OASIS within the past 5 years in Europe. The columns list the institution,
the country, the OASIS version used, the atmospheric model, the ocean model, and the computing
platform used for the coupled model run.

Bibliography

(1]
(2]
(3]
[4]
[5]
[6]
[7]

[8]

[9]
[10]

[11]
[12]

[13]
[14]
[15]

[16]

http://gcmd.nasa.gov/records/LANL-SCRIP.html
http://www.gfdl.noaa.gov/” vb/mpp_io.html
http://www.unidata.ucar.edu/packages/udunits/udunits.dat

S. Valcke, A. Caubel, R. Vogelsang, and D. Declat: OASIS3 User’s Guide (oasis3_prism_2-4),
PRISM Report No 2, 5th Ed., CERFACS, Toulouse, France, 2004.

S. Valcke, A. Caubel, D. Declat and L. Terray: OASIS3 Ocean Atmosphere Sea Ice Soil User’s
Guide, Technical Report TR/ICMGC/03-69, CERFACS, Toulouse, France, 2003.

S. Valcke, L. Terray and A. Piacentini: OASIS 2.4 Ocean Atmosphere Sea Ice Soil, User’s Guide
and Reference Manual, Technical Report TR/CMGC/00-10, CERFACS, Toulouse, France, 2000.

L. Terray, S. Valcke and A. Piacentini: OASIS 2.3 Ocean Atmosphere Sea Ice Soil, User’s Guide
and Reference Manual, Technical Report TR/CMGC/99-37, CERFACS, Toulouse, France, 1999.

C. Cassou, P. Noyret, E. Sevault, O. Thual, L. Terray, D. Beaucourt, and M. Imbard: Dis-
tributed Ocean-Atmosphere Modelling and Sensitivity to the Coupling Flux Precision: the CATH-
ODe Project. Monthly Weather Review, 126, No 4: 1035-1053, 1998.

L. Terray, O. Thual, S. Belamari, M. Déqué, P. Dandin, C. Lévy, and P. Delecluse. Climatology and
interannual variability simulated by the arpege-opa model. Climate Dynamics, 11:487-505, 1995
E. Guilyardi, G. Madec, L. Terray, M. Déqué, M. Pontaud, M. Imbard, D. Stephenson, M.-A. Filib-
erti, D. Cariolle, P. Delecluse, and O. Thual. Simulation couplée océan-atmosphere de la variabilité
du climat. C.R. Acad. Sci. Paris, t. 320, série 11a:683-690, 1995.

L. Terray and O. Thual. Oasis: le couplage océan-atmosphere. La Météorologie, 10:50-61, 1995.
M. Pontaud, L. Terray, E. Guilyardi, E. Sevault, D. B. Stephenson, and O. Thual. Coupled ocean-
atmosphere modelling - computing and scientific aspects. In 2nd UNAM-CRAY supercomputing
conference, Numerical simulations in the environmental and earth sciences Mexico-city, Mexico,
1995.

L. Terray, E. Sevault, E. Guilyardi and O. Thual OASIS 2.0 Ocean Atmosphere Sea Ice Soil User’s
Guide and Reference Manual Technical Report TR/CGMC/95-46, CERFACS, 1995.

E. Sevault, P. Noyret, and L. Terray. Clim 1.2 user guide and reference manual. Technical Report
TR/CGMC/95-47, CERFACS, 1995.

P. Noyret, E. Sevault, L. Terray and O. Thual. Ocean-atmosphere coupling. Proceedings of the Fall
Cray User Group (CUG) meeting, 1994.

L. Terray, and O. Thual. Coupled ocean-atmosphere simulations. In High Performance Computing

in the Geosciences, proceedings of the Les Houches Workshop F.X. Le Dimet Ed., Kluwer Academic
Publishers B.V, 1993.

