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Abstract

Addressing a variety of questions within Earth science disciplines entails the inference
of the spatio-temporal distribution of parameters of interest based on observations of
related quantities. Such estimation problems often represent inverse problems that are
formulated as linear optimization problems. Computational limitations arise when the5

number of observations and/or the size of the discretized state space become large,
especially if the inverse problem is formulated in a probabilistic framework and there-
fore aims to assess the uncertainty associated with the estimates. This work proposes
two approaches to lower the computational costs and memory requirements for large
linear space-time inverse problems, taking the Bayesian approach for estimating car-10

bon dioxide (CO2) emissions and uptake (a.k.a. fluxes) as a prototypical example. The
first algorithm can be used to efficiently multiply two matrices, as long as one can be ex-
pressed as a Kronecker product of two smaller matrices, a condition that is typical when
multiplying a sensitivity matrix by a covariance matrix in the solution of inverse prob-
lems. The second algorithm can be used to compute a posteriori uncertainties directly15

at aggregated spatio-temporal scales, which are the scales of most interest in many
inverse problems. Both algorithms have significantly lower memory requirements and
computational complexity relative to direct computation of the same quantities (O(n2.5)
vs. O(n3)). For an examined benchmark problem, the two algorithms yielded a three
and six order of magnitude increase in computational efficiency, respectively, relative20

to direct computation of the same quantities. Sample computer code is provided for
assessing the computational and memory efficiency of the proposed algorithms for
matrices of different dimensions.

1 Introduction

Addressing a variety of questions within Earth science disciplines including envi-25

ronmental science, hydrology, geology, geophysics, and biogeochemistry entails the
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inference of the spatio-temporal distribution of parameters of interest based on obser-
vations of related quantities. Such estimation problems often represent inverse prob-
lems, with examples including the estimation of hydraulic conductivity or other aspects
of subsurface structure using hydraulic head, tracer, or remote sensing measurements
(e.g. Aster et al., 2012; Hyndman et al., 2007); the identification of environmental con-5

taminant sources using downstream concentrations (e.g. Atmadja and Bagtzoglou,
2001; Liu and Zhai, 2007; Michalak and Kitanidis, 2003; Zhang and Chen, 2007), the
characterization of atmospheric and oceanic processes (Bennett, 2002), and the quan-
tification of budgets of atmospheric trace gases using atmospheric observations (e.g.
Ciais et al., 2011; Enting, 2002). Such inverse problems are often formulated as lin-10

ear optimization problems. Even when the physics and/or chemistry relating the un-
observed field to the measurements yield a nonlinear problem, the inverse problem
is often solved through iterative application of a linear approximation (e.g. Kitanidis,
1995). Computational limitations arise when the number of observations “n” and/or the
size of the discretized state space “m” become large, especially if the inverse problem15

is formulated in a probabilistic framework and therefore aims to assess the uncertainty
associated with the estimates.

This work proposes approaches for addressing these computational limitations. We
take the Bayesian approach for estimating carbon dioxide (CO2) emissions and uptake
(a.k.a. fluxes) as a prototypical example of a spatio-temporal inverse problem, and20

use it to illustrate the proposed tools. We use the study of Gourdji et al. (2012) as
a computational benchmark.

1.1 A prototypical spatiotemporal inverse problem

Gourdji et al. (2012) used atmospheric concentration measurements of CO2 to con-
strain CO2 fluxes in North America at a 1◦ longitude by 1◦ latitude spatial resolution25

(ms = 2635 land regions for 50◦ W to 170◦ W and 10◦ N to 70◦ N) and a 3-hourly tempo-
ral frequency over the period of 24 December 2003 to 31 December 2004 (mτ = 2992
periods over 374 days). The implemented setup resulted in n = 8503 observations and
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m =ms ×mτ = 7883920 parameters to be estimated. This high spatiotemporal resolu-
tion was primarily motivated by the desire to avoid “aggregation errors,” i.e. biases in
the estimated fluxes caused by prescribing spatial and temporal patterns that cannot
be adjusted through the estimation. The resolutions that can be resolved by observa-
tions are often coarser, however, as are the scales that are of most scientific interest. In5

the case of Gourdji et al. (2012), the estimates were therefore aggregated a posteriori
to monthly and annual temporal resolution for interpretation. The a priori spatiotem-
poral error covariance was assumed separable, with exponential decay in correlation
in both space and time. As a result, the prior covariance matrix could be expressed
as a Kronecker product of matrices describing the spatial and temporal covariances,10

respectively.

1.2 Bayesian framework for linear inverse problems

Stochastic linear inverse problems are often formulated in a Bayesian framework by
requiring the minimization of an objective function that can be written as:

Ls =
1
2

(z−Hs)TR−1(z−Hs)+
1
2

(s−sp)TQ−1(s−sp) (1)15

where z(n×1) is a known vector of measurements, H(n×m) is a matrix that describes the
relationship between measurements and the unknown field s(m×1), R(n×n) is the covari-
ance matrix of the model-data mismatch errors, sp(m×1) is the prior estimate of s, and
Q(m×m) is a (square and symmetric) prior error covariance matrix, describing deviations
between the true field s and the prior sp. The first term in Eq. (1) penalizes differences20

between available observations and those that would result from an estimated under-
lying field, while the second is a regularization term that penalizes departures from the
prior, or more generally any type of desired structure.

The solution to the Bayesian linear inverse problem, defined as the estimate of s that
minimizes the objective function in Eq. (1), can be expressed as:25

ŝ = sp + (HQ)T(HQHT +R)−1(z−Hsp) (2)
3328
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and the a posteriori uncertainty covariance of the estimated ŝ can be written as:

Vŝ = Q− (HQ)T(HQHT +R)−1HQ (3)

For small n and m, implementing Eqs. (2) and (3) is straightforward. As inverse prob-
lems are solved using increasingly more observations and are used to estimate pa-
rameters at increasingly high spatiotemporal resolutions, as in the prototypical Gourdji5

et al. (2012) example, the number of floating point operations required to implement
these equations becomes prohibitive.

A closer look at Eqs. (2) and (3) shows that the first computational bottleneck occurs
due to the cost of multiplying the matrices H and Q. The second is the cost of computing
and storing a dense Vŝ with dimensions m×m. Paradoxically, as noted previously, the10

scales of ultimate interest are often coarser than the native resolution of Vŝ, and these
covariances are frequently aggregated a posteriori in space and/or time by summing
or averaging the corresponding entries in Vŝ.

In this work, we propose a computational approach for evaluating HQ, and by exten-
sion HQHT for very large inverse problems, for the case where the covariance matrix15

Q can be expressed as a Kronecker product of two smaller matrices. This is typical
of spatiotemporal inverse problems where the space-time covariance is assumed sep-
arable, or simpler problems that only consider covariance in space or in time, rather
than both. We further present an approach for directly calculating the a posteriori error
covariance at aggregated scales, without the intermediary step of first computing the20

full Vŝ. We use the Gourdji et al. (2012) problem as a computational benchmark for
evaluating the performance of the proposed approaches relative to a direct implemen-
tation of Eqs. (2) and (3). Code demonstrating the implementation of both methods for
a toy example is available as Supplement.
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2 Efficient method for the multiplication of any matrix with a matrix expressed
as a Kronecker product

One key step in the solution of a linear inverse problem is the matrix multiplication
between the forward operator H and the prior error covariance matrix Q. If Q can be
factored as a Kronecker product, then the matrices formed by their multiplication can5

be computed in blocks.

2.1 Algorithm

Any matrix B(pr ×qt) that can be expressed as a Kronecker product can be defined
based on matrices D(p×q) and E(r × t) and denoted as D⊗E, where:

D(p×q)⊗E(r × t) =

d(1,1)E · · · d(1,q)E
...

. . .
...

d(p,1)E · · · d(p,q)E

 (4)10

For a square covariance matrix Q, both D and E are also square. For the prototypical
case examined here, Q is expressed as the Kronecker product of the temporal covari-
ance and the spatial covariance, both of which decay exponentially with separation
distance or lag:

Q = σ2
s

temporal
covariance (D)︷ ︸︸ ︷[

exp
(
−

Xτ

lτ

)]
⊗

spatial
covariance (E)︷ ︸︸ ︷[

exp
(
−

Xs

ls

)]
(5)15

where σ2
s is the variance in space and time, Xs and Xτ represent the separation dis-

tances/lags between estimation locations in space and time, respectively, and ls and
lτ are the spatial and temporal correlation range parameters, respectively. In this case,
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p = q =mτ and r = t =ms. This defines a block matrix Q with m2
τ blocks, each defined

as a square matrix d(i ,j )E with m2
s elements. As the Kronecker product is not commuta-

tive, the arrangement of the temporal and spatial covariance in Eq. (5) determines the
design of Q.

Returning to the more generic case, the multiplication of any matrix A(n×pr) by B(pr×5

qt) proceed as follows:

1. Divide A into p column blocks each with dimension (n× r)

A(n×pr) =

 a1︸︷︷︸
(n×r)

a2︸︷︷︸
(n×r)

· · · ap︸︷︷︸
(n×r)

 (6)

2. Multiply each block of A by the elements of the first column of D and add these

blocks (
p∑
i=1

aid(i ,1)). If an element of D is zero then skip the multiplication; if it is10

one then add the column block of A without performing scalar multiplication.

3. Multiply the resulting n× r matrix by E(r × t) to obtain the first n× t column block
of AB.

4. Repeat steps 2 and 3 for the remaining q−1 columns of D and the corresponding
blocks of AB. Overall,15

AB(n×qt) =


( p∑

i=1

aid(i ,1)

)
E︸ ︷︷ ︸

(n×t)

( p∑
i=1

aid(i ,2)

)
E︸ ︷︷ ︸

(n×t)

· · ·
( p∑

i=1

aid(i ,q)

)
E︸ ︷︷ ︸

(n×t)

 (7)
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This algorithm can also be used for the multiplication of matrices where the first ma-
trix is a Kronecker product of two smaller matrices, through the cyclical permutation
property of transposes.

For H(n×m)=(n×mτms) and Q(m×m)=(mτms×mτms) Eqs. (6) and (7) become:

H(n×mτms) =

 h1︸︷︷︸
(n×ms)

h2︸︷︷︸
(n×ms)

· · · hmτ︸︷︷︸
(n×ms)

 (8)5

HQ(n×mτms) =


( mτ∑

i=1

hid(i ,1)

)
E︸ ︷︷ ︸

(n×ms)

( mτ∑
i=1

hid(i ,2)

)
E︸ ︷︷ ︸

(n×ms)

· · ·
( mτ∑

i=1

hid(i ,mτ)

)
E︸ ︷︷ ︸

(n×ms)

 (9)

The multiplication of H and Q where Q is a block diagonal (e.g. there is correlation in
space but not in time) is a special case of the algorithm where D is an identity matrix.

2.2 Floating point operations10

The number of floating point operations required for a direct multiplication of a matrix
A by a matrix B can be expressed as a function of the dimensions of these matrices
(for details see; Golub and Van Loan, 1996):

ABdirect = nqt(2pr −1) (10)
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Similarly, the cost of the “indirect” multiplication algorithm presented in the last section
is:

ABindirect =

Scalar
multiplication

(step 2)︷ ︸︸ ︷
n{prq} +

Addition of
column blocks

(step 2)︷ ︸︸ ︷
q {(p−1)nr} +

Matrix
multiplication

(step 3)︷ ︸︸ ︷
q {(2r −1)nt} (11)

Equation (11) is based on the fact that steps 2 and 3 are each repeated q times. The
relative computational performance of the indirect method can therefore be expressed5

as:

ABindirect

ABdirect
=

2pr +2rt− r − t
t(2pr −1)

(12)

For H and Q this simplifies to:

HQindirect

HQdirect
=

2(mτ +ms −1)

2mτms −1
(13)

Note that the number of observations “n” does not affect the relative performance of10

the algorithm. Asymptotically, equation 13 approaches zero with increasing mτ and ms.
For the Gourdji et al. (2012) problem, this ratio is 7.14×10−4, a savings of over 99.9 %
in the computational cost relative to the direct approach.

For the more generic case of multiplying A and B, consider the special simplifying
case where n =m and p = q = r = t =

√
n; the floating point operations required by the15

direct and indirect methods become:

ABdirect = 2n3 −n2 (14)

ABindirect = 4n2√n−2n2 (15)
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This results in an asymptotic complexity of O(n3) for the direct method, and O(n2.5)
for the indirect method. The computational cost of the indirect approach presented is
thus lower than that for Strassen’s algorithm (Strassen, 1969; O(n2.807)), but greater
than that for the Coppersmith–Winograd algorithm (Coppersmith and Winograd, 1990;
O(n2.3727)). The Coppersmith–Winograd algorithm, however, is only useful for ex-5

tremely large matrices that cannot be handled by present-day computers (Eve, 2009).
The direct method is more economical only for n < 3, and the relative cost of the indi-
rect method decreases exponentially thereafter. The overall computational cost could
be reduced further if the matrix multiplications in Step 3 of the algorithm were com-
puted through the Strassen or Coppersmith and Winograd algorithm. For a special10

case where D is composed of zeros and ones, the computational cost can also be
further reduced by avoiding scalar multiplications, as listed in Step 2 of the algorithm.

Two other methods have been proposed for reducing the cost of matrix multiplica-
tion in inverse problems in special circumstances. For the special case of a regular
estimation grid and Toeplitz covariances, the Fast Fourier (FF) method gives an exact15

answer and has a computational complexity of O(n2 logn) (for details; see Nowak et al.,
2003), which is lower than the method proposed here, but has higher memory require-
ments. In addition, the algorithm presented here can significantly outperform the FF
method for sparse Toeplitz covariances, as it can take advantage of the sparseness
and structure of the covariance matrices. For an irregular estimation grid, an approxi-20

mate method based on a hierarchical framework has been proposed by Saibaba and
Kitanidis (2012). Like the FF method, this method also has a computational complexity
of O(n2 logn), but it can only be used for very specific covariance functions and struc-
tured matrices (for details; see Saibaba and Kitanidis, 2012). In addition, errors due
to the approximations used in this approach compound in the case of large inverse25

problems.
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2.3 Other computational benefits of the indirect approach

Beyond the economies in floating point operations, the indirect method also dramat-
ically decreases the random access memory requirements for matrix multiplication,
because the proposed approach eliminates the need to create or store the full matrix
B (or Q). Thus, again taking the special case of n =m and p = q = r = t =

√
n as an5

example, the memory requirement for storing D and E is O(n2), whereas it is O(n4) if B
is explicitly stored in memory.

In addition, the indirect approach is fault tolerant and amenable to distributed parallel
programming or “out of core” matrix multiplication, as each column block of AB (or HQ)
can be obtained separately without any communication between processors populating10

the individual blocks.
In the case of the solution of an inverse problem, the multiplication of HQHTcan also

be completed block by block:

HQHT =
mτ∑
j=1

(( mτ∑
i=1

hid(i ,j )

)
E

)
hT
j (16)

where hi and hj represents column blocks of the H matrix as defined earlier. The15

computational efficiency of the matrix multiplication of H, Q and HT can be further im-
proved if the symmetry of HQHT is taken into account (see details on quadratic forms;
Harville, 2008). However there are no “Basic Linear Algebra Subroutines” (Blackford
et al., 2002; Dongarra et al., 1988; Lawson et al., 1979) that take this property into ac-
count, and additional work would be required to develop these methods for application20

in inverse problems and statistics.

3335

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Computation of aggregated a posteriori covariance in large linear space-time
inverse problems

The a posteriori covariance matrix (Vŝ; Eq. 3) is typically dense, and calculating Vŝ

is a computational bottleneck for large inverse problems. For example, computing Vŝ

explicitly for the Gourdji et al. (2012) problem would require approximately 1.06×1018
5

floating point operations, and over 56 terabytes of RAM. We propose an algorithm for
computing the a posteriori covariance directly at aggregated scales, which are typically
the scales of most interest as described in Sect. 1, without explicitly calculating Vŝ. We
use the estimation of a posteriori uncertainties at the native spatial scales (1◦ ×1◦ grid-
scale in the prototypical example) but for estimates averaged across larger temporal10

scales as an example.

3.1 Algorithm

The algorithm is presented for a Vŝ design consistent with Eqs. (4) and (5), i.e. where
the diagonal blocks describe the spatial covariance, and the off-diagonal blocks de-
scribe the decay of this covariance with time. The particular design framework of Vŝ15

used in this study does not hinder the application of the proposed algorithm for obtain-
ing a posteriori covariances and cross-covariances in inverse problems where Vŝ has
a different design, or where the aggregation is to be conducted over a different desired
dimension.

The calculation of the a posteriori covariance at the native spatial resolution aggre-20

gated temporally over a desired time period proceeds as follows:

1. Sum all blocks of the Q matrix corresponding to the k = tu − tl +1 time periods
between periods tl and tu over which the a posteriori uncertainties are to be ag-
gregated, where 1 ≤ tl <mτ, tl ≤ tu <mτ. For Q expressed as a Kronecker prod-
uct as given in Sect. 2.1, this is the sum of all entries between tl and tu in D,25
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multiplied by E (spatial covariance):

Qsum(ms×mτ) =

 tu∑
j=tl

tu∑
i=tl

d(i ,j )

E

 (17)

where Qsum represents the sum of all Q blocks between tl and tu.

2. Sum all column blocks of the HQ (see, Eq. 9):

(HQ)sum =

 tu∑
j=tl

( mτ∑
i=1

hid(i ,j )

)
E


(n×ms)

(18)5

where (HQ)sum represents the sum of all HQ column blocks as shown in Eq. (9)
between tl and tu.

3. Compute the aggregated grid-scale a posteriori covariance Vŝ for the estimates
averaged over the desired time-periods:

Vŝ =

(
Qsum − (HQ)T

sum(HQHT +R)−1(HQ)sum

)
k2

(19)10

where Vŝ is the covariance of ŝ temporally averaged for time periods tl to tu.

3.2 Floating point operations

The number of floating point operations required for the direct calculation of Vŝ (Eq. 3)
and its aggregation over k time periods is compared to the calculation of the aggre-
gated Vŝ using the algorithm described above. The floating point operations required15

for multiplying H by Q and HQ by HT, for adding R to HQHT, for taking the inverse of
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(HQHT +R), and for dividing the aggregated covariance by k2 are excluded in the float-
ing point operation count, because the cost of these operations is the same for both
approaches. Of course, computational savings can be achieved for both by following
the algorithm outlined in Sect. 2 for the matrix multiplications.

The number of floating point operations required for obtaining grid scale a pos-5

teriori covariance from the direct method can be divided into four sequential opera-
tions: (1) matrix multiplication of (HQ)T and (HQHT +R)−1, (2) matrix multiplication of
(HQ)T(HQHT+R)−1 and HQ, (3) subtraction of: (HQ)T(HQHT+R)−1HQ from Q, and (4)
summation of all k2, m2

s (spatial covariance) blocks of Vŝ. The floating point operations
for these four calculations are:10

V ŝ direct = [nmτms (2n−1)]+
[
m2

τm
2
s (2n−1)

]
+
[
m2

τm
2
s

]
+
[
m2

s

(
k2 −1

)]
(20)

For the algorithm proposed in Sect. 3.1, five operations are required to obtain aggre-
gated a posteriori covariance for the desired time-period. These are: (1) summation of
k, m2

s (spatial covariance) blocks of Q, (2) summation of k, n×ms blocks of HQ, (3) mul-
tiplication of (HQ)T

sum and (HQHT +R)−1 , (4) multiplication of (HQ)T
sum(HQHT +R)−1

15

and (HQ)sum, and (5) subtraction of (HQ)T
sum(HQHT +R)−1(HQ)sum from Qsum. The last

three of these are all part of Step 3 of the algorithm. The floating point operations for
these five calculations are:

V ŝ indirect =

compute
Qsum
(step 1)︷ ︸︸ ︷

k2 −1+m2
s +

compute
(HQ)sum
(step 2)︷ ︸︸ ︷

[nms(k −1)]+

Compute

Vŝ indirect
(step 3)︷ ︸︸ ︷

[nms(2n−1)]+
[
m2

s (2n−1)
]
+
[
m2

s

]
(21)

Asymptotically, V̄ ŝ indirect
/
V̄ ŝ direct

approaches zero with increasing n, mτ and ms. For the20

Gourdji et al. (2012) problem, this ratio is 5.34×10−7 when evaluating the a posteriori
3338
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covariance aggregated over the full year (k =mτ), a savings of over 99.9999 % of the
computational cost relative to the direct approach.

For the special simplifying case where n =m (i.e. n =mτms) and mτ =ms, the ratio
of floating point operations required by the direct and the indirect methods becomes:

V̄ ŝ indirect

V̄ ŝ direct

=
2n2√n+2n2 +n

√
n(k −2)+n+k2 −1

4n3 −n2 +n(k2 −1)
(22)5

This results in an asymptotic complexity of O(n3) for the direct method, and O(n2.5) for
the indirect method. The reduced memory requirements are arguably even more im-
portant, however, as the proposed algorithm makes it possible to compute a posteriori
covariances at any temporal resolution without explicitly creating Vŝ.

4 Conclusions10

We propose two algorithms to lower the computational cost and memory requirements
for large linear space-time inverse problems. The proposed matrix multiplication algo-
rithm can be implemented with any matrices, as long as one of them can be expressed
as a Kronecker product of smaller matrices, making it broadly applicable in other areas
of statistics and signal processing, among others (Van Loan, 2000). The presented15

a posteriori covariance computation algorithm can provide aggregated uncertainty co-
variances even for extremely large space-time inverse problems with dramatically de-
creased computational and memory requirements.

The mounting availability of massive volumes of data (e.g. satellite observations) will
further increase the computational cost associated with the solution of inverse prob-20

lems in the Earth sciences. Beyond the approaches presented here, more work needs
to be done to increase the efficiency of other parts of the inverse problem, including
the matrix inversion operation required in the solution of the large systems of linear
equations associated with inverse problems.
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Appendix A

Description of the submitted code

Two Matlab code files demonstrating the application of the methods proposed in
this manuscript are included as supplementary material. The Matlab script file
“HQ HQHt.m” allows users to experiment with different sizes of random covariance5

matrices in a Kronecker product form and computes HQ and HQHT using the direct
method as well as the method presented in Sect. 2.1. The second Matlab script file
“Uncertainty Computations.m” allows users to experiment with random matrices for
computing a posteriori covariances aggregated either over all time-periods or for spec-
ified time-periods. A detailed description of the codes is also given at the beginning of10

the script files.

Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/5/3325/2012/
gmdd-5-3325-2012-supplement.zip.
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