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Abstract

It is the purpose of this paper to propose a standard test case suite for two-dimensional
transport schemes on the sphere intended to be used for model development and fa-
cilitating scheme intercomparison. The test cases are designed to assess important
aspects of accuracy in geophysical fluid dynamics such as numerical order of con-5

vergence, “minimal” resolution, the ability of the transport scheme to preserve fila-
ments, transport “rough” distributions, and to preserve pre-existing functional relations
between species/tracers under challenging flow conditions.

The experiments are designed to be easy to set up. They are specified in terms of
two analytical wind fields (one non-divergent and one divergent) and four analytical ini-10

tial conditions (varying from smooth to discontinuous). Both conventional error norms
as well as novel mixing and filament preservation diagnostics are used that are easy
to implement. The experiments pose different challenges for the range of transport
approaches from Lagrangian to Eulerian. The mixing and filament preservation diag-
nostics do not require an analytical/reference solution which is in contrast to standard15

error norms where a “true” solution is needed. Results using the CSLAM (Conser-
vative Semi-Lagrangian Multi-tracer) scheme on the cubed-sphere are presented for
reference and illustrative purposes.

1 Introduction

A basic building block in any fluid dynamics solver is the transport operator that approxi-20

mates the evolution of the bulk motion of a scalar. Despite intense research in transport
schemes intended for global modeling on the sphere, only test 1 of the widely used test
case suite by (Williamson et al., 1992) seems to be the standard test whereas other
(newer) test cases are, in general, only optionally used. Test 1 in (Williamson et al.,
1992) is referred to as the solid-body advection test case and the exact solution is sim-25

ply the translation of the initial condition so that the center of the distribution follows a
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great-circle. The flow field is non-divergent and does not challenge the transport oper-
ator with respect to deformation or divergence. In the last decade other non-divergent
global test cases have been proposed such as static (Nair and Machenhauer, 2002)
and moving vortices (Nair and Jablonowski, 2008) test cases that include deformation.
Also for these tests the analytical solution is known at all times. Scheme developers5

do, in general, not publish results for all test cases and, perhaps more importantly, they
often choose different parameter settings making it more difficult to compare results
for different schemes. A purpose of this paper is to provide specific guidelines for test
case setup in terms of parameters, resolution, time-step, and diagnostics.

Perhaps more challenging analytical wind fields were recently proposed by (Nair and10

Lauritzen, 2010). The Lagrangian fluid parcels follow complex trajectories (not great-
circles or small circles) making it harder to compute the analytical solution throughout
the simulation. Following (LeVeque, 1996) the flow has a “time-reversing” component
so that after one period the exact solution equals the initial condition. Half way through
the simulation, however, the initial distributions are deformed into thin filaments and an15

“overlaid” translational flow transports the filaments as they deform. This problem is
very challenging. A divergent wind field is proposed in (Nair and Lauritzen, 2010) as
well which is in contrast to most idealized wind fields in the literature. The combination
of both divergent and deformational flow constitutes a more realistic atmospheric/ocean
transport than, for example, solid-body advection flow.20

The idealized transport experiments listed above are all based on a single tracer
and accuracy is quantified in terms of conventional errors norms, i.e. quantifications
of the differences between the analytical (exact) and numerically computed solutions.
In some geophysical fluid dynamics problems, such as the transport of long-lived
species in the stratosphere and aerosol-cloud interactions (Ovtchinnikov and Easter,25

2009), it is not only important that individual species/tracers are transported accurately
but also the maintenance of pre-existing functional relations between species/tracers
is important. Such models also cannot accept non-physical transport or redistribu-
tion of tracer that is not accompanied by resolved motion of air masses. Following
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Lagrangian fluid parcels interrelations between tracers are conserved, however, any
non-Lagrangian scheme will almost certainly perturb such relations. Nevertheless,
Lagrangian schemes in realistic divergent flows must eventually combine parcels or
create new ones, and that process will not likely preserve the relationships. Numerical
errors that perturb pre-existing functional relations can resemble “real” mixing similar5

to what is observed in nature when mixing occurs (hereafter referred to as “real mix-
ing”) or the truncation errors can introduce unmixing (that is, spurious mixing) (Thuburn
and Mclntyre, 1997). A quantification and classification of mixing between interrelated
tracers was recently proposed in (Lauritzen and Thuburn, 2011). For a more exten-
sive overview of test cases for global models and desirable properties for transport10

schemes intended for atmospheric modeling see, for example, the recent book chapter
by (Lauritzen et al., 2011).

The purpose of this paper is to propose a minimal and challenging test case suite
with specific guidelines on the implementation and diagnostics, thereby facilitating in-
tercomparison of schemes and establishing a benchmark data base for future devel-15

opers. In the derivation of the test suite we sought to minimize the workload on trans-
port scheme developers while evaluating their schemes in terms of a wide range of
quantitative measures of accuracy considered important for geophysical fluid dynam-
ics. Therefore we assume that modelers have already tested their schemes in simpler
settings such as with solid-body and static/moving vortices test cases and we do not20

repeat those tests here.
Almost any test case suite could be extended to include more tests that could provide

more insights into specific aspects of accuracy particularly useful for some classes of
schemes and applications. For example, (Ullrich et al., 2012) found it insightful (for eval-
uating higher-order approximations to Lagrangian cell sides) to transport a constant us-25

ing the initial condition wind wield for the shallow water test case 3 of (Williamson et al.,
1992). Similarly one could use the actual observed winds in test case 7 in (Williamson
et al., 1992) to generate more complex structures in the tracer field. To produce fila-
ments that eventually become sub-grid-scale in a context where the analytical solution
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is known, one may use the moving vortices test case (Nair and Jablonowski, 2008) and
run it out further than the 12 days suggested in the test case description (Pudykiewicz,
2011). The test case suite presented in this paper is not meant to be exhaustive and
developers usually have preferred idealized tests specific for their application. It is the
intent of this paper to present a minimal test bed based on just two analytic wind fields5

and four initial conditions that address a wide range of accuracy aspects, challenge
both Lagrangian and Eulerian schemes with realistic conditions typical of 3-D flows,
and make it straight forward to compare results from different schemes since we pro-
vide detailed instructions on test case setup and diagnostics. In doing so we believe
this test case suite provides new insights into accuracy beyond the much simpler and10

most widely used standard solid-body advection test case and associated standard
error norms.

The test case proposal is organized as follows. In Sect. 2 the transport equation(s)
is introduced followed by formulas for the analytical initial conditions and wind fields.
The section is concluded with discretization details such as “definition” of resolution15

and maximum CFL (Courant-Friedrichs-Lewy) numbers. The actual test case setup is
given in Sect. 3 and it is divided into six categories designed to assess numerical con-
vergence rates, “minimal” resolution, filament preservation, transport of discontinuous
distributions, maintenance of preexisting non-linear functional relations, and transport
under divergent flow conditions. Information important for discussing computational20

efficiency is proposed in Sect. 4. The paper in concluded with a summary of the test
cases.
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2 General problem formulation

2.1 Transport equation(s)

Consider a transport scheme that approximates the solution to the continuity equation
for a passive (does not feed back on the flow) and inert (no sources or sinks) tracer,

∂(ρφ)

∂t
+∇· (ρφV )=0, (1)5

where ρ is the fluid density, V is the two-dimensional flow velocity vector, and φ is the
tracer mixing ratio per unit mass. Note that the discretized scheme is not necessarily
based on the continuity equation written in flux-form as in Eq. (1) but could also be
based on the advective form

Dφ
Dt

=0, (2)10

or cell-integrated Lagrangian form

D
Dt

∫
A(t)
ρφdA=0, (3)

where A(t) is a Lagrangian area and D/Dt is the total or material derivative. If tracer
density ρφ (flux-form Eq. 1 or cell-integrated Lagrangian Eq. 3) and not mixing ratio
φ (advective form Eq. 2) is the prognostic variable, one needs to “extract” the mixing15

ratio φ from ρφ, which obviously requires the solution to the continuity equation for
fluid density ρ (see, e.g., Nair and Lauritzen, 2010 for details). In this test case suite
the mixing ratio φ is used for all diagnostics/analysis and not tracer density ρφ.

Define the discrete transport operator T that advances the numerical solution for φ
in time20

φn+1
k =T (φnj ), j ∈H, (4)
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where n is the time-level index, k is the index for the grid cell/point, and H is the set
of indices defining the “halo” or computational stencil required by T . To compute the
numerical solutionφn+1

k an initial condition, a prescribed velocity field and (if applicable)
the solution to the continuity equation for fluid density ρ is required.

2.2 Initial conditions5

For fluid density (if needed) the initial condition is ρ(t = 0)= 1 for all test cases. Four
initial conditions for mixing ratio φ are used and defined in sub-sections below. We use
one infinitely smooth (C∞) initial condition, one quasi-smooth, one discontinuous, and
one non-linearly correlated with the quasi-smooth initial condition. It may be argued
that the discrete initial conditions should be as consistent as possible with the numer-10

ical method. For example, a finite-volume method is usually based on cell-averaged
prognostic variables and the initial condition in cell k, φk , should be obtained by in-
tegrating the continuous initial condition φ over the k-th control volume. Similarly for
methods that preserve and transport internal moments of the tracer distribution (e.g.,
Prather, 1986) should initialize these moments by integrating over the continuous start-15

ing distribution. Standard practice, however, is to to use the value of the continuous
initial condition evaluated at the centroid of the control volume as representative for
the cell averaged value and higher-order moments (if applicable) are zero. It has been
shown for finite-volume schemes that standard error norms may vary significantly when
using point or cell-averaged values for initial conditions and for computing error norms20

(e.g., Lauritzen et al., 2010; Zerroukat et al., 2002). However, the conclusions drawn
from the results are independent of the choice of exact solution (cell average versus
grid-point value) as long as the schemes are compared with the same choice for exact
solution in a consistent manner. Therefore the initial condition and exact solution are
based on grid-point values at the centroid of the grid cell for finite-volume methods and25

at quadrature/finite-difference points for basis-function/grid-point methods.
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All four initial conditions for φ are based on two distributions centered about (λi ,θi ),
i =1,2:

(λ1,θ1)= (5π/6,0), (5)

(λ2,θ2)= (7π/6,0), (6)

where λ is longitude and θ is latitude in radians. The distributions are symmetrically5

placed in the flow field to assess the symmetry of the numerically computed solution.

2.2.1 Gaussian hills

Smooth Gaussian surfaces can be defined as follows:

hi (λ,θ)=hmaxexp{−b[(X −Xi )2+ (Y −Yi )2+ (Z−Zi )2]}, (7)

where the height1 and width are determined by hmax = 0.95 and b= 5, respectively10

(Levy et al., 2007). The absolute Cartesian coordinates (X,Y,Z) and spherical (λ,θ)
coordinates are related through

(X,Y,Z)= (Rcosθcosλ,Rcosθsinλ,Rsinθ), (8)

where radius R is the radius of the sphere. The coordinates for the center of the Gaus-
sian distribution (Xi ,Yi ,Zi ) is computed by inserting (λi ,θi ) into Eq. (8) and evaluating15

the right-hand side.
The Gaussian hills distribution is defined as the sum of the two Gaussian hills h1 and

h2 (Eq. 7),

φ=φ(gh)(λ,θ)=h1(λ,θ)+h2(λ,θ), (9)

and is graphically shown on Fig. 1a. Note that φ(gh) is infinitely smooth (C∞).20

1Note that (Nair and Lauritzen, 2010) used a hmax value of one which is different from the
value used here.
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2.2.2 Cosine bells

Similarly two symmetrically located cosine bells are defined as follows:

hi (λ,θ)=
hmax

2
[1+cos(πri/r)] if ri < r, (10)

where the amplitude hmax = 1, base radius r =R/2, and great-circle distance between
(λ,θ) and the center (λi ,θi ) is ri = ri (λ,θ), with5

ri (λ,θ)=R arccos[sinθi sinθ+cosθi cosθcos(λ−λi )].

The initial condition φ consists of a background value b and two cosine bells defined
above

φ=φ(cb)(λ,θ)=


b+ch1(λ,θ) if r1 < r,
b+ch2(λ,θ) if r2 < r,
b otherwise,

(11)

where the background value is b= 0.1 and amplitude c= 0.9 such that φ ∈ [0.1,1.0]10

(see Fig. 1b).

2.2.3 Slotted cylinders

For the discontinuous case, the double cosine-bells (Eq. 11) are replaced by slotted-
cylinders (Zalesak, 1979):

φ=φ(sc)(λ,θ)=15 
c if ri ≤ r and |λ−λi | ≥ r/(6R) for i =1,2,
c if r1 ≤ r and |λ−λ1|< r/(6R) and θ−θ1 <− 5

12r/R ,
c if r2 ≤ r and |λ−λ2|< r/(6R) and θ−θ2 >

5
12r/R ,

b otherwise,

(12)

where, again, the background value is b=0.1 and amplitude c=1 (see Fig. 1c).
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2.2.4 “Correlated” cosine bells

An initial distribution that is nonlinearly “correlated” with the cosine bells initial condition
is defined as

φ=φ(ccb) =ψ
(
φ(cb)

)
. (13)

The nonlinear functional relation is given by5

ψ(χ )=aψ χ
2+bψ , (14)

where

aψ =−0.8 and bψ =0.9. (15)

For a contour plot of the correlated cosine bells see Fig. 1d.

2.3 Wind fields10

In this test case suite we use two deformational wind fields: one non-divergent and
one divergent. The components of the non-divergent velocity vector V (λ,θ,t) and the
stream function

u=−∂ψ
∂θ

, (16)

v =
1

cosθ
∂ψ
∂λ
, (17)15

are given by

u(λ,θ,t) =
10R
T

sin2(λ′)sin(2θ)cos
(
πt
T

)
+

2πR
T

cos(θ) (18)
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v(λ,θ,t) =
10R
T

sin(2λ′)cos(θ)cos
(
πt
T

)
, (19)

ψ(λ,θ,t) =
10R
T

sin2(λ′)cos2(θ)cos
(
πt
T

)
−2πR

T
sin(θ), (20)

respectively, where λ′ = λ− 2πt/T . In non-dimensional units T = 5 and R = 1. An
“Earth”-like dimensionalization of the wind fields may be obtained by setting T = 125

days and R =6.3172×106 m. Schemes based on characteristics (typically Lagrangian
schemes) may use the algorithm given in (Nair and Lauritzen, 2010) for the computa-
tion of parcel trajectories.

When either of the initial conditions given in Sect. 2.2 are transported by the non-
divergent wind field, they are deformed into thin filaments half way through the sim-10

ulation and these are simultaneously being transported Eastward by the solid-body
component of the flow (see Figs. 2 and 3). At maximum deformation the filaments are
approximately 10◦ wide when using the cosine bells initial condition.

To challenge schemes under divergent flow conditions we use the following wind field
(Nair and Lauritzen, 2010, their case-3 with a “constant background wind field”):15

u(λ,θ,t) = −5
R
T

sin2
(
λ′

2

)
sin(2θ)cos2(θ)cos

(
πt
T

)
+

2πR
T

cos(θ), (21)

v(λ,θ,t) =
5
2
R
T

sin(λ′)cos3(θ)cos
(
πt
T

)
, (22)

where R and T have the same values as for the non-divergent velocity field. The non-
divergent flow field (Eqs. 18 and 19) is used for all tests except the test described in20

Sect. 3.6 for which the divergent winds are used (Eqs. 21 and 22).
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The exact solution for all tests is known at t= T and it is identical to the initial condition

φ(t= T )=φ(t=0). (23)

We do not have an exact solution throughout the simulation when using either the
non-divergent or divergent flow field.

Note that the first part of the simulation (t ∈ [0,T/2]) is typical of atmo-5

spheric/oceanographic flows in that features collapse to smaller scales whereas
the second part (t ∈ [T/2,T ]), in which the reverse occurs, is atypical of atmo-
spheric/oceanographic flows though convenient for getting a problem with an exact
solution. The background mean flow ensures that errors, in general, do not cancel
when the deformational part of the flow reverses.10

2.4 Discretization details

We specify resolution in terms of average grid-spacing in degrees at the Equator of
the sphere ∆λ. For methods based on quadrature methods the “average resolution”
should be specified in terms of mean distance between quadrature points. We define
the (maximum) CFL number as15

CFL=
∆tUmax

∆λ
( π

180◦
) (24)

where ∆t is the time-step and Umax is the maximum zonal wind speed. For the non-
divergent flow the non-dimensional and dimensional (“Earth”) Umax are given by

Umax ≈3.26 and Umax ≈100.07 m s−1. (25)

respectively. This definition of CFL number obviously does not emphasize local CFL20

numbers (in particular for non-isotropic grids); it is defined to facilitate comparison of
maximum CFL numbers across discretization grids.

The time-step ∆t should be a “typical/practical” time-step for performing tracer trans-
port with the scheme in question. However, investigating accuracy as a function of
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time-step is also of interest. For example, if the transport scheme permits long time-
steps (CFL>1) it is advised to run the test suite with an “Eulerian” time-step (CFL≤1)
as well.

Often limiters/filters are applied to render the numerically computed solution phys-
ically realizable. These may be shape-preserving, monotone, and/or non-oscillatory5

limiters/filters. If schemes have a limiter/filter option, the test suite should be run both
without and with limiters/filters.

Accuracy is assessed in terms of several diagnostics. First if all, we use standard
error norms that are defined in Appendix A. These require knowledge of the “true”
(analytic) solution and are therefore computed at time t = T when the true solution is10

known. Secondly we use recently proposed mixing diagnostics (Sect. 3.5; Appendix B
and C) as well as a novel filament preservation diagnostic (Sect. 3.3). As these diag-
nostics do not require an analytical solution we compute them at the time of maximum
deformation (t= T/2) before the flow “reversal” which is less physical.

For reference purposes we provide results using the CSLAM (Conservative Semi-15

Lagrangian Multi-tracer) scheme (Lauritzen et al., 2010) on the cubed-sphere grid. The
CSLAM configuration used here is described in detail in (Nair and Lauritzen, 2010).

3 Test cases

The diagnostics/test cases are designed to assess:

1. numerical order of convergence,20

2. “minimal” resolution,

3. ability of the transport scheme to preserve filaments,

4. ability of the transport scheme to transport “rough” distributions,

5. ability of the transport scheme to preserve pre-existing functional relations be-
tween tracers,25
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6. ability of transport scheme to operator to deal with divergent flows (Nair and Lau-
ritzen, 2010).

Each category is discussed in separate sections below.

3.1 Numerical order of convergence: Gaussian hills

This test is designed to assess the formal (or “optimal”) order of convergence of5

the scheme under quasi-realistic flow conditions on the sphere. This is done as fol-
lows. Standard error norms using the Gaussian hills initial condition (Eq. 9) and non-
divergent wind field (Eqs. 18 and 19) at resolutions ranging from approximately ∆λ=3◦

to ∆λ=0.3◦ for fixed CFL number are computed. The choice of resolutions should pro-
vide enough data points on a “convergence plot” (e.g., log(`2) as a function of log(N))10

in the resolution interval of interest, to generate a “credible” estimate of numerical rate
of convergence. For example, the following resolutions could be used: ∆λ=3◦, 1.5◦,
0.75◦, 0.375◦. The runs should be performed without any limiting/filtering and (if appli-
cable) also with limiters/filters enforcing shape-preservation, monotonicity and/or non-
oscillatoriness in the numerically computed solution.15

These simulations with infinitely smooth (Gaussian hills) initial conditions should pro-
vide a numerical estimate of the “optimal” numerical convergence rate of the scheme.
A way to estimate numerical (empirical) convergence rates K2 and K∞, for `2 and `∞,
respectively (see Fig. 4), is to perform a least-squares linear regression of the form
(Harris et al., 2010)20

log(`i )=Ai −Ki log(∆λ), i =2,∞. (26)

3.2 “Minimal” resolution ∆λm: cosine bells

In many geophysical fluid dynamics applications using state-of-the-art physical param-
eterization packages, increases in horizontal resolution comes at significant computa-
tional cost. It is therefore of interest to assess the absolute error in addition to conver-25

gence rates. To do that we repeat the experiment described in Sect. 3.1 but with cosine
202
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bells initial condition (Eq. 11) to find the “minimal” resolution. We define the “minimal”
resolution ∆λm as the ∆λ-value for which `2 is approximately 0.033, when using an
unlimited scheme and the cosine bells (Eq. 11) initial condition (the CFL number used
for defining ∆λm should be one typically used by the scheme). A convergence plot
can conveniently be used to find the “minimal” resolution by finding the intersection be-5

tween the horizontal line `2 =0.033 and the convergence curve for `2 (see Fig. 5). The
quasi but not infinitely smooth initial conditions (Cosine bells instead of Gaussian hills)
are used in order to challenge the schemes with respect to weak non-smoothness.

The “minimal” resolution ∆λm will be used in the remaining test cases. The choice
of threshold for ∆λm is based on results for CSLAM (a resolution for which the thin fila-10

ments are marginally resolved). The “minimal” resolution (as defined here) for CSLAM
is ∆λ=1.5◦ and ∆λ=1◦ when using a time-step of T/120 (maximum CFL is approxi-
mately 5.2) and T/600 (maximum CFL is approximately 1.0).

3.3 “Filament” preservation diagnostic `f: cosine bells

Realistic flows often deform distributions into thin filaments which, in general, are chal-15

lenging to represent by Eulerian and semi-Lagrangian transport schemes that use a
fixed grid in space (e.g., Behrens et al., 2000). A measure of how well a transport
scheme preserves gradients, in particular, thin filaments is relevant for many tracer
applications (e.g. transport of long-lived tracers such as chemical species in the strato-
spheric vortices). Filaments are created when material surfaces stretch and gradients20

increase. When the thickness of the filaments reach the scale at which molecular diffu-
sion (or some other diffusive process) becomes important the filaments are no longer
preserved but gradients are eroded. For the flow and initial conditions considered here
the filaments should, for all practical purposes, be preserved by the transport scheme
as the physical scale of the filaments is approximately 10◦ at maximum deformation.25

We do therefore not assess how transport schemes represent the filament erosion
process that appears in nature since those “diffusive” processes take place at scales
several magnitudes below 10◦. If such processes are of interest we suggest to use the
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moving vortices test case of (Nair and Jablonowski, 2008) and extend the simulation
time so that the filaments are stretched to a level where such processes are important
and/or change the parameters in the (Nair and Lauritzen, 2010) flow field to increase
the amount of deformation (see, e.g., Kent et al., 2012; Pudykiewicz, 2011).

The “filament” preservation diagnostic is formulated as follows. Define A(τ,t) as the5

spherical area for which the spatial distribution of the tracer φ(λ,θ) satisfies

φ(λ,θ)≥ τ, (27)

at time t, where τ is the threshold value. For a non-divergent flow field and a passive
and inert tracer φ, the area A(τ,t) is invariant in time.

The discrete definition of A(τ,t) is10

A(τ,t)=
∑
k∈G

∆Ak , (28)

where ∆Ak is the spherical area for which φk is representative, K is the number of grid
cells, and G is the set of indices

G = {k ∈ (1,...,K )|φk ≥ τ}. (29)

For Eulerian finite-volume schemes ∆Ak is the area of the k-th control volume. For15

Eulerian grid-point schemes a control volume for which the grid-point value is rep-
resentative must be defined. Similarly for fully Lagrangian schemes based on point
values (parcels) control volumes for which the point values are representative must
be defined. Note that the “control volumes” should span the entire domain without
overlaps or “cracks” between them.20

Define the filament preservation diagnostic

`f(τ,t)=

{
100.0× A(τ,t)

A(τ,t=0) if A(τ,t=0) 6=0,
0.0, otherwise.

(30)

For infinite resolution (continuous case) and a non-divergent flow, `f(τ,t) is invariant
in time: `f(τ,t = 0) = `f(τ,t) = 100 for all τ. At finite resolution, however, the filament
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diagnostic even for an exact scheme should not necessarily be preserved since the so-
lution must be truncated to the discrete grid. That said, usually the numerical truncation
errors are much larger than the grid truncation error at least at moderate resolutions.

The experimental setup is as in Sect. 3.2, that is, use the non-divergent wind field
(Eq. 18 and 19) and cosine bells initial condition (Eq. 11). At half time, t = T/2, the5

filament preservation diagnostic `f(τ,t = T/2) is computed at 19 equi-distant discrete
intervals (τ =0.10, 0.15, 0.15, 0.20, . . . , 0.95, 1.00) without and (if applicable) with
limiters/filters at ∆λ=1.5◦, ∆λ=0.75◦ as well as at the “minimal” resolution ∆λ=∆λm.
The filament diagnostic should be computed as a function of τ ∈ [0.1,1.0] (see Fig. 6).
The threshold value for which `f(t= T/2) is less than,for example 80, is a measure for10

how well filaments are preserved.
Numerical diffusion will tend to decrease `f for large τ values (maxima decrease)

and increase `f for low τ values (gradients are “smeared”). An “extreme” situation is
shown on Fig. 6a where `f is plotted as a function of τ for the highly diffusive 1st-order
version of CSLAM. This much improves when using the higher-order version of CSLAM15

(Fig. 6b). Note that the non-shape-preserving versions of CSLAM produce values of `f
less than 100.0 for low threshold values (τ < 0.1). This also indicates an error in tracer
transport due to undershoots (φ<0.1), which are not represented in the lf diagnostic.

3.4 Transport of “rough” distribution: slotted-cylinders

To challenge shape-preserving filters/limiters (if applicable) we use discontinuous ini-20

tial conditions, that is, standard error norms for the simulated solution at t = T using
the slotted cylinders initial condition and non-divergent winds (Eqs. 18 and 19) are
computed using the transport scheme without and (if applicable) with limiters/filters at
resolutions ∆λ=1.5◦, ∆λ=0.75◦ as well as at the “minimal” resolution ∆λm. Contour
plots of the solution at t= T/2 and t= T (Fig. 7) using a contour interval of 0.05 in the25

range [0.0 : 1.1] are shown.
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3.5 Preservation of pre-existing functional relation: cosine bells and correlated
cosine bells

In the tests described in the previous sections the accuracy is assessed in a single-
tracer setup. Now we consider two tracers that are both advected by the same non-
divergent flow field (Eqs. 18 and 19). The initial conditions for the two tracers is the5

cosine bells initial condition (Eq. 11) and correlated cosine bells (Eq. 13), respectively
(see Fig. 1b,d). The mixing ratio of the two tracers are referred to as χ and ξ. Following
Lagrangian parcels any functional relation between tracers should mathematically be
preserved at all times and hence any deviation from the pre-existing functional relation
between the tracers is essentially numerical errors introduced by the transport scheme.10

Note that the “ideal” scheme could be a scheme that does not exactly preserve pre-
existing functional relations but for which the numerical errors are less than physical
diffusive processes in nature.

In any case transport schemes should not disrupt functional relations in unphysical
ways. Numerical errors that perturb such relations essentially introduce mixing or un-15

mixing between the tracers. (Lauritzen and Thuburn, 2011) provides a discussion of
the physical importance of transport schemes not disrupting tracer interrelationships
in unphysical ways with special focus on non-linear chemistry. The numerical errors
that perturb pre-existing functional relations between tracers will be referred to as nu-
merical mixing or simply mixing in this paper (one could equally well use terminology20

such as tracer variance dissipation instead of mixing). In nature such processes that
change the correlation between two tracers come about through diffusive processes,
and, for reactive tracers, through chemical reactions between tracers. The purpose of
this test is to quantify the amount of mixing and the physical realizability of the mixing
that a scheme introduces through truncation errors. Note that preserving correlations25

is, however, no guarantee for accuracy as one may design schemes that satisfy tracer
interrelations but are otherwise inaccurate; as formulated by (Thuburn and Mclntyre,
1997): “shaping two tracer fields the same way does not imply shaping them the right
way.”
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Scatter plots, where tracer 1 (χ using cosine bells initial condition) and tracer 2 (ξ
using correlated cosine bells initial condition) are plotted against each other, are used
to quantify the numerical mixing or unmixing introduced by the scheme (see Fig. 8). As
discussed in (Thuburn and Mclntyre, 1997) no Eulerian scheme can exactly preserve
pre-existing nonlinear relations between two tracers and hence scatter points (χk ,ξk)5

will, in general, deviate from the pre-existing functional relation curve ψ as the simula-
tion evolves. The way in which the scatter points deviate from the non-linear ψ-curve
has implications for the character of the numerical mixing that the transport scheme
introduces. For this test it is crucial that features collapse in scale and we therefore
consider scatter plots using prognosed mixing ratios at half time (t= T/2) when the ini-10

tial condition has deformed into thin filaments and collapse to smaller scales compared
to the initial condition.

Following (Lauritzen and Thuburn, 2011) the numerical mixing (deviation of scatter
points (χk ,ξk) from ψ-curve) is classified into three categories:

– “Real” mixing: Numerical mixing that resembles “real” mixing (e.g., Thuburn and15

Mclntyre, 1997) when scatter points move to the concave side of ψ . All other
deviations from the pre-existing functional curve is spurious unmixing which is
accounted for in two separate categories.

– “Range-preserving” umixing: Numerical unmixing within the range of the initial
data, that is, scatter points are shifted to the convex side of the pre-existing func-20

tional relation or below the convex hull but not outside the range of the initial data.

– Overshooting: Numerical unmixing that is not “range-preserving” unmixing which
for this specific test case setup is (χ,ξ) /∈ [0.1,1.0]2.

The deviation of the scatter points from the ψ-curve is quantified in terms of a nor-
malized shortest distance between (χk ,ξk) and the ψ-curve referred to as dk . For the25

specific parabolic non-linear correlation function used here (Eq. 14) the normalized
distance function dk is given in Appendix B.
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The three diagnostics that quantitatively account for numerical mixing that resembles
“real” mixing, “range-preserving” umixing and overshooting are referred to as `r , `u,
and `o, respectively, and are formally defined in Appendix C. For more discussion on
numerical mixing and the physical reasoning behind the classification of the mixing
see (Lauritzen and Thuburn, 2011). Note that knowledge of the exact solution is not5

needed for the computation of the mixing diagnostics.
Using the non-divergent flow field we compute the mixing diagnostics (`r , `u, `o) half

way through the simulation t= T/2 using two non-linearly correlated tracer distributions
χ =φ(cb) and ξ =φ(ccb) as initial conditions (cosine bells and correlated cosine bells)
at resolutions ∆λ =1.5◦, ∆λ =0.75◦ and ∆λm using the unlimited and (if applicable)10

limited/filtered scheme. The scatter plots, that is, the mixing ratio of one tracer (with
cosine initial conditions) against the other (with non-linearly correlated cosine bells
initial condition) at these resolutions are shown in Fig. 8.

It is noted that transport schemes can be designed to preserve linear pre-existing
functional relations. That is, a scheme will preserve linear correlations between15

species/tracers if the transport operator T satisfies

T (Aφ+B)=AT (φ)+BT (1)=AT (φ)+B, (31)

where A and B are constants (Lin and Rood, 1996; Thuburn and Mclntyre, 1997). It is
assumed that schemes have already been tested with respect to preservation of linear
correlations without and (if applicable) with limiters/filters.20

3.6 Transport under divergent flow conditions: cosine bells

Most idealized test cases are formulated in terms of non-divergent wind fields. Since
realistic flows are divergent it should be demonstrated that the transport operator can
handle divergent winds. We repeat the experiment described in Sect. 3.4 using the
divergent wind field (see Eqs. 21 and 22), cosine bells initial conditions (Eq. 11), and25

the same time-steps. Solutions using CSLAM are shown on Fig. 9.
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Error norms for unlimited CSLAM at ∆λ=1.5◦ resolution with ∆t = 120/T are: `2 =
1.90×10−2, `∞ =3.22×10−2,φmin =−2.33×10−2, andφmax =−1.45×10−2. Similar for
monotone/shape-preserving CSLAM we get: `2 = 4.22×10−2, `∞ = 0.11, φmin = 0.0,
φmax =−0.13.

4 Computational cost5

Measures that are likely to impact computational efficiency across platforms are also
documented. Ultimately computational efficiency is machine dependent, in particular,
some computing architectures favor certain types of algorithms over others. Hence it is
impossible to define a universal and objective measure of efficiency that is applicable
for all computing platforms. Below is a non-exhaustive list of aspects of algorithms that10

are likely to impact efficiency

– size of halo/stencil H used to update a cell/grid-point value,

– number of communications (in parallel setup) that are necessary during one full
tracer time-step ∆t,

– number of integral/functional evaluations (if applicable),15

– maximum CFL for which the transport scheme is stable,

– amount of information (if any) that can be re-used to transport additional tracers
(multi-tracer efficiency).

5 Summary

Below is a summary of the proposed test case suite. In terms of implementation work20

only two flows fields and four initial conditions are needed. The accuracy is assessed

209

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 189–228, 2012

Standard test case
suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

using traditional/conventional error norms as well as novel filament-preservation and
mixing diagnostics. For convenience the standard error norms `i , i = 2,∞, φmin and
φmax are computed at the end of the simulation t= T when the exact solution is known
(i.e. it equals the initial condition). All mixing diagnostics `i , i = r,u,o, and the filament
diagnostic `f (they do not require knowledge of the analytical solution to the transport5

equation) are computed half way through the simulation at t= T/2 when the fields are
most deformed.

For the non-divergent flow field (Eqs. 18 and 19) we:

1. Numerical order of convergence Compute numerical convergence rates Ki for `i ,
i = 2,∞, for the resolution range approximately ∆λ=3◦ to ∆λ=0.3◦ using Gaus-10

sian initial conditions for the unlimited and (if applicable) limited/filtered scheme
(Sect. 3.1).

2. “Minimal” resolution Compute “minimal” resolution ∆λm for which `2 ≈0.033 using
cosine bells initial condition for the unlimited and (if applicable) limited/filtered
scheme (Sect. 3.2).15

3. “Filament” preservation Compute filament preservation diagnostic `f (at t =
T/2) using the cosine bells initial condition for the unlimited and (if applica-
ble) limited/filtered scheme at resolutions ∆λ =1.5◦, ∆λ =0.75◦, and ∆λ =∆λm
(Sect. 3.3).

4. “Rough” distribution Compute `i , i =2,∞, φmin and φmax at resolutions ∆λ=1.5◦,20

∆λ=0.75◦, and ∆λ=∆λm for the slotted-cylinder initial conditions (Eq. 12) using
the unlimited and (if applicable) the shape-preserving scheme (Sect. 3.4).

5. Mixing diagnostics Compute mixing diagnostics `i , i = r,u,o, for the two non-
linearly correlated tracers based on cosine bells for the unlimited and (if appli-
cable) limited/filtered scheme at resolutions ∆λ=1.5◦, ∆λ=0.75◦, and ∆λ=∆λm25

(Sect. 3.5).
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For the divergent flow field we compute standard error norms `i , i = 2,∞, φmin and
φmax at resolutions ∆λ=1.5◦, ∆λ=0.75◦, and ∆λ=∆λm using cosine bells initial con-
ditions using the same time-steps as used for test 4 above (Sect. 3.6).

In addition to the accuracy diagnostics we report on computational cost measures
that are likely to impact computational efficiency across platforms such as size of com-5

putational stencil, stability criteria for the scheme in question, etc.
Some results for the CSLAM scheme are given in this paper. Full results for this

test case suite using CSLAM and a dozen of other state-of-the-art transport schemes
are reported on in a separate publication (Lauritzen et al., 2012). Fortran code to
compute mixing diagnostics (`i , i = r,u,o) and the filament diagnostic `f is available10

in the Supplement. Also Gnuplot scripts to compute convergence rates Ki , i = 2,∞,
as well as NCL (NCAR Command Language) scripts for plotting are available in the
Supplement.

Appendix A
15

Standard error measures

A If φ=φ(λ,θ,t) is the transported mixing ratio field, then global normalized standard
errors are defined by (Williamson et al., 1992):

`2 =

[
I [(φ−φT )2]

I [(φT )2]

]1/2

,

`∞ =
max∀λ,θ |φ−φT |

max∀λ,θ |φT |
,20

φmax =
max∀λ,θ(φ)−max∀λ,θ(φT )

∆φ0
,

211

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 189–228, 2012

Standard test case
suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

φmin =
min∀λ,θ(φ)−min∀λ,θ(φT )

∆φ0
,

where φT , φ0 are, respectively, the exact/analytical solution and its initial value, ∆φ0
is the difference between maximum and minimum value of the initial condition, and the
global integral I is defined as follows,

I(φ)=
1

4π

∫ 2π

0

∫ π/2

−π/2
φ(λ,θ,t)cosθdλdθ.5

Appendix B

Definition of distance function dk

A The “minimum” distance function dk is defined as the minimal normalized Euclidean
distance between the correlation point (χk ,ξk) and the preexisting functional relation10

curve (χ,ψ(χ )) within the range of the initial condition

dk =Lk(χ (ψ)
k ), (B1)

eB1 where

χ (ψ)
k =min

[
max

(
χ (min),χ (root)

k

)
,χ (max)

]
. (B2)

constrains the shortest distance to the initial condition interval [χmin,χmax], and the15

normalized distance function is given by

Lk(χ )=

√√√√(χk−χ
Rχ

)2

+

(
ξk−ψ(χ )

Rξ

)2

, (B3)
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where

Rχ = χ (max)−χ (min), (B4)

Rξ = ξ
(max)−ξ(min) =ψ

(
ξ(max)

)
−ψ
(
ξ(min)

)
. (B5)

For this particular test case setup Rχ =0.9, Rξ =0.792, and the “root” χ (root)
k is given by

χ (root)
k =ck+

1
ck

(
13
75

− 5
12
ξk

)
, (B6)5

where

ck =
1
60

[
65340χk+12

√
12(125ξk−52)3+29648025χ2

k

]1/3

. (B7)

Appendix C

Numerical mixing diagnostics10

A For the two-tracer test (Sect. 3.5) three mixing diagnostics are used and defined
below (Lauritzen and Thuburn, 2011).

Mixing that resembles “real” mixing

“Real” mixing is defined as numerical mixing that resembles “real” mixing in that values
are shifted to the concave side of the pre-existing functional relation only (area A on15

Fig. 1)

`r =
1
A

K∑
k=1

{
dk∆Ak , if (χk ,ξk)∈A,
0, else,

(C1)

213

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 189–228, 2012

Standard test case
suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where K is the total numbers of cells/points in the domain, ∆Ak is the spherical area of
grid cell k and A is the total area of the domain, A=

∑K
k=1∆Ak . The distance function

dk is the shortest normalized distance between the numerically computed scatter point
(χk ,ξk) and the preexisting functional curve within the range of the initial conditions.
For the quadratic functional relation ψ given in Eq. (14) with coefficients (Eq. 15), the5

explicit formula for dk is given in Appendix B. The domain A (“convex hull”) is shown
on Fig. 1 and is mathematically defined as

A=
{

(χ,ξ)
∣∣∣∣χk ∈ [χ (min,χ (max)] and F (χk)≤ ξk ≤ψ(χk)

}
, (C2)

where F is the straight line that connects (χ (min),ξ(max)) and (χ (max),ξ(min)). Any other
mixing (i.e. scatter points not in A) is numerical unmixing that is accounted for in two10

distinct diagnostics defined next.

“Range-preserving” unmixing

“Range-preserving” unmixing is defined as numerical unmixing within the range of the
initial data, that is, scatter points are shifted to the convex side of the preexisting func-
tional relation or below the convex hull but not outside the range of the initial data15

`u =
1
A

K∑
k=1

{
dk∆Ak , if (χk ,ξk)∈B,
0, else,

(C3)

where B are the dark shaded areas in Fig. 1 defined by

B =
{

(χ,ξ)
∣∣∣∣(χk ,ξk)∈ [χ (min,χ (max)]× [ξ(min,ξ(max)] and (χk ,ξk) /∈A

}
. (C4)

Note that the shape-preservation constraint is not necessarily enough to guarantee
`u = 0 since the scheme must be semi-linear and monotone according to (Harten,20

1983) to guarantee `u = 0 (Thuburn and Mclntyre, 1997). Only first-order schemes
will satisfy these constraints (Godunov, 1959).
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Overshooting

Overshooting (or equivalently expanding range unmixing) is defined as unmixing that
is not accounted for in the `r and `u diagnostic

`o =
1
A

K∑
k=1

{
dk∆Ak , if (χk ,ξk) /∈A and (χk ,ξk) /∈B,
0, else.

(C5)

For a shape-preserving scheme `o =0.5

The mixing diagnostics are “mutually exclusive” in the sense that for a particular
scatter point (χk ,ξk) a non-zero value of the distance function dk is only added to one
of the diagnostic functions so

`r+`o+`u =
1
A

∑
A

dk∆Ak . (C6)

Supplementary material related to this article is available online at:10

http://www.geosci-model-dev-discuss.net/5/189/2012/
gmdd-5-189-2012-supplement.zip.
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Fig. 1. Contour plots for the four initial conditions for mixing ratioφ used in this test suite. (a) de-
picts the infinitely smooth (C∞) initial condition constructed from Gaussian surfaces, (b) the
cosine bells initial condition which is C1, (c) the non-smooth slotted cylinders initial condition,
and (d) is the initial condition which is nonlinearly correlated with (b).
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Fig. 2. Same as Fig. 1 but for the numerical solution at t= T/2 using CSLAM with a time-step
∆t= T/120 and resolution of ∆λ=1.5◦.
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Fig. 3. Same as Fig. 2 but for CSLAM with a shape-preserving reconstruction function filter
(see Lauritzen et al., 2010 for details on the filter).
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l2, Gaussian hills

CFL5.5
CFL5.5, filter

CFL1.0
CFL1.0, filter

10-5

10-4

10-3

10-2

10-1

100
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0.375°0.75°1.5°3°

l∞, Gaussian hills

Fig. 4. Convergence plots for `2 (first column), and `∞ (second column), respectively, com-
puted with CSLAM with Gaussian hills initial conditions. The keys with “CFL 5.5” and “CFL
1.0” refer to simulations using a time-step of T/120 and T/600, respectively. The keys with the
word filter in them refer to simulations using a shape-preserving filter. The upper and lower
heavy lines on each plot correspond to the slopes of second- and third-order convergence
rates, respectively.
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Fig. 5. Convergence plot for `2 computed with CSLAM with cosine bells initial conditions. The
keys are as in Fig. 4. The heavy line is `2 =0.033 and is used to define “minimal” resolution.
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(a) 1st-order CSLAM

1.5°
0.75°

 0

 20

 40

 60

 80

 100

 120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
l f

τ

(b) 3rd-order CSLAM
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Fig. 6. Filament diagnostics `f(t= T/2) as a function of threshold value τ for different configu-
rations of the CSLAM scheme with CFL=5.5. (a) 1st-order version of CSLAM at ∆λ=1.5◦ and
∆λ=0.75◦, and (b) 3rd-order version of CSLAM with and without monotone/shape-preserving
filter at resolutions ∆λ=1.5◦ and ∆λ=0.75◦.
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Fig. 7. Contour plot of the CSLAM numerical solution φ at resolution ∆λ =1.5◦ and time-
step T/120 using the slotted-cylinders initial condition at time t = T/2 (a and c) and t = T (b
and d) using no filter/limiter (a and b) and a shape-preserving filter (c and d). The standard
error norms for the unfiltered/unlimited solution are `2 = 0.24, `∞ = 0.79, φmin =−0.19, and
φmax = 0.15, and for the shape-preserving solution they are `2 = 0.26, `∞ = 0.80, φmin = 0.0,
and φmax =−4.34 ·10−3.
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LAURITZEN et al.: Standard test case suite 11

Fig. 8. Scatter plots at t= T/2 for two non-linearly correlated species/tracers based on cosine bells initial conditions using first-order
version of CSLAM (a and d), standard CSLAM based on bi-parabolic reconstruction functions (b and e) and standard CSLAM with a shape-
preserving filter (c and f). First and second row use ∆λ= 1.5◦ and ∆λ= 0.75◦ resolutions, respectively. The solid lines mark the boundaries
between the areas used to classify the numerical mixing. On each plot the mixing diagnostics `r , `u and `o are given.

Fig. 9. Plotted as in Fig. 7 but for the divergent flow field (∆t=T/120, resolution ∆λ= 1.5◦, and maximum CFL number is approximately
3.2).

objective measure of efficiency that is applicable for all com-
puting platforms. Below is a non-exhaustive list of aspects
of algorithms that are likely to impact efficiency535

– size of halo/stencil H used to update a cell/grid-point

value,

– number of communications (in parallel setup) that are
necessary during one full tracer time-step ∆t,

Fig. 8. Scatter plots at t= T/2 for two non-linearly correlated species/tracers based on cosine
bells initial conditions using first-order version of CSLAM (a and d), standard CSLAM based on
bi-parabolic reconstruction functions (b and e) and standard CSLAM with a shape-preserving
filter (c and f). First and second row use ∆λ=1.5◦ and ∆λ=0.75◦ resolutions, respectively. The
solid lines mark the boundaries between the areas used to classify the numerical mixing. On
each plot the mixing diagnostics `r , `u and `o are given.

225

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/189/2012/gmdd-5-189-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 189–228, 2012

Standard test case
suite

P. H. Lauritzen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

LAURITZEN et al.: Standard test case suite 11

Fig. 8. Scatter plots at t= T/2 for two non-linearly correlated species/tracers based on cosine bells initial conditions using first-order
version of CSLAM (a and d), standard CSLAM based on bi-parabolic reconstruction functions (b and e) and standard CSLAM with a shape-
preserving filter (c and f). First and second row use ∆λ= 1.5◦ and ∆λ= 0.75◦ resolutions, respectively. The solid lines mark the boundaries
between the areas used to classify the numerical mixing. On each plot the mixing diagnostics `r , `u and `o are given.

Fig. 9. Plotted as in Fig. 7 but for the divergent flow field (∆t=T/120, resolution ∆λ= 1.5◦, and maximum CFL number is approximately
3.2).
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Fig. 9. Plotted as in Fig. 7 but for the divergent flow field (∆t= T/120, resolution ∆λ=1.5◦, and
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Fig. B1. A schematic of the ‘minimum’ distance function dk (left-
right arrows) for different correlation points (χk,ξk) (filled circles).
(χ

(ψ)
k ,ψ(χ

(ψ)
k ) (unfilled circle) is the point on the preexisting func-

tional curve (thick line) that is nearest, in a normalized sense, to
(χk,ξk).
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Fig. C1. A schematic of the classification of numerical mixing. If
a scatter point is located in the area labeled withA (mathematically
defined in (C2)) it is categorized as ‘real’ mixing. Similarly for
the area labeled with B (defined in (C4)) it is categorized as range-
preserving unmixing. The remaining part of the domain is referred
to as overshooting. The thick solid line is the preexisting non-linear
functional relation curve. See text or Lauritzen and Thuburn (2011)
for details.

Appendix C

Numerical mixing diagnostics610

For the two-tracer test (section 3.5) three mixing diagnostics
are used and defined below (Lauritzen and Thuburn, 2011).

Mixing that resembles ‘real’ mixing

‘Real’ mixing is defined as numerical mixing that resembles
‘real’ mixing in that values are shifted to the concave side of
the pre-existing functional relation only (areaA on Fig. C1)

`r =
1
A

K∑

k=1

{
dk∆Ak, if (χk,ξk)∈A,
0, else,

(C1)

where K is the total numbers of cells/points in the domain,
∆Ak is the spherical area of grid cell k and A is the total
area of the domain, A=

∑K
k=1∆Ak. The distance func-

tion dk is the shortest normalized distance between the nu-
merically computed scatter point (χk,ξk) and the preexisting
functional curve within the range of the initial conditions.
For the quadratic functional relation ψ given in (14) with co-
efficients (15), the explicit formula for dk is given in Ap-
pendix B. The domain A (‘convex hull’) is shown on Fig.

Fig. B1. A schematic of the “minimum” distance function dk (left-right arrows) for different cor-
relation points (χk ,ξk) (filled circles). (χ (ψ)

k ,ψ(χ (ψ)
k ) (unfilled circle) is the point on the preexisting

functional curve (thick line) that is nearest, in a normalized sense, to (χk ,ξk).
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a scatter point is located in the area labeled withA (mathematically
defined in (C2)) it is categorized as ‘real’ mixing. Similarly for
the area labeled with B (defined in (C4)) it is categorized as range-
preserving unmixing. The remaining part of the domain is referred
to as overshooting. The thick solid line is the preexisting non-linear
functional relation curve. See text or Lauritzen and Thuburn (2011)
for details.

Appendix C

Numerical mixing diagnostics610

For the two-tracer test (section 3.5) three mixing diagnostics
are used and defined below (Lauritzen and Thuburn, 2011).

Mixing that resembles ‘real’ mixing

‘Real’ mixing is defined as numerical mixing that resembles
‘real’ mixing in that values are shifted to the concave side of
the pre-existing functional relation only (areaA on Fig. C1)

`r =
1
A

K∑

k=1

{
dk∆Ak, if (χk,ξk)∈A,
0, else,

(C1)

where K is the total numbers of cells/points in the domain,
∆Ak is the spherical area of grid cell k and A is the total
area of the domain, A=

∑K
k=1∆Ak. The distance func-

tion dk is the shortest normalized distance between the nu-
merically computed scatter point (χk,ξk) and the preexisting
functional curve within the range of the initial conditions.
For the quadratic functional relation ψ given in (14) with co-
efficients (15), the explicit formula for dk is given in Ap-
pendix B. The domain A (‘convex hull’) is shown on Fig.

Fig. C1. A schematic of the classification of numerical mixing. If a scatter point is located in
the area labeled with A (mathematically defined in Eq. C2) it is categorized as “real” mixing.
Similarly for the area labeled with B (defined in Eq. C4) it is categorized as range-preserving
unmixing. The remaining part of the domain is referred to as overshooting. The thick solid
line is the preexisting non-linear functional relation curve. See text or (Lauritzen and Thuburn,
2011) for details.
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