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Abstract

A four-dimensional ensemble-based data assimilation system was assessed by ob-
serving system simulation experiments (OSSEs), in which the CALIPSO satellite was
emulated via simulated satellite-borne lidar aerosol observations. Its performance over
a three-month period was validated according to the Method for Object-based Diag-5

nostic Evaluation (MODE), using aerosol optical thickness (AOT) distributions in East
Asia as the objects of analysis. Consequently, this data assimilation system demon-
strated the ability to produce better analyses of sulfate and dust aerosols in compari-
son to a free-running simulation model. For example, the mean centroid distance (from
the truth) over a three-month collection period of aerosol plumes was improved from10

2.15 grids (≈ 600km) to 1.45 grids (≈ 400km) for sulfate aerosols and from 2.59 grids
(≈ 750km) to 1.14 grids (≈ 330km) for dust aerosols; the mean area ratio (to the truth)
over a three-month collection period of aerosol plumes was improved from 0.49 to 0.76
for sulfate aerosols and from 0.51 to 0.72 for dust aerosols. The satellite-borne lidar
data assimilation successfully improved the aerosol plume analysis and the dust emis-15

sion estimation in the OSSEs. These results present great possibilities for the benefi-
cial use of lidar data, whose distribution is vertically/temporally dense but horizontally
sparse, when coupled with a four-dimensional data assimilation system. In addition,
sensitivity tests were conducted, and their results indicated that the degree of freedom
to control the aerosol variables was probably limited in the data assimilation because20

the meteorological field in the system was constrained to weather reanalysis using
Newtonian relaxation. Further improvements to the aerosol analysis can be performed
through the simultaneous assimilation of aerosol observations with meteorological ob-
servations. The OSSE results strongly suggest that the use of real CALIPSO data will
have a beneficial effect on obtaining more accurate sulfate and dust aerosol analyses.25

Furthermore, the use of the same OSSE technique will allow us to perform a prior as-
sessment of the next-generation lidar satellite EarthCARE, which will be launched in
2015.
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1 Introduction

Atmospheric aerosols from both natural and anthropogenic origins have a consider-
able influence on weather and climate changes as well as air quality (IPCC, 2007).
Thus, in recent years, the study of aerosols has attracted more attention than ever be-
fore. However, it is difficult and cost intensive to measure aerosols at the global and5

synoptic scales, even though further observations are necessary to improve our com-
prehension of aerosol distributions and properties in the Earth’s atmosphere. Given
this situation, data assimilation plays an important role in extracting the most out of the
available observations. Data assimilation optimally integrates observations and model
simulations and maximally exploits the information contained in the observations (cf.10

Lewis et al., 2006; Park and Xu, 2009; Lahoz et al., 2010). Indeed, several studies
have applied data assimilation methods of analyzing aerosols. A simple data assim-
ilation method known as the Optimal Interpolation (OI) was implemented by Collins
et al. (2001) for the Advanced Very High Resolution Radiometer (AVHRR) aerosol opti-
cal thickness (AOT) observations, by Yu et al. (2003) for Moderate Resolution Imaging15

Spectro-radiometer (MODIS) AOT observations, and by Tombette et al. (2009) for sur-
face observations of PM10. Because OI can handle only model forecast variables, AOT
must be translated into aerosol concentration profiles using many assumptions in their
data assimilation systems, resulting in a large analysis error. Another data assimilation
method known as the three-dimensional variational data assimilation method (3D-Var)20

was implemented by Generoso et al. (2007) for the POLarization and Directionality
of Earth’s Reflectances (POLDER) AOT observations, by Niu et al. (2008) for surface
visibility and satellite-measured dust loading observations, and by Zhang et al. (2008)
for MODIS AOT observations. The 3D-Var employs an observation operator that prop-
erly converts model forecast variables to the AOT. In both OI and 3D-Var, however, the25

background error covariance is estimated by averaging over a long period of time and
represents the climatological mean. This fixed background error covariance is unaware
of the flow of the day, e.g. the aerosol plume. Advanced data assimilation methods,
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four-dimensional variational (4D-Var) or Ensemble Kalman Filter (EnKF), can handle
such local disturbances properly through flow-dependent background error covariance.
Focusing on only a dust aerosol and using very local observation data, 4D-Var was
implemented by Yumimoto et al. (2008) for ground-based lidar dust extinction observa-
tions identified from its depolarization ratio, and EnKF was implemented by Lin et al.5

(2008a,b) for surface observations of PM10. Furthermore, targeting multiple aerosol
species and using worldwide aerosol observations, the European Centre for Medium-
Range Weather Forecasts (ECMWF) developed a 4D-Var data assimilation system
(Benedetti et al., 2009), and Schutgens et al. (2010) developed an EnKF data assimi-
lation system. Benedetti et al. (2009) used MODIS AOT observations, and Schutgens10

et al. (2010) used the ground-based sun-photometer AOT observations of the AErosol
RObotic NETwork (AERONET) for their data assimilation systems. AOT is a column-
integrated amount; therefore, the disadvantage of using only AOT is that vertical profile
information depends only on the model simulation results.

The authors of this paper, Sekiyama et al. (2010), developed a four-dimensional15

EnKF data assimilation system for the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO)/Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) observations. CALIPSO/CALIOP, which is the only satellite-borne aerosol
lidar in operation, has a zero viewing angle and a zero swath width; therefore, it cannot
obtain horizontally planar images, but it can obtain the cross-section images just below20

the CALIPSO orbit with an extremely high time/vertical resolution (Winker et al., 2007).
Sekiyama et al. (2010) directly assimilated the Level 1B data of CALIPSO/CALIOP,
i.e., pre-retrieved satellite observations (attenuated backscatter and its depolariza-
tion ratio), and successfully isolated a dust aerosol from the other aerosols. Further-
more, Sekiyama et al. (2011b) estimated the Asian Dust emission intensity using the25

CALIPSO/CALIOP 4D-EnKF data assimilation system. They validated their aerosol
analysis through a comparison with independent ground-based lidar observations and
operational weather reports in Japan. However, the objective and quantitative verifi-
cation of their aerosol analysis has not yet been particularly successful at the global

1880

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

or synoptic scale most likely because of the insufficient number of aerosol observa-
tions independent of the data assimilation. The insufficiency problem includes the un-
even distribution of observations. The deployment of ground-based observation sites
is sparse and uneven. The observations of MODIS are frequently missed by clouds
or high-albedo Earth surfaces. CALIPSO/CALIOP has an extremely narrow viewing5

angle and is often obstructed from observing the aerosols by clouds. Therefore, the
large area comparison between analyses and observations cannot be objectively per-
formed for aerosols, even though such a comparison was successfully performed for
weather components: for example, precipitation distribution. The aerosol data assim-
ilation studies described previously were confronted with the same validation prob-10

lem. Because objective, quantitative, and extensive validation is almost impossible for
aerosol data assimilation results, it is difficult to explore the optimal parameter set-
tings of inflation or localization for the EnKF algorithm. It is also difficult to assess the
robustness of the EnKF system against a decrease in ensemble members or in the
amount of observational information. Among the various aerosol species, only a dust15

aerosol can be isolated relatively easily during its outbreak because the dust aerosol
plume has a high concentration and high depolarization ratio. Consequently, Sekiyama
et al. (2010, 2011b) were able to validate their dust aerosol analyses to a limited ex-
tent. Other aerosols, however, such as sulfate and smoke, cannot be measured and
isolated with high accuracy and high frequency at a global or synoptic scale for model20

verification. In this situation, observing system simulation experiments (OSSEs) are
very useful tools for evaluating the performance of data assimilation systems.

OSSEs have been conducted by various scientists for different purposes (cf. Atlas,
1997; Masutani et al., 2010a,b; Andersson and Masutani, 2010). OSSEs are typically
designed to evaluate the potential impacts of prospective observing systems and in-25

struments, such as satellites. The most common motivation for conducting OSSEs is
to estimate the cost effectiveness of new observations. In addition, a data assimila-
tion system itself can be tested by OSSEs because of the existence of a known “truth”
in the context of OSSEs. The OSSE technique uses a model-generated proxy for the
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real atmosphere, commonly called the Nature Run. This generation is performed us-
ing a realistic atmospheric model in a free-running mode without data assimilation.
Simulated observations are generated by virtual instruments from the Nature Run and
used as real observations in data assimilation experiments. The generation of these
simulated observations includes the addition of realistic errors, which are completely5

comprehended. In these idealized experiments, the Nature Run provides the “truth”
of the atmosphere, which is never obtained from the real atmosphere observations.
In OSSEs, all the data assimilation results can be validated against this “truth” with-
out any spatiotemporal maldistribution. Assessment using OSSEs is a well-established
technique in numerical weather predictions (NWP), in which objective and quantita-10

tive evaluations are provided for data assimilation systems; however, OSSEs require
expert knowledge in observation technology, model simulation, and data assimilation
(cf. Lahoz et al., 2010). The aim of this study is to assess whether the aerosol data
assimilation system (Sekiyama et al. 2010, 2011b) has the ability to produce a better
analysis of dust and sulfate aerosols with the use of the OSSE technique. This study15

is the first OSSE assessment in which satellite-borne lidar observations are simulated,
assimilated, and validated, to the best of the authors’ knowledge. As demonstrated
in the following sections, the OSSE results successfully indicate the beneficial impact
of the satellite-borne lidar data assimilation. Furthermore, we explore the optimal pa-
rameter settings of inflation and localization for the EnKF algorithm and assess the20

robustness of the EnKF system against a decrease in ensemble members and the
amount of observational information.

Section 2 provides a description of the data assimilation system, which is composed
of an ensemble Kalman filter, a global aerosol model, and a lidar observation operator.
The experimental design of our OSSE is given in Sect. 3, in which we implement a Na-25

ture Run and simulate observation data. An overview of the evaluation tools used in this
study is discussed in Sect. 4. The experimental results are presented and discussed in
Sect. 5, and the conclusions are presented in Sect. 6.
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2 Data assimilation system

The data assimilation system used in this OSSE study is the same version used by
Sekiyama et al. (2010, 2011b). CALIPSO Level 1B lidar data (attenuated backscatter
and its depolarization ratio) are directly assimilated using the four-dimensional local
ensemble transform Kalman filter (4-D LETKF) in this system. A first guess in the data5

assimilation process is provided by a global aerosol model. Model variables are con-
verted to lidar observables by an observation operator. The details of this data assimi-
lation system are described in the following sections.

2.1 Data assimilation scheme

2.1.1 Ensemble Kalman filter10

The Kalman filter is a very powerful tool that produces a statistically optimal estimate
of the system state (Kalman, 1960). However, the calculation cost of the Kalman filter
is computationally unfeasible for any realistic geophysical models without major simpli-
fications because these models have an enormous state space size. Evensen (1994)
suggested that the Kalman filter could be simplified by computing the background error15

covariance with ensemble forecasts for complicated geophysical systems. This tech-
nique, the ensemble Kalman filter (EnKF), has rapidly gained popularity for geophysical
data assimilations in recent years because of its simple formulation and implementa-
tion in comparison to the 4D-Var. The 4D-Var implementation requires the tangent
linear model and the adjoint model of forward simulation models, of which the develop-20

ment and maintenance are heavily labor intensive when handling a strongly nonlinear
system, such as the atmosphere. In contrast, the EnKF calculation requires neither tan-
gent linear models nor adjoint models. While 4D-Var and EnKF are the most sophis-
ticated schemes for atmospheric data assimilation in the past decade (Kalnay et al.,
2007), the simpler implementation of the EnKF is very beneficial for the data assimi-25

lation of atmospheric chemistry because the modeling of the chemical reactions and

1883

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

emission/diffusion/deposition processes is generally more complicated than weather
modeling.

The basic concept of EnKF is that the ensemble of state vectors x
b
k represents the

probability density function (PDF) of the system state. Namely, the background error
covariance can be estimated as Pb = 1/(K −1)×Xb(Xb)T , where Xb is the matrix of5

which k-th column contains a departure of the k-th ensemble forecast from its en-
semble mean (xb

k − x̄
b), and K is the ensemble size. The matrix Pb contains the flow-

dependent error covariance among the model variables. The EnKF is mathematically
equivalent to the original Kalman filter, under the ideal conditions that the simulation
model is linear and the EnKF employs an infinite ensemble size. The EnKF produces10

an analysis using the background error covariance matrix. When the model variables
are physically or chemically related to each other, the background error covariance pro-
vides information to correct the background errors with observations. Meanwhile, the
EnKF is mathematically equivalent to the 4D-Var when the model is linear, ensemble
members are infinite, the PDF is Gaussian, and the same background error covariance15

matrix is used for both (e.g. Bouttier and Courtier, 1999). There is no fundamental
discrepancy between the two data assimilation methods, and their differences arise
from the non-Gaussianity and nonlinearity of the real atmosphere. Furthermore, as in
the 4D-Var or 3D-Var, the EnKF can treat observation operators, which enables the
direct assimilation of measured physical quantities not explicitly included in the model20

forecast variables. The observation operators transform model variables (e.g. tempera-
ture) into observable quantities (e.g. satellite-measured radiances). Note that it is pos-
sible for an observation operator to include nonlinear processes (e.g. the relationship
between aerosol concentrations and attenuated backscattering coefficients). This char-
acteristic is very useful for assimilating the observations of active remote sensors, such25

as lidars.
In this study, we utilized the local ensemble transform Kalman filter (LETKF), which

is one of the EnKF implementation schemes (Hunt et al., 2007). The LETKF uses the
ensemble transform approach (Bishop et al., 2001) to obtain the analysis ensemble as

1884

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

a linear combination of the background ensemble forecasts. The LETKF handles ob-
servations locally in space, where all the observations are assimilated simultaneously.
The EnKF tends to be easily influenced by sampling errors at long distances because
the available ensemble size is relatively too small to estimate the background error co-
variance of the atmosphere system. Therefore, the covariance localization must be ap-5

plied for all the EnKF implementation schemes to reduce the spurious impact of distant
observations. The LETKF permits a flexible choice of observations to be assimilated at
each grid point. The version of the LETKF used in this study employs localization with
a Gaussian weighting function that depends on the physical distance between the grid
location and the observation (Miyoshi et al., 2007). The limited ensemble size causes10

both sampling errors at long distances and filter divergence. Moreover, the ensemble
forecasts tend to underestimate the background errors in the state estimation because
of the limited ensemble size, model imperfections, and nonlinearity. This underestima-
tion leads to filter divergence. To compensate for the error underestimation and avoid
the filter divergence, it is necessary to increase the ensemble spread every data as-15

similation cycle. This technique is called covariance inflation. In this study, we utilized
a multiplicative inflation method, in which the ensemble spread is uniformly multiplied
by a constant value larger than one. It is common to tune this inflation factor empir-
ically. Furthermore, adding random perturbation to the initial state of each ensemble
member is sometimes necessary to maintain the diversity of the ensemble members20

and not to lose the error covariance among the model variables. In this study, random
perturbations were added to several of the variables, as described in Sect. 2.4.

2.1.2 4-dimensional expansion

Hunt et al. (2004) expanded the EnKF four-dimensionally to assimilate observations
asynchronously. This expansion allows the EnKF to assimilate observations at the ap-25

propriate time and, when available, to use future observations as with the 4D-Var.
This expansion was applied to the LETKF in this study (cf. Miyoshi and Aranami,
2006; Kalnay, 2010). The four-dimensional LETKF (4D-LETKF) permits the creation
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of a smoother, which is mathematically equivalent to an Ensemble Kalman Smoother
(EnKS). The observational increments in the 4D-LETKF are expressed as linear
combinations of the forecast perturbations at the time of the observation. This four-
dimensional expansion allows the use of the same coefficients to transport the obser-
vational increments either forward or backward in time to the analysis time. In other5

words, under the assumption that the transform matrix is valid at any time within the
assimilation time window, the analysis can be obtained by incorporating observations
in both past and future times within the time window. The 4D-LETKF determines the lin-
ear combination of the ensemble forecasts by estimating the time-independent weights
that optimally fit the observations throughout the assimilation time window. Note that10

although a long time window enables the use of temporally more distant observations,
the adverse effect of the model imperfection and nonlinearity becomes more signif-
icant at a temporally long distance. Therefore, the 4D-LETKF works only when the
assimilation time window is short enough to neglect these model errors and nonlinear-
ities. In this study, the analysis is obtained at the intermediate time of the assimilation15

time window. The analysis of the intermediate time is used to provide the initial con-
ditions of the next ensemble forecast. Temporal localization is applied to this process
in the same manner as the spatial localization, with a Gaussian weighting function to
reduce the sampling error of the temporally distant observations. Figure 1 illustrates
the schematic diagram of the 4D-LETKF data assimilation cycle. In this case, the time20

window is 48 h long, and the analysis is updated at 24-h intervals. Each observation is
used twice with normalizing weights. This 4D-LETKF implementation is identical to that
of Miyazaki et al. (2011), and similar to the “Running in Place” algorithm proposed by
Kalnay (2010) and Yang et al. (2012), in which the spin-ups are rapidly performed for
suddenly evolving phenomena by recycling the observations repeatedly. Kalnay (2010)25

proposed a severe storm as an example of a suddenly evolving phenomenon. Like-
wise, aerosol outbreaks also develop rapidly. This 4D-LETKF module was successfully
applied to ozone data assimilation by Sekiyama et al. (2011a).
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2.1.3 State vector augmentation

To acquire the inverse analysis of dust emission intensity from atmospheric obser-
vations, we introduce the dust emission factor optimally estimated by the 4D-LETKF.
Generally, in aerosol simulation models, the dust emission flux Fi j is calculated at each
land surface grid (i , j ) as follows:5

Fi j = Ai j f (u∗
i j ), (1)

where Ai j is the function of ground surface conditions (e.g. soil moisture content, snow
cover ratio, vegetation cover ratio, land-use type, and soil type) that ranges between 0
and 1, and f is the dust emission flux estimated by a wind erosion model as a function10

of a surface friction velocity u∗. In this study, the dust emission flux Fi j is corrected by
the dust emission factor αi j as follows:

F ′
i j = αi jFi j . (2)

The dust emission factor αi j is estimated at each land surface grid (i , j ) by the data15

assimilation. Here, we use an augmented state vector x′ consisting of both the atmo-
spheric state variables at all model surface grid points and the dust emission factor at
all model surface grid points as follows:

x′ = (xT,αT)T, (3)
20

where x is the state vector that consists of the model state variables, α is the parame-
ter vector that consists of all the dust emission factors αi j , and T denotes transposition.
The augmented state vector x′ is then used for the data assimilation processes instead
of the original state vector x. This augmentation enables the 4D-LETKF to estimate the
parameters, such as dust emission factors, through the background error covariance25

with the model state variables (cf. Kang et al., 2011; Miyazaki et al., 2011; they studied
CO2 flux estimation). In other words, the state vector augmentation method simulta-
neously estimates the aerosol concentrations (i.e., state variables) together with the
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surface emission intensity (i.e., unknown parameters). Therefore, it is essential to this
inverse analysis to successfully estimate the background error covariance between
the dust concentrations and dust emissions. Figure 2 presents the spatial correlation
between surface dust concentrations and the dust emission within the square area
centered at (43◦ N, 112.5◦ E), which is equivalent to the background error covariance5

distribution. This spatial distribution indicates the response pattern of the dust concen-
trations as an increase in the dust emission within the square area. These correlations
were derived from the result of a 32-member ensemble 24-h forecast using the same
aerosol model as that used in the data assimilation system. High positive correlation
areas are evidently located in the downwind directions from the emission area. Such10

an informative distribution is necessary for a successful inverse analysis.
In this formulation, aerosol models do not forecast the dust emission factors; there-

fore, the factors are constant during forward forecasting. In other words, we assume
a persistent forecast model (M = I, when αn = Mαn−1; I denotes an identity matrix, and
n means the time step) for the dust emission factors because of the lack of any appli-15

cation for the forecast model. This is a typical approach to parameter estimation, but it
is a very simplified assumption; therefore, the error information of the dust emission is
not propagated during forward forecasting. Consequently, unless the covariance mag-
nitudes related to these parameters are inflated, the ensemble spread cannot remain
meaningful and be influenced by the observations. In this case, the estimation of the20

surface dust emission will diverge. Thus, in this study, the ensemble members of the
dust emission intensity are perturbed by adding a random Gaussian noise, simultane-
ously with the multiplicative inflation of the background error covariance.

2.2 Global aerosol model

In this study, we applied the 4D-LETKF to an aerosol chemistry-transport model, the25

Model of Aerosol Species in the Global Atmosphere (MASINGAR), which was devel-
oped by the Meteorological Research Institute (MRI) of Japan (Tanaka et al., 2003;
Tanaka and Chiba, 2005). MASINGAR has a dynamical meteorological component
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with chemical processes; its prognostic variables are horizontal winds, temperature,
humidity, and surface pressure. The version of MASINGAR for the OSSE has a hori-
zontal resolution of approximately 2.8◦×2.8◦ (T42 spectrum truncation) and 30 vertical
layers in a hybrid sigma-pressure coordinate from the Earth’s surface to the stratopause
(approximately 7 layers below 800 hPa and 15 layers above 150 hPa). MASINGAR has5

been successfully used for aerosol studies (Tanaka et al., 2005, 2007, 2011; Tanaka
and Chiba, 2006; Uno et al., 2006). MASINGAR includes the emission, advection,
diffusion, gravitational settling, wet/dry deposition, and chemical processes of SO2,
dimethyl sulfide (DMS), sulfate aerosol, dust aerosol (partitioned into 10 size bins),
organic carbon (OC) aerosol, black carbon (BC) aerosol, and sea-salt aerosol (parti-10

tioned into 10 size bins) with an external mixture formation. The sizes and densities of
these aerosol particles are presented in Table 1. Volume mean diameters are shown
for each dust aerosol size bin. Generally, dust emission flux has a threshold friction
velocity, which means that no dust emission occurs when the friction velocity (or wind
speed) is lower than a certain value. The threshold friction velocity depends on the dust15

particle size and soil moisture in MASINGAR. The formulation of Shao and Lu (2000)
is adopted to calculate the threshold friction velocity. The vertical flux of dust particles
is assumed to be proportional to the saltation flux of soil particles in MASINGAR. The
saltation flux is calculated using a formula from Owen (1964), in which the saltation flux
depends on the soil particle size, the gravitational settling velocity, the threshold friction20

velocity, and the smooth friction velocity. We adopted the Special Report on Emissions
Scenarios (SRES: Nakicenovic and Swart, 2000) A1 for the anthropogenic SO2 emis-
sion in MASINGAR. The SRES were published by the Intergovernmental Panel on
Climate Change (IPCC), in which A1 scenarios were described as a more integrated
world with rapid economic growth.25

The meteorological field in MASINGAR is nudged to a 6-h interval reanalysis of the
Japan Meteorological Agency (JMA) using a Newtonian relaxation scheme, in which
dynamic tendencies are added with an 18-h relaxation time constant at each time step
to reproduce the realistic meteorological conditions of the global atmosphere. More
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details of MASINGAR are described in Tanaka et al. (2003) and Tanaka and Chiba
(2005). In this study, all the data assimilation experiments were initiated at 00:00 UTC
on 1 March 2007 and terminated at 00:00 UTC on 1 June 2007. The initial condition at
00:00 UTC on 1 March was prepared by a 1-yr simulation performed by MASINGAR
without using any aerosol assimilation as a spin-up.5

2.3 Lidar observation operator

Similarly to other EnKF schemes and variational schemes, the LETKF can employ
an observation operator to directly assimilate the observables not included in the
model variables. The observation operator is also used to make simulated observa-
tions for OSSEs. This study validates the data assimilation performance of satellite-10

borne lidar data for the purpose of developing an observation operator to simulate
CALIPSO/CALIOP, the only satellite-borne lidar that provides aerosol observations in
operation. The observation operator H can be expressed as a sequence of several
distinct functions acting on the model state vector x,

H(x) = G(D(P (x))) (4)15

where P denotes an interpolation from the grid points to the observation locations;
D denotes the physical or chemical relationship relating the aerosol concentration and
properties to optical extinction and backscatter; G denotes a possible spatial integration
of values, such as attenuated backscatter along the laser beam. CALIPSO/CALIOP20

provides vertical profiles of the total attenuated backscattering coefficient β′
λ(ζ ) at 532

and 1064 nm and the volume depolarization ratio (δ = β′
λ(ζ )perpendicular/β

′
λ(ζ )parallel) at

532 nm. The attenuated backscattering coefficient β′
λ(ζ ) at wavelength λ is expressed

as follows:

β′
λ(ζ ) = ζ2Pλ(ζ )/Cλ = (βλ,m(ζ )+βλ,p(ζ ))T 2

λ,m(ζ )T 2
λ,p(ζ ), (5)25

where Pλ(ζ ) is the raw signal intensity from altitude ζ , and Cλ is the instrument constant.
Backscattering coefficients are represented by β(ζ ), and the two-way transmittance

1890

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

due to scattering (or absorbing) species is given by T 2(ζ ); the subscripts m and p
specify the molecular and particulate (either aerosol or cloud) contributions to the sig-
nal, respectively. In this study, we assimilated the total attenuated backscattering coef-
ficient β′

λ(ζ ) and its depolarization ratio δ(ζ ). This direct assimilation avoids errors due
to data retrieval processes. Extinction coefficients and optical thickness, which have5

generally been used for aerosol assimilation studies, require erroneous assumptions
or prior estimations to be retrieved from attenuated backscatter data.

The observational operator simulates atmospheric optics induced by molecules
(Rayleigh scattering) and aerosol particles (Mie scattering) at each wavelength λ.
βλ,m(ζ ) is the backscattering coefficient of the atmospheric molecules, of which the10

concentrations can be estimated from the model pressure and temperature using the
gas law. The transmittance Tλ,m(ζ ) can be estimated through the accumulation of the
extinction coefficients of atmospheric molecules between the lidar instrument and al-
titude ζ . The backscattering coefficient of aerosol particles βλ,p(ζ ) is the sum of the
backscattering coefficients of sulfate, OC, BC, sea-salt, and dust aerosols, of which15

the concentrations are model prognostic variables. These backscattering coefficients
are calculated depending on the aerosol type and size and using the equations of
the Mie scattering theory. The transmittance of aerosol particles Tλ,p(ζ ) can be esti-
mated through the accumulation of all the extinction coefficients of aerosol particles,
as demonstrated for the estimation of Tλ,m(ζ ). Table 2 tabulates complex indices of re-20

fraction for each aerosol species used in this observation operator. The dust extinction
coefficient is empirically approximated using the Mie scattering theory, and the dust
backscattering coefficient is estimated using the extinction coefficient divided by an
empirical value of 50 sr. It is assumed that only dust particles are nonspherical in this
study; hence, depolarization is induced only by dust aerosol. In according with Shimizu25

et al. (2004), the depolarization ratio δ is set to 0.35, which is optimal for Asian Dust.
The coefficients βλ,p(ζ ) and Tλ,p(ζ ) vary with ambient moisture because the particles
have been observed to increase in size according to water uptake. The hygroscopic
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growth of the particles is parameterized with relative humidity according to Chin et al.
(2002), as shown in Table 3. Dust aerosol is assumed to be completely hydrophobic.

In this study, only sulfate and dust aerosols are included in the control variables.
Therefore, the concentrations of OC, BC, and sea-salt aerosols are used only in the
observation operator as constrained conditions when the atmospheric optics is simu-5

lated. This observation operator is nonlinear, but it requires only forward calculation.
EnKFs have a distinct advantage over 3D-Var or 4D-Var in that they do not require
a linearized observation operator or its adjoint.

2.4 Experimental conditions

In this data assimilation study, we set the sulfate aerosol concentration, the dust aerosol10

concentration, and the dust emission factor as the control variables and parameters.
These control variables and parameters were updated by the 4D-LETKF every 24 h.
Correlations among the observation errors were neglected; namely, the observation er-
ror covariance R is a diagonal matrix, which permits a large reduction in computational
cost when calculating its inverse matrix. The standard experiment was conducted us-15

ing 32 ensemble members. Miyoshi and Yamane (2007) noted that the LETKF worked
with at least 20 ensemble members for a state-of-the-art atmospheric general circu-
lation model. The sensitivity to the ensemble size was also tested in this study. The
localization scale of the Gaussian weighting function was set horizontally to 3000 km,
vertically to 10 layers, and temporally to 24 h. The influence of sampling errors on a grid20

point becomes almost negligible at the distance of these localization scales for all ob-
servations. The assimilation time window was 48 h long with a 1-h resolution, and the
analysis was performed with the past 24-h and future 24-h observations, as shown
in Fig. 1. With the 6000-km horizontal extent and the 48-h time window, it was as-
sumed that almost every aerosol plume was properly detected more than once by the25

CALIPSO/CALIOP, as long as the sky was clear. The vertical 10-grid length was based
on the number of layers in the modeled troposphere. While the use of more observa-
tions is preferable, horizontally and temporally distant observations raise the sampling
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error and the nonlinearity error. Sensitivity to the horizontal localization was also tested
in this study. The multiplicative covariance inflation parameter was fixed at 20 % for the
standard experiment, and sensitivity to the inflation parameter was tested.

The initial ensemble spreads were generated by adding random Gaussian noise
to the initial field. The analysis ensemble in every assimilation cycle was perturbed5

with zero-mean random Gaussian noise, similarly to additive inflation. The devi-
ations of these additive perturbations were set to 1.0 m s−1 for horizontal winds,
1.0×10−9 kg kg−1 for the dust concentration, 10 pptv for the sulfate concentration, and
0.5 for dust emission factors. The purpose of these additive perturbations is to maintain
the covariance magnitudes and increase the chances that the ensemble forecasting10

will explore directions of error growth missed by unperturbed ensembles and avoid be-
ing trapped in the unlikely subspace of the chaotic atmosphere system. The corrected
dust emission flux F ′

i j in Eq. (2) was limited to between 0 and 125 % of the maximum
emission intensity under the conditions of the no-snow, no-vegetation, and completely
dry surface at each grid point (i , j ), following the procedure of Sekiyama et al. (2011).15

This limitation prevents negative emission and overlarge emission. These experimental
conditions were empirically chosen to obtain the best performance for East Asia. The
optimal experimental conditions depend on the target regions and aerosol species.

In addition to the standard experiment, we conducted several sensitivity-test exper-
iments, as shown in Table 4. The ensemble size test consists of 4 experiments of20

varying ensemble sizes: 128, 64, 16, and 8 members. The covariance inflation test
consists of 3 experiments whose covariance inflations are 5 %, 10 %, and 40 %. The
localization scale test has only one experiment, with a horizontal scale of 1000 km.
The observation error test consists of 2 experiments whose observation errors are set
to 40 % (two-fold larger than the standard setting) and 100 % (five-fold larger than the25

standard setting). The data density test has two types of experiments: one is a cloudi-
ness test (3 experiments), and the other is a threshold test (1 experiment). The details
of the cloudiness and threshold tests are described in Sect. 3.3. We conducted an-
other experiment to explore the impact of the number of satellites on dust emission
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estimations, in which four virtual CALIPSOs were available for the data assimilation, as
described in Sect. 5.1.2.

3 OSSE design

The preparations for the Observing System Simulation Experiments (OSSEs) are de-
scribed in this section. These data assimilation experiments spanned the entire globe5

using a global model and global satellite observations. However, the validation of these
experiments was concentrated on only the region of Asia in this study. The highest con-
centrations of sulfate aerosols have frequently been reported from Asia (WHO Regional
Office for Europe, 2006). This region also experiences relatively high dust concentra-
tions (United Nations Environment Programme, 2008). Therefore, the validation of this10

method in Asia suits the first step of the OSSE aerosol study. The optimal experimental
conditions were empirically chosen for East Asia in this study. Furthermore, because
the aerosol distributions vary widely between regions, adopting a global mean is inap-
propriate. The exploration of other regions in addition to East Asia will be a part of our
future work.15

3.1 CALIOP/CALIPSO

Satellite measurements are extremely powerful at capturing global aerosol distributions
at fine temporal and large spatial scales. The purpose of this study is to conduct the
OSSE of the CALIPSO/CALIOP and, consequently, to assess the satellite-borne lidar
data assimilation. CALIPSO was launched on 28 April 2006 as part of the NASA A-train20

(cf. Winker et al., 2007). All satellites of the A-train are in a 705-km sun-synchronous
polar orbit between 82◦ N and 82◦ S with a 16-day repeat cycle, which is an approxi-
mately 1000-km longitudinal interval per day at mid-latitudes. An example of one-day
CALIPSO orbit tracks is presented in Fig. 3. The primary instrument CALIOP, carried
by CALIPSO, was the first satellite polarization lidar to be optimized for both aerosol25
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and cloud measurements. During both day and night, the CALIOP continuously pro-
vides vertical profiles of the total attenuated backscattering coefficient β′

λ(ζ ) at 532 and
1064 nm and the volume depolarization ratio δ(ζ ) at 532 nm, with a horizontal resolu-
tion between 333 m and 1 km and a vertical resolution of 30–60 m in the troposphere.
The CALIOP has a zero viewing angle and a zero swath width; therefore, it cannot5

obtain horizontally extended planar images, and only the cross-section images directly
below the CALIPSO orbit are available with an extremely high resolutions. The val-
ues of β′

λ(ζ ) and δ(ζ ) are contained in CALIPSO Level 1B datasets with their time
references and geo-locations. Winker et al. (2007) indicated that the measurement
uncertainties of the CALIOP are approximately 20 %. The CALIPSO science team pro-10

vides Level 2 data, including the variables retrieved from Level 1B data. The Level 2
data contain Cloud-Aerosol Discrimination (CAD) scores (Liu et al., 2004) with a 5-km
horizontal resolution. The CAD score is an indicator that enables the discrimination of
target signals between aerosols and clouds. Data assimilation must then identify the
aerosol signals, but it is difficult to screen out the cloud signals using model cloud sim-15

ulations. The CAD score is not a perfect indicator, but it is useful for data screening
without model cloud simulations (Sekiyama et al., 2010).

3.2 Making a nature run

A Nature Run, which serves as the truth for OSSEs, is generated by a realistic at-
mospheric model in a free-running mode without data assimilation. When conducting20

OSSEs, the Nature Run is the “real” atmosphere. If a process is not included in the
atmospheric model, the process does not exist in the computer-generated world. If
a mass balance (e.g. the SO2-SO4 ratio) exists in the atmospheric model, the mass
balance is true in the computer-generated world. In this idealized situation, the Nature
Run provides the “truth” of the atmosphere; all the data assimilation results can be vali-25

dated against this “truth” without any errors. The Nature Run is both the correct answer
for analysis validation and the source of simulated observations. Therefore, the Nature
Run model results should be realistic and slightly different from the data assimilation
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system model results. In this study, we produced the Nature Run by using MASINGAR
with slightly different configurations than the MASINGAR installed in the 4D-LETKF
data assimilation system. If the model and its configurations are identical for the Na-
ture Run and the data assimilation system, the system is referred to as an identical twin
OSSE (Liu and Kalnay, 2007). On the other hand, if the Nature Run model differs from5

the data assimilation system model, the experiment is referred to as a fraternal twin
OSSE (Masutani et al., 2010a). Our OSSEs are categorized as fraternal twin OSSEs.

Because MASINGAR is strongly constrained by the meteorological reanalysis with
Newtonian relaxation nudging in this study, its simulation results are less likely to be
influenced by the initial conditions. Consequently, to obtain a slightly different meteo-10

rological field, we altered the Newtonian relaxation time constant from 18 h to 54 h. In
addition, we changed the formulation schemes of dust threshold friction velocity (from
Shao and Lu, 2000, to those of Greeley and Iversen, 1985) and changed the salta-
tion flux intensity (from Owen, 1964, to White, 1979) to make a difference in the dust
emission. Furthermore, SO2 and DMS emissions were doubled and then multiplied by15

a random Gaussian noise with a mean of 1 and a standard deviation of 1 to make a dif-
ference in the sulfate aerosol distribution. Figures 4 and 5 show snapshot examples of
the difference between the default MASINGAR result and the Nature Run MASINGAR
result. The difference is very large in several regions (on the other hands, very small
in several regions) for both sulfate and dust aerosol optical thickness (AOT). Generally20

speaking, the accuracy of aerosol models is much inferior to that of weather forecast
models in the real world. It is often the case that the modeled aerosol concentrations
are twice or three times larger (smaller) than those of the observed concentrations; it
is not uncommon for the difference to reach 10 or 100 times. Therefore, the differences
shown in Figs. 4 and 5 appear natural: they are the differences between the model and25

the truth.
In this study, the Nature Run is the last 3-month period of a 6-month nudged simula-

tion using the Nature Run MASINGAR with the same resolutions and configurations as
the default MASINGAR used in the data assimilation system, with the exception of their
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Newtonian relaxation time constant, dust flux formulations, and sulfur emissions. The
output was saved every hour. The initial condition of the 6-month nudged simulation is
the result of a 1-yr free model simulation of the default MASINGAR at 00:00 UTC on
1 December 2006. The Nature Run begins at 00:00 UTC on 1 March 2007 and ends
at 00:00 UTC on 1 June 2007. The period from 1 December 2006 to 28 February 20075

was used as a spin-up. A primary reason for selecting this period is that the spring
is the season of Asian Dust, and the dust outbreak events were frequently reported
during the spring of 2007.

3.3 Making the simulated observation data

In OSSEs, simulated observations are generated by virtual instruments from the Nature10

Run. These simulated observations are assimilated as if they were real ones measured
in the real atmosphere. The virtual instruments of satellite-borne lidars require the sim-
ulation of radiances involving many procedures, including the simulation of orbits, the
evaluation of cloudiness, and the vertical distributions of aerosols. This simulation can
basically be performed by the lidar observation operator (cf. Eq. 4) developed for the15

4D-LETKF computation. In addition, these simulated observations must include realis-
tic observation errors that are completely comprehended in contrast to the real obser-
vations. The observables we should simulate are the total attenuated backscattering
coefficients at 532 and 1064 nm and the volume depolarization ratios at 532 nm, which
are included in the CALIPSO/CALIOP Level 1B dataset. These simulated observations20

are assumed to be observed from the real CALIPSO satellite orbits on the same days
of the OSSE period. The transformation from the model grid points to the observa-
tion locations (P in Eq. 4) was performed by horizontally interpolating the variables at
the four closest grid points of the Nature Run atmosphere onto the observation loca-
tion and then vertically onto the observation measurement level, in which the vertical25

interpolation was linear in log pressure.
The emulation of lidar instruments requires a realistic cloud distribution because

clouds interfere with the lidar beam reaching the aerosols at similar and lower altitudes.
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Hence, cloud evaluation is extremely important in the simulation of lidar observations.
The cloud distribution of the Nature Run will significantly affect the sampling of the
simulated observation data. Figure 6 depicts a daily-mean cloud distribution of the Na-
ture Run that illustrates the 16-layer sum (varying from 0 to 16) of the cloud cover
ratios (varying from 0 to 1) within the troposphere to browse the column amount of the5

clouds. According to Shibata et al. (1999), the meteorological modules of MASINGAR
were well evaluated, and the cloud distribution shown in Fig. 6 appears natural in com-
parison with the real cloud snapshot taken by the infrared channels of the geostationary
meteorological satellite MTSAT-1R located at 140◦ E on the same day. When fractional
cloudiness (= cloud cover ratio) is diagnosed in the model layers, cloud overlap as-10

sumptions must be applied to estimate the probability of lidar measurements at each
layer. In this study, the cloud fraction was approximated by the random cloud overlap
assumption, as follows:

C(k) = 1−n

∏
i=k

(1−ci ), (6)
15

where C(k) is the cloud fraction over the sky at the model layer k; n is the top layer in
the model atmosphere; and ci is the cloud cover ratio of the model layer i . The missing
data rate of layer k was proportionate to C(k). Indeed, maximum-random overlap (i.e.,
the maximum overlap of adjacent and the random overlap of separate cloud layers)
may be a more realistic assumption (e.g. Raisanen, 1998) than the random overlap20

assumption, but at least the random overlap assumption of Eq. (6) will never under-
estimate the amount of missing lidar observations due to the existence of clouds. The
overestimation of observation availability should be avoided to avoid the overestima-
tion of the data assimilation accuracy. Figure 7 shows the distributions of one-day lidar
aerosol observations derived from the real CALIOP and the OSSE virtual lidar with the25

standard settings. It is notable that these observations were previously screened by
the CAD scores or the aerosol signal threshold mentioned in the next paragraph, and
the total data amount of CALIOP is larger than that of OSSE virtual lidar because the
CALIOP vertical resolution is higher than the Nature Run resolution. However, Fig. 7
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enables us to browse the characteristics of the distributions of lidar data that is missing
due to clouds. The OSSE virtual lidar tends to be more highly influenced by clouds in
the Arctic and the Tropics than the real CALIOP and thus to miss observations in those
areas. The sensitivity of the data assimilation performance to the cloud fraction was
tested in this study.5

In the real CALIPSO/CALIOP data assimilation experiments (Sekiyama et al., 2010),
lidar observations were selected only when the aerosol signal was detected accord-
ing to the CAD score. The selected measurements were then horizontally and verti-
cally averaged along each satellite orbit to approximately model resolution prior to the
data assimilation. Such a combined observation is referred to as a “super-observation”10

(Lorenc, 1981) in data assimilation studies. The use of super-observations reduces
both the random errors of individual measurements and the representativeness errors
of high-resolution measurements. After the selection and averaging, the total num-
ber of the observations to be assimilated was 15 000–25 000 points per day in the
global troposphere. In this OSSE study, instead of using the CAD score, we defined15

the threshold of the aerosol signal above which the simulated observations are used
in the data assimilation. The 532-nm extinction coefficient, which was computed by the
observation operator, was used as the aerosol signal proxy, and the threshold was set
to 2×10−5 m−1. After the cloud-cover and threshold data screening, the total number of
the simulated observations to be assimilated was 10 000–20 000 points per day in the20

global troposphere. The sensitivity of the data assimilation performance to this thresh-
old was tested in this study. The frequency distributions of the selected observations to
be assimilated are shown in Fig. 8. This comparison provides information on the plausi-
bility of the simulated observations. Although the simulated data amounts are less than
the real ones because these observations are not yet vertically averaged to the model25

resolution (the CALIOP vertical resolution is higher than the Nature Run resolution),
the shapes of the frequency distributions are analogous with each other.

Finally, the simulated observations were produced by adding simulated observa-
tion errors, which roughly correspond to the type of random errors found in the real

1899

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

observations. If the simulated observation errors are too small, the OSSEs will result
in presenting an unrealistic benefit of the simulated observations. Winker et al. (2007)
indicate that the measurement uncertainties of CALIOP are approximately 20 %, al-
though it is impossible to separate instrument errors from representativeness errors
and estimate the minimum error. We assumed that the observation errors were unbi-5

ased and, consequently, added a zero-mean random Gaussian noise to each obser-
vation with a 20 % standard deviation of each observation value. To avoid a too-small
error, the minimum observation error was set to 1×10−4 sr−1 km−1 for both 532 and
1064 nm. The observation error of the depolarization ratio was calculated from multi-
plying a parallel component error and a perpendicular component error together. The10

sensitivity of the data assimilation performance in comparison to the simulated obser-
vation error was tested in this study. An example of the cross sections, in which both the
real and simulated lidar observations β′

λ=532(ζ ) are plotted, is shown in Fig. 9. The sim-
ulated observations have vertically discrete layers depending on the model resolution,
distributing them into strips. The two cross sections illustrate the same day and loca-15

tion, but unfortunately, their aerosol distributions are not coincident with each other.
The real CALIOP observations are very noisy because they are not yet averaged to
either the CAD score resolution or the model resolution.

4 Evaluation tools

The importance of verification methods has been emphasized within the aerosol mod-20

eling community (cf. Benedetti et al., 2011). In this study, the data assimilation system
was evaluated by the application of an object-based verification tool, the Method for
Object-based Diagnostic Evaluation (MODE). We used aerosol optical thickness (AOT)
as the analysis object of this MODE tool.
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4.1 Traditional methods

Generally, model simulation (forecast) or data assimilation (analysis) results have been
verified by the root-mean-squared error (RMSE), correlation scores, and skill scores,
such as the probability of detection, false alarm ratio, and threat score. Indeed, the
RMSE and correlation scores have performed very well when the verified quantity is5

continuous and does not exhibit sharp fluctuations. Consequently, numerical weather
forecast models have been verified using the continuous fields as a proxy, such as
temperature, pressure, and geopotential height. However, aerosol plumes are highly
localized phenomena, are not continuous against the background field, and present
extremely sharp fluctuations. The traditional verification methods, such as RMSE, cor-10

relation scores, and skill scores, are no use in aerosol forecast/analysis verification.
As an example, Fig. 10 illustrates the difficulties associated with diagnosing analytical
errors using traditional verification approaches. This figure shows various observation
(O) and analysis (A) combinations, assuming that these crescent-shaped areas indi-
cate homogeneous aerosol plumes, and the background concentrations are zero. The15

three combinations of Fig. 10a, b, and c yield the same RMSE and normal correlation.
In contrast, the combination of Fig. 10d has the best RMSE performance. Unfortu-
nately, traditional skill scores are unable to distinguish the performance differences in
Fig. 10a, b and c. Subjectively, the combination in Fig. 10a appears to be a fairly good
analysis that is merely offset somewhat to the right. In fact, for most of the aerosol re-20

searchers and product users, small location errors and small intensity errors are unim-
portant. Because aerosol distribution exhibits significant spatial variability, it is very
difficult to simulate the structure and location of aerosol plumes. However, based on
the comparison between an analysis grid and its counterpart observation grid, the tra-
ditional verification methods measure small errors at each grid point and penalize the25

performance of the analysis without diagnosing the small location or structure errors.
A similar case can be observed in the verification of the precipitation forecast/analysis,
in which rainfall is a local and episodic phenomenon similar to an aerosol outbreak.
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To provide more diagnostic information about precipitation forecast performance and
separate location errors from other errors, several approaches have been developed
(e.g. Ebert and McBride, 2000; Casati et al., 2004; Davis et al., 2006a,b). The Method
for Object-based Diagnostic Evaluation (MODE) is one of these approaches.

4.2 Method for object-based diagnostic evaluation5

In a manner similar to the precipitation forecast verification, the aerosol analysis can
be verified by object-based approaches, in which simulated and observed areas of
aerosol plumes are represented and compared as objects through characterizations
according to attributes such as location, size, and intensity. Of the object-based ap-
proaches, we utilized the MODE tool (Davis et al., 2006a,b), which was developed for10

the evaluation of precipitation forecasts from the Weather Research and Forecasting
(WRF) model by the National Center for Atmospheric Research (NCAR). The MODE
tool is included in the Model Evaluation Tools (MET) provided for the WRF commu-
nity by NCAR (http://www.dtcenter.org/met/users/). This paper shows that MODE is
applicable to evaluate the aerosol analyses obtained from model simulations and data15

assimilations.
MODE was developed to provide a tool with the ability to mimic a human eye’s evalu-

ation of model performance with the examination of graphical patterns. MODE includes
the following multistep process to perceive two-dimensional graphical patterns:

Step (1) Identify objects,20

Step (2) Measure the object attributes,

Step (3) Merge the objects in the same field,

Step (4) Match the objects from the analysis and observation fields,

Step (5) Compare the attributes of the analysis and the observation objects.
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The process that takes place between Steps 1 and 3 is illustrated with an example of
precipitation distribution in Fig. 11. The first step is to convert the gridded values into
simple objects using convolution (Fig. 11b) and a threshold mask (Fig. 11c). The con-
volution process smooths the raw data (from Fig. 11a to Fig. 11b) using a convolution
filter; a threshold is then applied to generate the object borders (Fig. 11c). The original5

data values are restored to the object interiors (Fig. 11d). The outside of the objects
is zeroed out. For this OSSE study, the convolution filter was a simple circular func-
tion with the averaging radius R = 0.75 model-grids, and the threshold was set to 0.2
aerosol optical thickness (AOT). The convolved field Cf is defined as

Cf(x,y) =
∑

1/πR2fr(x−u,y − v), if x2 + y2 ≤ R2, and Cf(x,y) = 0 otherwise, (7)10

where fr is the raw data field, and the variables (x, y) and (u, v) are grid coordinates.
When Cf is lower than the threshold, the grid is masked out.

The second step is to measure the object attributes defined by geometrical charac-
teristics (such as the centroid location, size, axis angle, and aspect ratio) and other15

quantities (such as the 25th, 50th, 75th, and 90th percentile intensities) within each
object. The third step is to merge the objects in the same field and match these objects
between the observation field and the model field. While object merging is the process
of associating objects in the same field to make a composite object, object matching
is the process of associating objects in the observation field with objects in the model20

field. After this merging is complete, the attributes are recalculated (if desired) for the
composite object in the same way before matching. In this step, the attributes include
mutual quantities, such as centroid distance, object intersection, and union areas. The
current version of MODE uses a fuzzy logic process – cf. the User’s Guide of MET
(NCAR DTC, 2012) – for both merging and matching objects. Once the object attributes25

are estimated, they are used as inputs in a fuzzy logic engine, in which interest maps
Ii are defined for the individual attribute ai with preconfigured parameters according to
the ai quantity, including distance, ratio, and intensity. The interest map ranges from
zero (representing no interest) to one (highest interest). Additionally, confidence maps
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Si are defined for each attribute, reflecting how confident we are in the calculated value
of an attribute. In MODE, all of the confidence maps except the map for the axis angle
are constantly set to 1 (the axis angle confidence is a function of the aspect ratio).
Next, we determine the weights wi for each attribute to represent the relative impor-
tance of the attribute. In this OSSE study, centroid distance and boundary distance are5

weighted more heavily than other attributes because the locations of aerosol plumes
that are close to each other should be the strongest indicator. Consequently, we calcu-
late a single scalar number J integrating all the ingredients, as follows:

J =
∑

wiSi (ai )Ii (ai )/
∑

wiSi (ai ). (8)
10

This judgment number J is then thresholded, and the pairs of objects with J values
above the preconfigured threshold are merged (if they are in the same field, as shown
in Fig. 11d) or matched (if they are in different fields). In the final step, we can compare
the composite object attributes between the analysis and the observation: for example,
the distance between two object centroids; the ratio of the areas of two objects, defined15

as the lesser of the analysis area divided by the observation area or its reciprocal; and
the ratio of the 75th percentile of intensity of the two objects, defined as the lesser
of the analysis intensity divided by the observation intensity or its reciprocal. In short,
the shorter the centroid distance, the better the experimental performance. The ratios
range from 1 (best) to 0 (worst). Additional details of MODE are described in NCAR20

DTC (2012) and by Davis et al. (2006a,b).

5 Results and discussion

The results of a standard test and various sensitivity tests are presented and discussed
in this section. All the experiments were initiated at 00:00 UTC on 1 March 2007 and
terminated at 00:00 UTC on 1 June 2007. We validated the performance of these three-25

month experiments using MODE with sulfate and dust AOT distributions as the analysis
objects.
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5.1 Standard test

5.1.1 MODE scores

The standard-test experiment (Exp-Std) was conducted with 32 ensemble members,
a 20 % covariance inflation, a 3000-km horizontal localization, 20 % observation errors,
a 2×10−5 m−1 data-screening threshold, the standard cloud-cover ratio, and one virtual5

satellite. The experimental result was validated against the Nature Run with respect to
sulfate aerosol plumes and dust aerosol plumes. An example of the sulfate aerosol
validation is presented in Fig. 12 with a validation of the free model run (FmR) without
data assimilation. This comparison illustrates the superiority of the 4D-LETKF data
assimilation of satellite-borne lidar observations to the free-running simulation. In this10

example, the Exp-Std result (Fig. 12c) is in much closer agreement with the Nature Run
(Fig. 12a) than the FmR result (Fig. 12b) to the human eye. However, the traditional
scores exhibit nearly identical performances for both the FmR (RMSE = 0.33; normal
correlation = 0.16) and the Exp-Std (RMSE = 0.34; normal correlation = 0.01). These
scores are summarized in Table 5. Although, in general, such a small correlation has15

no significance, the score of the Exp-Std is lower than that of the FmR. This is because
the traditional verification methods only measure errors at each grid point and ignore
the surrounding pattern. In contrast, the MODE scores indicate differences for the Exp-
Std result and the FmR result, as shown in Fig. 12 and Table 5. The object centroid
distance of the Exp-Std result (1.51 grids) is less than half that of the FmR result20

(3.27 grids). One grid is approximately 280 km. The area ratio of the Exp-Std result is
0.70, while that of the FmR result is 0.41. Evidently, the MODE scores demonstrate the
better performance of the Exp-Std, as measured by the human eye. The 75th-percentile
intensity ratios of the Exp-Std (0.91) and the FmR (0.89) are nearly equivalent because
only part of the plumes (less than 25 % of the area) exhibits high AOT values among25

all the Nature Run, FmR, and Exp-Std results.
A similar result was obtained from the dust aerosol validation, as shown in Fig. 13

and Table 6. In this example, the Exp-Std result (Fig. 13c) demonstrates an evidently
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closer agreement with the Nature Run (Fig. 13a) than the FmR result (Fig. 13b) to
the human eye. The difference is, however, relatively small with the use of the tradi-
tional verification methods. While the normal correlation of the FmR result is negative
(−0.41), that of the Exp-Std result is almost negligible (0.18). In contrast, the MODE
scores demonstrate the higher performance of the Exp-Std, as measured by the human5

eye. The object centroid distance of the Exp-Std result (0.86 grids) is 30 % smaller than
that of the FmR result (1.22 grids). The area ratio is dramatically improved between the
FmR result (0.44) and the Exp-Std result (0.76). On the other hand, the 75th-percentile
intensity ratios are almost equivalent between the Exp-Std (0.89) and the FmR (0.86),
similar to the sulfate aerosol validation.10

The time series of these MODE scores also demonstrate that the Nature Run is in
closer agreement with the Exp-Std than the FmR result (Figs. 14 and 15). If two or more
objects existed in a field in a day, these object attributes were averaged daily when plot-
ting the time series. The field of analysis of sulfate aerosols was a region in East Asia
and the Northwest Pacific from 15◦ N to 52.5◦ N in latitude and from 90◦ E to 182.5◦ E in15

longitude, as shown in Fig. 12. This region frequently experiences extremely high sul-
fate concentrations. For the dust aerosols, the field of analysis was shifted to the Asian
Dust region (from 20◦ N to 57.5◦ N in latitude and from 70◦ E to 162.5◦ E in longitude),
primarily including China, Mongolia, Korea, and Japan, as shown in Fig. 13. First, the
three-month time series of sulfate aerosol validations are presented in Fig. 14a (cen-20

troid distance), Fig. 14b (area ratio), and Fig. 14c (75th-percentile intensity ratio). In the
case of the centroid distance (Fig. 14a), although the difference between the FmR and
the Exp-Std is negligible in March, the Exp-Std result exhibits a better performance in
April and May. The three-monthly mean of the centroid distance is 2.15 grids for the
FmR and 1.45 grids for the Exp-Std. In the case of the area ratio (Fig. 14b), the Exp-25

Std result almost always exhibits a better performance during the three-month period.
The three-monthly mean of the area ratio is 0.49 for the FmR and 0.76 for the Exp-Std.
In the case of the 75th-percentile intensity ratio (Fig. 14c), the difference between the
FmR and the Exp-Std is small, but the Exp-Std result almost always exhibits a better
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performance during the three-month period. The three-monthly mean of the intensity
ratio is 0.80 for the FmR and 0.85 for the Exp-Std. In summary, the MODE scores of
the Exp-Std, i.e., the 4D-LETKF data assimilation results, are clearly superior to those
of the FmR results.

Second, the three-month time series of dust aerosol validations are presented in5

Figs. 15a (centroid distance), 15b (area ratio), and 15c (75th-percentile intensity ra-
tio). In the case of the centroid distance (Fig. 15a), the Exp-Std result exhibits a good
performance in April and May. Unfortunately, MASINGAR tends to underestimate the
dust outbreaks in March in Asian Dust source regions (Tanaka et al. 2011), so dust
plumes are barely produced by either the Nature Run or the FmR. The three-monthly10

mean of the centroid distance is reduced from 2.59 grids of the FmR to 1.14 grids of
the Exp-Std. For the area ratio (Fig. 15b), the Exp-Std result almost always exhibits its
best performance in April and May. Particularly in May, the area ratio of the Exp-Std
often presents values greater than 0.9, which means the area size is almost the same
as in the Nature Run. The three-monthly mean of the area ratio is improved from 0.5115

with the FmR to 0.72 with the Exp-Std. In the case of the 75th-percentile intensity ra-
tio (Fig. 15c), the difference between the FmR and the Exp-Std is small, as seen in
the sulfate aerosol validation, but the Exp-Std result almost always exhibits an equal
or better performance during the three-month period. The three-monthly mean of the
intensity ratio is 0.83 with the FmR, and 0.85 with the Exp-Std. In summary, these20

MODE scores indicate that the dust aerosol result of the Exp-Std, i.e., the 4D-LETKF
data assimilation, is also superior to that of the FmR.

5.1.2 Flux verification

Flux estimation is one of the most important products of aerosol data assimilation,
along with the plume distribution analysis described above. Therefore, we compared25

the surface dust emission flux of the Nature Run, the FmR result, and the Exp-Std
results. As an example, Fig. 16 shows the surface dust emission accumulated dur-
ing a dust event from 1 to 3 April 2007. In this plot, the dust weights of six size bins
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from 0.200 µm to 3.17 µm in diameter were accumulated during the dust event period.
Dust bins with a diameter of more than 3.17 µm were excluded because these large
particles have an exponentially large mass ratio against smaller particles but a short
lifetime in the model-grid scale. Unfortunately, the improvement caused by the data
assimilation is not clear in Fig. 16, and the Exp-Std result is slightly noisy. The Nature5

Run (Fig. 16a) and the FmR (Fig. 16b) have clearly different emission distributions in
the arid regions along the border between China and Mongolia from the Gobi desert
to the Taklamakan desert. A close inspection of these figures discloses that the data
assimilation (Exp-Std: Fig. 16c) improves the overestimation in the Taklamakan desert
and the underestimation in the Gobi desert.10

Although the horizontal pattern shows no clear advantage, the horizontal average is
improved; i.e., the time series of the dust emission flux in the entire Asian Dust source
region shows a large improvement. Figure 17a compares the Nature Run, the FmR,
and the Exp-Std during the same period of Fig. 16, in which the dust emission is totaled
hourly in the rectangular region (35◦ N–50◦ N and 75◦ E–120◦ E) mainly covering China15

and Mongolia and including both the Gobi and Taklamakan deserts. The dust weights
of six size bins from 0.200 µm to 3.17 µm in diameter were also accumulated here. In
Fig. 17a, the overestimation on 2 April is dramatically improved by the data assimilation
that day. In this case, the Exp-Std data assimilation was able to perfectly adjust the total
amount of dust emission, but it did not properly allocate it to each grid point. In contrast,20

the extreme underestimation of the afternoon of 31 March was not improved at all.
Another example of the time series of dust emission flux totals from the Asian Dust

source region is presented in Fig. 18a. This is the case in late May 2007, which corre-
sponded to a severe dust storm in the real world. The region and the accumulated dust
size are the same as in the case depicted in Fig. 17a. In this period, large dust out-25

breaks occurred seven times. Among them, the third (26 May) and seventh (30 May)
outbreaks were almost perfectly adjusted. The first (24 May), second (25 May), and
fifth (28 May) outbreaks were not improved at all. The sixth (29 May) outbreak was
improved but not enough. The fourth (27 May) outbreak was deteriorated; however, the
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FmR originally provides a good agreement with the Nature Run. It is notable that dust
emission estimation is more difficult than plume location estimation because emission
estimation is impossible if the emitted dust plume is not observed in the downwind di-
rection within 24 h. In contrast, there are multiple chances for plume location estimation
to detect the plume for more than 24 h.5

Consequently, we examined another test experiment (Exp-4sat) with four satellites
emulating CALIPSO. The Exp-4sat had the same experiment settings as the Exp-Std,
with the exception of the number of satellites. In Exp-4sat, each satellite circled the
Earth along the CALIPSO orbit track, π/2-phase-shifting away from both the preced-
ing and following satellites so that the observational cover area was nearly quadrupled.10

The results of the Exp-4sat is presented in Figs. 17b and 18b. Among the seven dust
outbreaks depicted in Fig. 18, the first (24 May), fourth (27 May), and sixth (29 May)
outbreaks were remarkably improved by the Exp-4sat (Fig. 18b) in comparison with
the Exp-Std (Fig. 18a). Furthermore, the second (25 May) and fifth (28 May) outbreaks
were also improved by the Exp-4sat although not perfect. In contrast, the extreme un-15

derestimation of the afternoon of 31 March in Fig. 17b was not improved by the Exp-
4sat. In this case, it is difficult for the multiplicative dust emission factor αi j in Eq. (2)
to correct the dust emission intensity because the first-guess intensity in the data as-
similation process (the same as the FmR result) is almost zero. In our multiplicative
scheme, a zero emission cannot be perturbed and modified. In addition, the dust emis-20

sion factor αi j is constant for one analysis cycle of 24 h from 00:00 UTC to 24:00 UTC.
If the first guess (FmR) overestimates in the morning and underestimates in the after-
noon, similar to the event on 31 March in Fig. 17, it is impossible to adjust the factor
correctly for both. The MODE scores of the Exp-4sat are presented in Tables 7 (sulfate
aerosol) and 8 (dust aerosol). Although the dust emission estimation was improved by25

the increase in the number of satellites, the dust plume analysis was not improved or
was deteriorated. This is probably due to the strongly constrained meteorological field
and the consequent limitation of the freedom to control the aerosol variables.
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5.2 Sensitivity tests

To validate the robustness of the 4D-LETKF data assimilation system and determine
the most suitable experimental settings for this system, sensitivity-test experiments
were conducted with the conditions shown in Table 4. Their results are listed in Tables
7 and 8 with the results of the FmR and the Exp-Std. These results are presented5

as a three-monthly mean of each MODE score derived from the sulfate or dust AOT
distribution.

5.2.1 Ensemble size test

We have tested different values of the ensemble size. Although the standard size was
32 members, the sensitivity-test experiments were performed with 128 members (Exp-10

Ens128), 64 members (Exp-Ens64), 16 members (Exp-Ens32), or 8 members (Exp-
Ens8). For the sulfate aerosol, as shown in Table 7, the ensemble-size experiments
did not differ much in comparison with the Exp-Std, with the exception of the centroid
distance of Exp-ens8, which was slightly worse than the others. For dust aerosol, as
shown in Table 8, the best performance was demonstrated by the Exp-Std with 3215

members; the second was demonstrated by the Exp-Ens64; and the worst was pro-
duced by the Exp-Ens8. The Exp-Ens128 did not exhibit the best performance. It was
found that the use of a too-small ensemble size, such as 8 members, deteriorates the
confidence of the data assimilation in spite of the fact the ensemble size does not in-
fluence the performance of data assimilation much. This is probably because this data20

assimilation is constrained by the meteorological field nudged into the reanalysis, so
the degree of freedom to control aerosol variables is limited in the data assimilation.

5.2.2 Covariance inflation and localization scale test

We have tested different values of the covariance inflation factor and the localiza-
tion scale. First, while the standard inflation was 20 %, the inflation-sensitivity-test25

1910

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

experiments were performed using 5 % (Exp-Inf05), 10 % (Exp-Inf10), and 40 % (Exp-
Inf40) inflation. For sulfate aerosol, the results of these sensitivity experiments did not
display a clear difference in comparison with that of the Exp-Std, as shown in Table 7.
In contrast, for dust aerosol, the best performance was exhibited by the Exp-Std when
the centroid distance was used as a measure or by the Exp-Inf40 when the area ratio5

was used as a measure, as shown in Table 8. The worst performance was exhibited
by the Exp-Inf05. The use of small covariance inflation factors tended to deteriorate
the confidence of the data assimilation. However, inflation factors of more than 40 %
caused divergences in the data assimilation (not shown in the tables). Second, the
sensitivity-test experiment of the localization scale was conducted at 1000 km (Exp-10

Lcl1000), while the standard localization scale was 3000 km. For sulfate aerosol, the
results of the Exp-Lcl1000 were almost equal to or slightly worse than that of the Exp-
Std, as shown in Table 7. In contrast, for dust aerosol, the shorter localization scale
(1000 km) evidently worsened the data assimilation performance in comparison with
the standard localization scale (3000 km), as shown in Table 8. This is probably be-15

cause a localization scale of 1000 km is large enough to optimize aerosol plume distri-
bution, but it is too short to conversely optimize the aerosol flux intensity. In this study,
sulfur sources are not controlled by the data assimilation, but dust sources are con-
trolled in this manner. Dust aerosol distributions depend strongly on the dust emission
flux.20

5.2.3 Observation error test

We also tested different values of the observation errors. While the standard observa-
tion error was 20 % with a minimum of 1×10−4 sr−1 km−1, the sensitivity-test experi-
ments were performed with 40 % error and a minimum of 2×10−4 sr−1 km−1 (Exp-2err)
and 100 % with a minimum of 5×10−4 sr−1 km−1 (Exp-5err). For sulfate aerosol, the25

results of these sensitivity experiments exhibited few differences from those of the Exp-
Std, as shown in Table 7. For dust aerosol, however, while the result of the Exp-2err was
almost equal to or slightly better than that of the Exp-Std, the result of the Exp-5err was
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worse than that of the Exp-Std, as shown in Table 8. For the real CALIPSO/CALIOP,
a 20 % observation error is assumed (Winker et al., 2007), but the error is not statisti-
cally significant because the observations of the aerosol remote sensing instruments
exhibit a large discrepancy with one another (e.g. Chapter 2 of IPCC, 2007; Schus-
ter et al., 2012). Thus, a 40 % observation error appears to be within the expectable5

range, and it is, therefore, favorable that the 4D-LETKF data assimilation system with
CALIPSO/CALIOP observations works very well with a 40 % observation error. On the
other hand, it is determined that this system does not work with a too-large observation
error, such as 100 %.

5.2.4 Data density test10

We also tested different conditions of fractional cloudiness and the data-screening
threshold. These two conditions influence the observational data density. First, the
cloudiness-sensitivity-test experiments were performed using a perfectly clear sky
(Exp-Sky), a more cloudy sky (0.1× clear sky probability; Exp-Cld01), and a much more
cloudy sky (0.05× clear sky probability; Exp-Cld005). In comparison with the Exp-Std,15

the Exp-Sky has approximately double the amount of data; the Exp-Cld01 has approx-
imately 1/6 the amount of data; and Exp-Cld005 has approximately 1/12 the amount
of data. For sulfate aerosol, the results of these sensitivity experiments exhibited few
differences from those of the Exp-Std, as shown in Table 7. In contrast, the dust aerosol
results exhibited the following features, as shown in Table 8: the Exp-Sky performance20

was slightly superior to the Exp-Std performance; the Exp-Cld01 performance was al-
most equal to the Exp-Std performance; and the Exp-Cld005 performance was slightly
inferior to the Exp-Std performance. This means that the 4D-LETKF data assimilation
system is very robust even when there is a smaller amount of observation data. How-
ever, it is notable that this sensitivity test scheme is multiplicative for the amount of25

clouds; thus, the clear skies are always clear, even in the Exp-Cld01 or Exp-Cld005.
Second, the sensitivity-test experiment of the data-screening threshold was conducted
with a threshold of 1×10−4 m−1 (Exp-Hth) that was five times higher than the standard
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threshold (2×10−5 m−1). In comparison with the Exp-Std, the Exp-Hth had approxi-
mately 1/8 the amount of data. For sulfate aerosol, the result of the Exp-Hth was almost
equal to that of the Exp-Std, as shown in Table 7. In contrast, for dust aerosol, the higher
threshold greatly diminished the data assimilation performance in comparison with the
standard threshold, as shown in Table 8. This Exp-Hth result for dust aerosol had the5

worst centroid distance among the sensitivity-test experiments. This result implies that
aerosol discrimination before the data assimilation process has a large impact on the
data assimilation performance. Quality matters more than quantity. The data amount
of the Exp-Hth (1/6) is larger than that of the Exp-Cld01 (1/8), but the performance of
the Exp-Cld01 is better than that of the Exp-Hth.10

6 Conclusions

An ensemble-based data assimilation approach has been investigated with simulated
satellite-borne lidar aerosol observations using the OSSE technique. In the OSSEs,
CALIPSO/CALIOP aerosol observations were simulated, accounting for cloudiness.
An object-based verification tool called MODE was used to evaluate the data assim-15

ilation results, concentrating on East Asia. Consequently, it was found that the 4D-
LETKF aerosol data assimilation system (Sekiyama et al., 2010, 2011b) had the ability
to produce a better analysis of sulfate and dust aerosols than a free-running simulation
model. The three-monthly mean centroid distance (from the “truth”) of aerosol plumes
was improved from 2.15 grids (≈ 600 km) to 1.45 grids (≈ 400 km) for sulfate aerosols20

and from 2.59 grids (≈ 750 km) to 1.14 grids (≈ 330 km) for dust aerosols. The three-
monthly mean area ratio (to the “truth”) of aerosol plumes was improved from 0.49 to
0.76 for sulfate aerosols and from 0.51 to 0.72 for dust aerosols. The satellite-borne
lidar data assimilation successfully improved both the aerosol analysis and the dust
emission estimation in the OSSEs.25

This OSSE study is the first in which satellite-borne lidar Level 1B data were em-
ulated and assimilated successfully. This result clearly indicated that it is possible to
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assimilate attenuated backscattering coefficients and depolarization ratios using a non-
linear observation operator; i.e., the retrieval process was unnecessary to obtain the
extinction coefficients. In addition, this successful result indicated great possibilities
for the beneficial use of horizontally sparse but vertically/temporally dense information,
such as lidar observations, when coupled with a four-dimensional data assimilation sys-5

tem. It has been difficult for the human eye to address horizontally sparse observations
without data assimilation. Although some technical difficulties and limitations of OSSEs
were revealed, we demonstrated that the OSSEs could play an important role in the
assessment of a novel data assimilation system and a new observing system, even at
the planning stage. The same data assimilation system and verification approach can10

probably be applied to regions other than East Asia and to species other than sulfate
and dust aerosols. For example, we intend to validate the analysis of Saharan dust
aerosol in the near future.

We explored the optimal parameter settings of inflation and localization for the
LETKF algorithm and assessed the robustness of this data assimilation system against15

a decrease in ensemble members and the number of observations using sensitivity
tests. Consequently, we found better experimental settings of the 4D-LETKF data as-
similation system . Meanwhile, we did not observe the expected large differences be-
tween the results of these sensitivity tests. This is probably because this data assimila-
tion is constrained by the meteorological field nudged to the reanalysis, so the degree20

of the freedom to control the aerosol variables is limited in the data assimilation. In the
sensitivity tests, the dust analyses were more sensitive to several experimental condi-
tion settings (i.e., observation error, localization scale, and data density) than were the
sulfate analyses. This is probably because the dust aerosol distribution is strongly influ-
enced by both the meteorological circumstances and the accuracy of the dust emission25

estimation controlled by the data assimilation. Therefore, if a setting in the sensitivity-
test experiments deteriorates the dust analyses, the setting is probably an obstructive
factor in the inverse estimation of dust emission flux. While the dust emission esti-
mation was improved by an increase in the number of satellites from one CALIPSO
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(Exp-Std) to four CALIPSOs (Exp-4sat), the dust plume analysis of the Exp-4sat did
not exhibit a great difference; in fact, it was slightly worse than that of the Exp-Std. This
is also probably due to the strongly constrained meteorological field and the limitation
of the freedom to control the aerosol variables. Further improvements are expected to
emerge from the simultaneous assimilation of aerosol observations with meteorologi-5

cal observations, as suggested by Kang et al. (2011) for CO2 data assimilation using
OSSEs.

This study has demonstrated the beneficial results of data assimilation, but it should
be noted that these experiments used the OSSEs in which everything was ideally sim-
ulated. However, the 4D-LETKF data assimilation system worked successfully under10

experimental conditions that were configured more strictly than the real observational
conditions, including cloudiness and observation errors. In spite of the many contro-
versies regarding OSSEs, this study demonstrates that carefully constructed OSSEs
are able to provide useful information for the verification of a data assimilation system
and observing systems. The results presented in this paper strongly suggest that the15

4D-LETKF data assimilation system of the real CALIPSO data have a beneficial im-
pact on the development of dust and sulfate aerosol analyses. Furthermore, the use
of the OSSE technique demonstrated here will allow us to perform a prior assessment
of the next-generation lidar satellite EarthCARE, which will be launched in 2015 by the
European Space Agency (ESA) and the Japan Aerospace eXploration Agency (JAXA).20
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Table 1. Properties of aerosol particles in MASINGAR. Volume mean diameters (Dv ) are shown
for each size bin of dust aerosol.

Type Size bin Density (g cm−3) Diameter (µm) Dv (µm)

Dust 1 2.50 0.200–0.317 0.271
2 2.50 0.317–0.502 0.430
3 2.50 0.502–0.796 0.681
4 2.50 0.796–1.26 1.08
5 2.50 1.26–2.00 1.71
6 2.65 2.00–3.17 2.71
7 2.65 3.17–5.02 4.30
8 2.65 5.02–7.96 6.81
9 2.65 7.96–12.6 10.8
10 2.65 12.6–20.0 17.1

Sulfate 1.77 0.30
Organic carbon 1.50 0.36
Black carbon 1.25 0.36
Sea-salt 1–10 2.25 0.200–20.0 0.271–17.1
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Table 2. Complex index of refraction of each aerosol species at 532 nm and 1064 nm.

Complex index of refraction
λ = 532nm λ = 1064nm

Type Real part Imaginary part Real part Imaginary part

Dust 1.67 8.1×10−3 1.63 1.9×10−6

Sulfate 1.43 1.0×10−8 1.42 1.5×10−6

Organic carbon 1.53 5.0×10−3 1.53 5.0×10−3

Black carbon 1.75 0.45 1.75 0.44
Sea-salt 1.50 1.0×10−8 1.47 2.0×10−4
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Table 3. Hygroscopic growth factors as a function of relative humidity (Chin et al., 2002).

RH (%) 0 50 70 80 90 95 99

Sulfate 1.0 1.4 1.5 1.6 1.8 1.9 2.2
Organic carbon 1.0 1.2 1.4 1.5 1.6 1.8 2.2
Black carbon 1.0 1.0 1.0 1.2 1.4 1.5 1.9
Sea-salt 1.0 1.6 1.8 2.0 2.4 2.9 4.8

1924

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Experimental conditions of the standard and sensitivity tests.

Experiment Condition

Exp-Std Standard test (ensemble size = 32, covariance inflation = 20 %,
horizontal localization = 3000 km, observation error = 20 %)

Exp-Ens128 Ensemble size = 128 members
Exp-Ens64 Ensemble size = 64 members
Exp-Ens16 Ensemble size = 16 members
Exp-Ens8 Ensemble size = 8 members

Exp-Inf05 Covariance inflation = 5 %
Exp-Inf10 Covariance inflation = 10 %
Exp-Inf40 Covariance inflation = 40 %
Exp-Lcl1000 Horizontal localization = 1000 km

Exp-2err Two-fold observation error (40 %)
Exp-5err Five-fold observation error (100 %)

Exp-Sky Perfectly clear sky (≈ double data amount)
Exp-Cld01 Cloudy: 0.1-fold clear sky probability (≈ 1/6 data amount)
Exp-Cld005 Cloudy: 0.05-fold clear sky probability (≈ 1/12 data amount)
Exp-Hth Higher noise threshold (≈ 1/8 data amount)

Exp-4sat 4 satellites used
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Table 5. Traditional and object-based verification scores of sulfate aerosol shown in Fig. 12.

Sulfate aerosol on May 11
Scores Free model run Data assimilation

Traditional RMSE 0.33∗ 0.34
(0 is best; ∞ is worst)
Correlation 0.16∗ 0.01
(1 is best; 0 is worst)

Object-based Centroid distance 3.27 1.51∗

(MODE) (0 is best; ∞ is worst)
Area Ratio 0.41 0.70∗

(1 is best; 0 is worst)
75th Intensity Ratio 0.89 0.91∗

(1 is best; 0 is worst)

∗ Bold values indicate better scores between the free model run and the data assimilation.
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Table 6. Traditional and object-based verification scores of the dust aerosol shown in Fig. 13.

Dust aerosol on May 16
Scores Free model run Data assimilation

Traditional RMSE 0.311 0.16
(0 is best; ∞ is worst)
Correlation −0.41 0.18
(1 is best; 0 is worst)2

Object-based Centroid distance 1.22 0.861

(MODE) (0 is best; ∞ is worst)
Area ratio 0.44 0.761

(1 is best; 0 is worst)
75th intensity ratio 0.86 0.891

(1 is best; 0 is worst)

1 Bold values indicate better scores between the free model run and the data assimilation.
2 A controversy might exist over which is the worst correlation, 0 or −1.

1927

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/1877/2012/gmdd-5-1877-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 1877–1947, 2012

OSSEs for satellite
lidar observations

T. T. Sekiyama et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 7. Performance of the sulfate aerosol data assimilation for each experiment condition
measured by MODE. All the scores show a 3-month mean from 1 March to 31 May 2007.

Experiment Centroid Area 75th Percentile
distance ratio intensity ratio

(0 best; ∞ worst) (1 best; 0 worst) (1 best; 0 worst)

Free model run (FmR) 2.15 0.49 0.80
Exp-Std 1.45 0.76 0.85

Exp-Ens128 1.46 0.77 0.87
Exp-Ens64 1.44 0.78 0.86
Exp-Ens16 1.47 0.77 0.87
Exp-Ens8 1.52 0.77 0.86

Exp-Inf05 1.43 0.78 0.87
Exp-Inf10 1.48 0.76 0.87
Exp-Inf40 1.46 0.76 0.86
Exp-Lcl1000 1.49 0.78 0.86

Exp-2err 1.46 0.77 0.85
Exp-5err 1.48 0.77 0.86

Exp-Sky 1.42 0.77 0.86
Exp-Cld01 1.53 0.77 0.87
Exp-Cld005 1.49 0.76 0.86
Exp-Hth 1.43 0.78 0.87

Exp-4sat 1.47 0.76 0.87
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Table 8. Performance of the dust aerosol data assimilation for each experiment condition mea-
sured by MODE. All the scores show a 3-month mean from 1 March to 31 May 2007.

Experiment Centroid Area 75th Percentile
distance ratio intensity ratio

(0 best; ∞ worst) (1 best; 0 worst) (1 best; 0 worst)

Free model run (FmR) 2.59 0.51 0.83
Exp-Std 1.14 0.72 0.85

Exp-Ens128 1.37 0.67 0.86
Exp-Ens64 1.22 0.72 0.86
Exp-Ens16 1.29 0.67 0.83
Exp-Ens8 1.46 0.63 0.83

Exp-Inf05 1.33 0.72 0.86
Exp-Inf10 1.24 0.70 0.83
Exp-Inf40 1.24 0.67 0.84
Exp-Lcl1000 1.35 0.67 0.85

Exp-2err 1.06 0.72 0.86
Exp-5err 1.43 0.53 0.77

Exp-Sky 1.07 0.72 0.85
Exp-Cld01 1.11 0.71 0.85
Exp-Cld005 1.30 0.70 0.85
Exp-Hth 1.86 0.57 0.85

Exp-4sat 1.25 0.65 0.82
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24hr0hr 48hr

24hr0hr 48hr

24hr0hr 48hr

1st Time-Window

2nd Time-Window

3rd Time-Window

4th Time-Window
0hr  

Fig. 1. The schematic diagram of the 4D-LETKF data assimilation scheme. In this case, each
time window is 48 h long. The analysis is obtained at the intermediate time of this assimilation
time window at 24-h intervals. Red stars indicate the analysis. Red arrows illustrate a tempo-
ral transition of the state. Blue circles indicate observations, and the size of each blue circle
symbolizes the localization weight that depends on the distance from the analysis grid to the
observation grid. Each observation is weighted and used twice. The same observation has the
same number in this illustration.
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Correlation between dust flux & conc. [March 30, 2007]

 

Fig. 2. The correlation between surface dust concentrations and the dust emission within the
yellow square area centered at (43◦ N, 112.5◦ E). This spatial distribution indicates the response
pattern of the dust concentrations to an increase in the dust emission within the yellow square
area. This correlation distribution was derived from the 32-member ensemble forecast from
00:00 UTC to 24:00 UTC on 30 March 2007. Green arrows indicate the mean surface winds on
this day.
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Fig. 3. An example plot of the one-day CALIPSO orbit tracks (1 March 2007).
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(a)

(b)

 

Fig. 4. Snapshots of sulfate aerosol optical thickness (AOT) at 00:00 UTC on 30 March 2007
derived from (a) the Nature Run MASINGAR result and (b) the default MASINGAR result.
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(a)

(b)

 

Fig. 5. The same as Fig. 4, but snapshots of dust aerosol optical thickness (AOT).
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MTSAT-1R IR 2007-05-30 11:32UTC 
Copyright (C) JMA Meteorological Satellite Center (MSC)

Cloud Cover Ratio

 

Fig. 6. Upper: the daily-mean cloud cover ratio (CCR) of the Nature Run model result on 30
May 2007, which is the sum (varying from 0 to 16) of the 16-layer CCRs below 150 hPa. Each
layer’s CCR varies from 0 to 1, in which a zero ratio means a perfectly clear sky. Lower: the
real cloud snapshot taken by the infrared channels of the geostationary meteorological satellite
MTSAT-1R located at 140◦ E on the same day. The green circle in the upper panel indicates the
approximate location of the snapshot of the lower panel.
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(a)

(b)

 

Fig. 7. A distribution of lidar aerosol observations on 30 May 2007 (a) derived from the real
CALIPSO/CALIOP after screened by the cloud-aerosol discrimination (CAD) scores, and (b)
derived from the OSSE virtual lidar with the standard settings after screened by the cloud-
cover ratio and the aerosol signal threshold. Because the CALIOP vertical resolution is higher
than the Nature Run resolution, the total data amount of (a) is larger than that of (b).
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Fig. 8. Frequency distributions of the selected observations to be assimilated in the global tro-
posphere: (a) the real CALIPSO/CALIOP observations (Sekiyama et al., 2010), (b) the OSSE
simulated observations with the perfectly clear sky condition, (c) the OSSE simulated obser-
vations with the standard conditions. The aerosol signal threshold was set to a 2×10−5 m−1

extinction coefficient at 532 nm for (b) and (c). These observations were previously screened
by the cloud cover ratio and the aerosol signal threshold but not yet averaged to the model
resolution. Thus, the total observation number of (a) tends to be larger than that of (b) or (c).
Blue line and squares indicate 532 nm parallel attenuated backscattering coefficients; red line
and squares indicate 532 nm perpendicular attenuated backscattering coefficients; gray line
and squares indicate 1064 nm total attenuated backscattering coefficients. The X-axis shows
the number of observations. The Y-axis shows the intensity of attenuated backscatter, and is
expressed logarithmically.
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Fig. 9. Cross sections of lidar observations (total attenuated backscattering coefficients at
532 nm) at approximately 17:00 UTC on 27 May 2007 over East Asia along the orbit path shown
in (a), (b) derived from the real CALIPSO/CALIOP data, and (c) derived from the Nature Run.
The simulated observations (c) have vertically discrete layers depending on the model reso-
lution, distributing them into strips. The real CALIOP observations (b) are not yet averaged to
either the CAD score resolution or the model resolution.
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Fig. 10. A schematic example of various observation and analysis combinations. (a–c) These
all yield the same RMSE, whereas (d) has the best RMSE. However, (a) would probably be
evaluated as the best subjectively.
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Fig. 11. Example of application of the object-identification approach used in MODE, illustrated
by precipitation distribution. (a) Original precipitation distribution, (b) convolved distribution after
the smoothing operation has been applied, (c) masked distribution following application of the
intensity threshold, and (d) filtered distribution showing the precipitation intensities inside the
identified objects.
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Nature Run

Free Model Run Data Assimilation

Sulfate: 11 May 2007 

(a)

(b) (c)

RMSE = 0.33 
Correlation = 0.16 
C. Distance = 3.27 
Area Ratio = 0.41 

Int. Ratio = 0.89 

RMSE = 0.34 
Correlation = 0.01 
C. Distance = 1.51 
Area Ratio = 0.70 

Int. Ratio = 0.91 

 

Fig. 12. The comparison of sulfate AOT distributions and performance scores at 00:00 UTC
on 11 May 2007: (a) the Nature Run, (b) the free model run without data assimilation, and (c)
the data assimilation result with the standard condition. In (a), (b), and (c), the upper panels
show the raw data (corresponding to Fig. 11a), the middle panels show the convolved data
(corresponding to Fig. 11b), and the lower panels show the masked distributions (correspond-
ing to Fig. 11c). The listed performance scores are RMSE, normal correlation, the distance
between two object centroids in grid units, ratio of the areas of two objects, and ratio of the 75th
percentile intensity of the two objects.
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Nature Run

Free Model Run Data Assimilation

Dust: 16 May 2007 

(a)

(b) (c)

RMSE = 0.31 
Correlation = -0.4 

C. Distance = 1.22 
Area Ratio = 0.44 

Int. Ratio = 0.86 
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C. Distance = 0.86 
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Fig. 13. The same as Fig. 12, but the comparison of dust AOT at 00:00 UTC on 16 May 2007.
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Fig. 14. Time series of (a) the two-object centroid distance (grid unit ≈ 280 km), (b) the two-
object area ratio, and (c) the two-object 75th-percentile intensity ratio of sulfate aerosol plumes.
Blue triangles indicate the performance of the free model run without data assimilation. Red cir-
cles indicate the performance of the data assimilation with the standard condition. The analyzed
region was limited in East Asia and the Northwest Pacific from 15◦ N to 52.5◦ N in latitude and
from 90◦ E to 182.5◦ E in longitude. If two or more plumes existed in the region in a day, their
distances or ratios were averaged.
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Fig. 15. Time series of (a) the two-object centroid distance (grid unit ≈ 280 km), (b) the two-
object area ratio, and (c) the two-object 75th-percentile intensity ratio of dust aerosol plumes.
Blue triangles indicate the performance of the free model run without data assimilation. Red
circles indicate the performance of the data assimilation with the standard condition. The ana-
lyzed region was limited in East Asia (mainly China, Mongolia, Korea, and Japan) from 20◦ N to
57.5◦ N in latitude and from 70◦ E to 162.5◦ E in longitude. If two or more plumes existed in the
region in a day, their distances or ratios were averaged.
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Fig. 16. Dust emission during a dust event from 1 April to 3 April 2007 of (a) the Nature Run,
(b) the free model run without data assimilation, and (c) the data assimilation result with the
standard condition. The dust weights of six size bins from 0.200 µm to 3.17 µm in diameter were
accumulated during the dust event period.
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Fig. 17. Time series of the dust emission flux totaled in the Asian Dust source region (mainly
China and Mongolia) in early April 2007. The dust weights of six size bins from 0.200 µm to
3.17 µm in diameter were accumulated. Red circles indicate the Nature Run. Green triangles
indicate the free model run result without data assimilation. Black squares indicate the data
assimilation result with the standard condition. Only one satellite was used for the OSSE in (a),
and four satellites were used in (b).
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Fig. 18. The same as Fig. 17, but in late May 2007.
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