Supplementary materials

Régis Briant^{*,a}, Christian Seigneur^a, Marie Gadrat^b, Christine Bugajny^b

^aCEREA, Joint Research Laboratory École des Ponts ParisTech / EDF R&D, Université Paris-Est, 6–8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex 2, France

^bCETE Nord-Picardie, Equipment Technical Study Center for the Nord-Picardie region in France, 42 bis rue Marais Sequedin - BP 10099, 59482 Haubourdin Cedex, France

1. General results

Table 1: Performance indicators of Polyphemus, the HV formulation with the "urban" option with Cergy-Pontoise background concentrations.

Performance indicator	Summer campaign		Winter campaign	
I enormance indicator	HV	Polyphemus	HV	Polyphemus
Measured mean value		26.0		40.5
$(\mu g m^{-3})$				
Modeled mean value	17.2	17.3	26.1	26.2
$(\mu g m^{-3})$				
Correlation	0.75	0.75	0.79	0.79
RMSE $(\mu g m^{-3})$	14.1	14.0	18.0	17.9
MNE	0.32	0.32	0.33	0.33
MNB	-0.22	-0.22	-0.31	-0.31
NME	0.37	0.37	0.37	0.36
NMB	-0.34	-0.34	-0.36	-0.36
MFE	0.38	0.38	0.41	0.40
MFB	-0.30	-0.30	-0.39	-0.39

 $^{^{*}\}mbox{Corresponding author. E-mail: briantr@cerea.enpc.fr}$

Performance indicator	Summer campaign		Winter campaign	
I enormance indicator	HV	Polyphemus	HV	Polyphemus
Measured mean value	26.0		40.5	
$(\mu g m^{-3})$				
Modeled mean value	22.5	22.6	25.6	25.7
$(\mu g m^{-3})$				
Correlation	0.74	0.74	0.78	0.79
RMSE $(\mu g m^{-3})$	11.2	11.1	17.8	17.7
MNE	0.31	0.30	0.34	0.34
MNB	0.02	0.02	-0.33	-0.33
NME	0.30	0.29	0.37	0.37
NMB	-0.13	-0.13	-0.37	-0.37
MFE	0.30	0.30	0.42	0.42
MFB	-0.05	-0.05	-0.42	-0.41

 Table 2: Performance indicators of Polyphemus, the HV formulation with the "rural" option

 with Mantes-la-Jolie background concentrations.

 Table 3: Performance indicators of Polyphemus, the HV formulation with the "urban" option

 with Mantes-la-Jolie background concentrations.

Performance indicator	Summer campaign		Winter campaign	
I enormance indicator	HV	Polyphemus	HV	Polyphemus
Measured mean value	26.0		40.5	
$(\mu \mathrm{g}\mathrm{m}^{-3})$				
Modeled mean value	16.0	16.0	22.0	22.0
$(\mu \mathrm{g}\mathrm{m}^{-3})$				
Correlation	0.75	0.75	0.79	0.79
RMSE $(\mu g m^{-3})$	14.9	14.8	21.3	21.2
MNE	0.34	0.34	0.42	0.42
MNB	-0.28	-0.28	-0.42	-0.42
NME	0.40	0.40	0.46	0.46
NMB	-0.38	-0.38	-0.46	-0.46
MFE	0.43	0.43	0.56	0.55
MFB	-0.38	-0.38	-0.55	-0.55

2. Comparison to the HV formultation

Figure 1: Comparison between the HV and Polyphemus models of simulated NO₂ hourly concentrations (μ g m⁻³). (a) : Map of the passive diffusion tube location with respect to the roads (coordinates are in meter). (b) : situations when the wind is parallel to the road ($\pm 10^{\circ}$). (c) : situations when the wind is not parallel to the road (summer campaign). The road direction is 111° (0° represent a wind coming from the north and 90° a wind coming from the east).

Figure 2: Comparison between the HV and Polyphemus models of simulated NO₂ hourly concentrations (μ g m⁻³). (a) : Map of the passive diffusion tube location with respect to the roads (coordinates are in meter). (b) : situations when the wind is parallel to the road ($\pm 10^{\circ}$). (c) : situations when the wind is not parallel to the road (summer campaign). The road direction is 16° (0° represent a wind coming from the north and 90° a wind coming from the east).

3. Sensitivity to input data

Table 4: Performance indicators of Polyphemus using the "rural" option. In the Monin-Obukhov length column stability classes are based on Monin-Obukhov length, in the GENE-MIS column the GENEMIS temporal profile was used and in the $\rm NO_2$ fraction column a 15% $\rm NO_2$ fraction was used.

Summer campaign	Monin-Obukhov length	GENEMIS	NO_2 fraction
Measured mean		26.0	
value $(\mu g m^{-3})$			
Modeled mean	26.5	21.03	24.0
value $(\mu g m^{-3})$			
Correlation	0.74	0.74	0.74
RMSE $(\mu g m^{-3})$	10.28	11.67	10.67
MNE	0.35	0.29	0.33
MNB	0.19	-0.05	0.09
NME	0.29	0.30	0.29
NMB	0.02	-0.19	-0.07
MFE	0.31	0.31	0.30
MFB	0.10	-0.12	0.02
Winter campaign	Monin-Obukhov	GENEMIS	NO_2 fraction
Winter campaign	Monin-Obukhov length	GENEMIS	NO_2 fraction
Winter campaign Measured mean	Monin-Obukhov length	GENEMIS 40.5	$\rm NO_2$ fraction
$\begin{array}{c} \mbox{Winter campaign} \\ \mbox{Measured mean} \\ \mbox{value } (\mu g m^{-3}) \end{array}$	Monin-Obukhov length	GENEMIS 40.5	NO_2 fraction
$\begin{array}{c} \mbox{Winter campaign} \\ \mbox{Measured mean} \\ \mbox{value } (\mu g m^{-3}) \\ \mbox{Modeled mean} \end{array}$	Monin-Obukhov length 31.5	GENEMIS 40.5 28.4	NO ₂ fraction 29.9
$\begin{array}{c} \mbox{Winter campaign} \\ \mbox{Measured mean} \\ \mbox{value } (\mu g m^{-3}) \\ \mbox{Modeled mean} \\ \mbox{value } (\mu g m^{-3}) \end{array}$	Monin-Obukhov length 31.5	GENEMIS 40.5 28.4	NO ₂ fraction 29.9
$\begin{tabular}{ c c c c } \hline Winter campaign & & \\ \hline Measured & mean \\ value (\mu g m^{-3}) & \\ \hline Modeled & mean \\ value (\mu g m^{-3}) & \\ \hline Correlation & \\ \hline \end{tabular}$	Monin-Obukhov length 31.5 0.76	GENEMIS 40.5 28.4 0.79	NO ₂ fraction 29.9 0.79
$\begin{tabular}{ c c c c } \hline Winter campaign & & \\ \hline Measured & mean \\ value (\mu g m^{-3}) & \\ \hline Modeled & mean \\ value (\mu g m^{-3}) & \\ \hline Correlation & \\ \hline RMSE (\mu g m^{-3}) & \\ \hline \end{tabular}$	Monin-Obukhov length 31.5 0.76 13.3	GENEMIS 40.5 28.4 0.79 15.79	$\begin{array}{c} \rm NO_2 \ fraction \\ \hline 29.9 \\ \hline 0.79 \\ 14.4 \\ \end{array}$
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Monin-Obukhov length 31.5 0.76 13.3 0.22	GENEMIS 40.5 28.4 0.79 15.79 0.28	$\begin{array}{c} \rm NO_2 \ fraction \\ \hline 29.9 \\ \hline 0.79 \\ 14.4 \\ 0.25 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Monin-Obukhov length 31.5 0.76 13.3 0.22 -0.18	GENEMIS 40.5 28.4 0.79 15.79 0.28 -0.25	$\begin{array}{c} \rm NO_2 \ fraction \\ \hline 29.9 \\ \hline 0.79 \\ 14.4 \\ \hline 0.25 \\ -0.22 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Monin-Obukhov length 31.5 0.76 13.3 0.22 -0.18 0.25	GENEMIS 40.5 28.4 0.79 15.79 0.28 -0.25 0.31	$\begin{array}{c} \mathrm{NO}_2 \ \mathrm{fraction} \\ \\ 29.9 \\ \\ 0.79 \\ \\ 14.4 \\ \\ 0.25 \\ \\ -0.22 \\ \\ 0.28 \end{array}$
$\begin{tabular}{ c c c c } \hline Winter campaign & \\ \hline Measured mean \\ value (\mu g m^{-3}) & \\ \hline Modeled mean \\ value (\mu g m^{-3}) & \\ \hline Correlation & \\ \hline RMSE (\mu g m^{-3}) & \\ \hline MNE & \\ \hline MNB & \\ \hline NME & \\ \hline NMB & \\ \hline NMB & \\ \hline NMB & \\ \hline \end{array}$	Monin-Obukhov length 31.5 0.76 13.3 0.22 -0.18 0.25 -0.22	GENEMIS 40.5 28.4 0.79 15.79 0.28 -0.25 0.31 -0.30	$\begin{array}{c} \mathrm{NO}_2 \ \mathrm{fraction} \\ \\ 29.9 \\ \\ 0.79 \\ \\ 14.4 \\ \\ 0.25 \\ \\ -0.22 \\ \\ 0.28 \\ \\ -0.26 \end{array}$
$\begin{tabular}{ c c c c } \hline Winter campaign & \\ \hline Measured mean value (\mu g m^{-3}) & \\ \hline Modeled mean value (\mu g m^{-3}) & \\ \hline Correlation & \\ \hline RMSE (\mu g m^{-3}) & \\ \hline MNE & \\ \hline MNB & \\ \hline NME & \\ \hline NMB & \\ \hline MFE & \\ \hline \end{tabular}$	Monin-Obukhov length 31.5 0.76 13.3 0.22 -0.18 0.25 -0.22 0.25	GENEMIS 40.5 28.4 0.79 15.79 0.28 -0.25 0.31 -0.30 0.33	$\begin{array}{c} \mathrm{NO}_2 \ \mathrm{fraction} \\ \\ 29.9 \\ \\ 0.79 \\ \\ 14.4 \\ \\ 0.25 \\ \\ -0.22 \\ \\ 0.28 \\ \\ -0.26 \\ \\ 0.29 \end{array}$