The Chemical Mechanism of MECCA

KPP version: 2.2.1 rs3 MECCA version: 2.5d Date: April 19, 2012. Selected reactions: "Tr && (G || (Aa && Mbl)) && !Hg && !I" Number of aerosol phases: 1 Number of species in selected mechanism: Gas phase: 97 Aqueous phase: 31 All species: 128Number of reactions in selected mechanism: Gas phase (Gnnn): 173Aqueous phase (Annn): 14 Henry (Hnnn): 37 Photolysis (Jnnn): 53Heterogeneous (HETnnn): 0 Equilibria (EQnn): 28Dummy (Dnn): 1 All equations: 306

The following describes the full chemical mechanism and relevant parameters as used for the simulations reported in this publication. Reactions labeled with "a01" correspond to a specific aerosol size bin. Since the reaction mechanisms were identical for each size bin, the chemical mechanism for only one of the eight bins is described here. Further information can be found in the article "Technical Note:

The new comprehensive atmospheric chemistry module MECCA" by R. Sander et al. (Atmos. Chem. Phys. 5, 445-450, 2005), available at http://www.atmos-chem-phys.net/5/445.

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	StTrG	$O_2 + O(^1D) \rightarrow O(^3P) + O_2$	3.3E-11*EXP(55./temp) Sander et al. (2006)	
G1001	StTrG	$O_2 + O(^3P) \rightarrow O_3$	6.E-34*((temp/300.)**(-2.4))*cair Sander et al. (2006)	
G2100	StTrG	$H + O_2 \rightarrow HO_2$	k_3rd(temp,cair,4.4E-32,1.3, Sander et al. (2006)	
			4.7E-11,0.2,0.6)	
G2104	StTrG	$OH + O_3 \rightarrow HO_2 + O_2$	1.7E-12*EXP(-940./temp)	Sander et al. (2006)
G2105	StTrG	$OH + H_2 \rightarrow H_2O + H$	2.8E-12*EXP(-1800./temp)	Sander et al. (2006)
G2107	StTrG	$\mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{OH} + 2 \mathrm{O}_2$	1.E-14*EXP(-490./temp)	Sander et al. (2006)
G2109	StTrG	$\rm HO_2 + OH \rightarrow H_2O + O_2$	4.8E-11*EXP(250./temp)	Sander et al. (2006)
G2110	StTrG	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	k_H02_H02	Christensen et al. (2002) ,
				Kircher and Sander $(1984)^*$
G2111	StTrG	$H_2O + O(^1D) \rightarrow 2 OH$	1.63E-10*EXP(60./temp)	Sander et al. (2006)
G2112	StTrG	$\rm H_2O_2+OH\rightarrow H_2O+HO_2$	1.8E-12	Sander et al. (2006)
G3101	StTrG	$N_2 + O(^1D) \rightarrow O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Sander et al. (2006)
G3103	StTrGN	$\rm NO + O_3 \rightarrow NO_2 + O_2$	3.E-12*EXP(-1500./temp)	Sander et al. (2006)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Sander et al. (2006)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Sander et al. (2006)
G3109	StTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Sander et al. $(2006)^*$
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(2.7E-27*EXP(11000./	Sander et al. $(2006)^*$
			temp))	
G3200	TrG	$\rm NO + OH \rightarrow \rm HONO$	k_3rd(temp,cair,7.0E-31,2.6,	Sander et al. (2006)
			3.6E-11,0.1,0.6)	
G3201	StTrGN	$\rm NO + HO_2 \rightarrow NO_2 + OH$	3.5E-12*EXP(250./temp)	Sander et al. (2006)
G3202	StTrGN	$NO_2 + OH \rightarrow HNO_3$	k_3rd(temp,cair,1.8E-30,3.0,	Sander et al. (2006)
			2.8E-11,0.,0.6)	
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Sander et al. $(2006)^*$
G3204	$\mathrm{Tr}\mathrm{GN}$	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Sander et al. (2006)
G3205	TrG	$HONO + OH \rightarrow NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Sander et al. (2006)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3$	k_HNO3_OH	Sander et al. $(2006)^*$
G3207	StTrGN	$\mathrm{HNO}_4 \rightarrow \mathrm{NO}_2 + \mathrm{HO}_2$	k_NO2_HO2/(2.1E-27*EXP(10900./	Sander et al. $(2006)^*$
			temp))	

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Sander et al. (2006)
G4101	StTrG	$CH_4 + OH \rightarrow CH_3O_2 + H_2O$	1.85E-20*EXP(2.82*log(temp)	Atkinson $(2003)^*$
			-987./temp)	
G4102	TrG	$CH_3OH + OH \rightarrow HCHO + HO_2$	2.9E-12*EXP(-345./temp)	Sander et al. (2006)
G4103	StTrG	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$	4.1E-13*EXP(750./temp)	Sander et al. $(2006)^*$
G4104	StTrGN	$CH_3O_2 + NO \rightarrow HCHO + NO_2 + HO_2$	2.8E-12*EXP(300./temp)	Sander et al. (2006)
G4105	$\mathrm{Tr}\mathrm{GN}$	$CH_3O_2 + NO_3 \rightarrow HCHO + HO_2 + NO_2$	1.3E-12	Atkinson et al. (1999)
G4106a	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow 2 HCHO + 2 HO_2$	9.5E-14*EXP(390./temp)/(1.+1./	Sander et al. (2006)
			26.2*EXP(1130./temp))	
G4106b	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow HCHO + CH_3OH + O_2$	9.5E-14*EXP(390./temp)/(1.+	Sander et al. (2006)
			26.2*EXP(-1130./temp))	
G4107	StTrG	$CH_3OOH + OH \rightarrow .7 CH_3O_2 + .3 HCHO +$	k_CH3OOH_OH	Sander et al. $(2006)^*$
		$.3 \text{ OH} + \text{H}_2\text{O}$		
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	9.52E-18*EXP(2.03*log(temp)	Sivakumaran et al. (2003)
			+636./temp)	
G4109	$\mathrm{Tr}\mathrm{GN}$	$\mathrm{HCHO} + \mathrm{NO}_3 \rightarrow \mathrm{HNO}_3 + \mathrm{CO} + \mathrm{HO}_2$	3.4E-13*EXP(-1900./temp)	Sander et al. $(2006)^*$
G4110	StTrG	$\rm CO + OH \rightarrow H + CO_2$	1.57E-13 + cair*3.54E-33	McCabe et al. (2001)
G4111	TrG	$\rm HCOOH + OH \rightarrow HO_2$	4.0E-13	Sander et al. (2006)
G4200	TrGC	$C_2H_6 + OH \rightarrow C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./	Atkinson (2003)
			temp)	
G4201	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + .22 HO_2 + .12 OH$	1.2E-14*EXP(-2630./temp)	Sander et al. $(2006)^*$
		$+ .23 \text{ CO} + .54 \text{ HCOOH} + .1 \text{ H}_2$		
G4202	TrGC	$C_2H_4 + OH \rightarrow .66666667 CH_3CH(O_2)CH_2OH$	k_3rd(temp,cair,1.0E-28,4.5,	Sander et al. (2006)
			8.8E-12,0.85,0.6)	
G4203	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Sander et al. (2006)
G4204	TrGNC	$C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.6E-12*EXP(365./temp)	Sander et al. (2006)
G4205	TrGNC	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Atkinson et al. (1999)
G4206	TrGC	$\rm C_2H_5O_2$ + $\rm CH_3O_2$ \rightarrow .75 HCHO + HO_2 +	1.6E-13*EXP(195./temp)	see note
		$.75 \text{ CH}_3 \text{CHO} + .25 \text{ CH}_3 \text{OH}$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4207	TrGC	$C_2H_5OOH + OH \rightarrow .3 C_2H_5O_2 + .7 CH_3CHO$	k_CH3OOH_OH	see note
		+ .7 OH		
G4208	TrGC	$CH_3CHO + OH \rightarrow CH_3C(O)OO + H_2O$	4.4E-12*EXP(365./temp)	Atkinson et al. (2006)
G4209	TrGNC	$CH_3CHO + NO_3 \rightarrow CH_3C(O)OO + HNO_3$	1.4E-12*EXP(-1900./temp)	Sander et al. (2006)
G4210	TrGC	$CH_3COOH + OH \rightarrow CH_3O_2 + CO_2 + H_2O$	4.2E-14*EXP(855./temp)	Atkinson et al. (2006)
G4211a	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH$	4.3E-13*EXP(1040./temp)/(1.+1./	Tyndall et al. (2001)
			37.*EXP(660./temp))	
G4211b	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	4.3E-13*EXP(1040./temp)/(1.+	Tyndall et al. (2001)
			37.*EXP(-660./temp))	
G4212	TrGNC	$CH_3C(O)OO + NO \rightarrow CH_3O_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001)
G4213	TrGNC	$CH_3C(O)OO + NO_2 \rightarrow PAN$	k_PA_NO2	Sander et al. (2006)
G4214	TrGNC	$CH_3C(O)OO + NO_3 \rightarrow CH_3O_2 + NO_2$	4.E-12	Canosa-Mas et al. (1996)
G4215a	TrGC	$CH_3C(O)OO + CH_3O_2 \rightarrow HCHO + HO_2 +$	0.9*2.E-12*EXP(500./temp)	Sander et al. (2006)
		$CH_3O_2 + CO_2$		
G4215b	TrGC	$\mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO}$ + $\mathrm{CH}_3\mathrm{O}_2$ \rightarrow $\mathrm{CH}_3\mathrm{COOH}$ +	0.1*2.E-12*EXP(500./temp)	Sander et al. (2006)
		НСНО		
G4216	TrGC	$\mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO} \ + \ \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2 \ \rightarrow \ .82 \ \mathrm{CH}_3\mathrm{O}_2 \ + \label{eq:charged}$	4.9E-12*EXP(211./temp)	Atkinson et al. (1999), Kirchner
		$CH_3CHO + .82 HO_2 + .18 CH_3COOH$		and Stockwell $(1996)^*$
G4217	TrGC	$CH_3C(O)OO + CH_3C(O)OO \rightarrow 2 CH_3O_2 +$	2.5E-12*EXP(500./temp)	Tyndall et al. (2001)
		$2 \operatorname{CO}_2 + \operatorname{O}_2$		
G4218	TrGC	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO$	k_CH300H_OH	see note
G4219	TrGNC	$NACA + OH \rightarrow NO_2 + HCHO + CO$	5.6E-12*EXP(270./temp)	see note
G4220	TrGNC	$PAN + OH \rightarrow HCHO + NO_2$	2.E-14	see note
G4221	TrGNC	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Sander et al. $(2006)^*$
G4222	TrGC	$C_2H_2 + OH \rightarrow CH_3O_2$	k_3rd(temp,cair,5.5e-30,0.0,	Sander et al. (2006)
			8.3e-13,-2.,0.6)	
G4300	TrGC	$C_3H_8 + OH \rightarrow .82 C_3H_7O_2 + .18 C_2H_5O_2 +$	1.65E-17*temp*temp*EXP(-87./temp)	Atkinson (2003)
		H_2O		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4301	TrGC	$C_3H_6 + O_3 \rightarrow .57 \text{ HCHO} + .47 \text{ CH}_3\text{CHO} +$	6.5E-15*EXP(-1900./temp)	Sander et al. $(2006)^*$
		$.33 \text{ OH} + .26 \text{ HO}_2 + .07 \text{ CH}_3 \text{O}_2 + .06 \text{ C}_2 \text{H}_5 \text{O}_2$		
		$+ .23 \text{ CH}_3 \text{C}(\text{O}) \text{OO} + .04 \text{ CH}_3 \text{COCHO} + .06$		
		$CH_4 + .31 CO + .22 HCOOH + .03 CH_3OH$		
G4302	TrGC	$C_3H_6 + OH \rightarrow CH_3CH(O_2)CH_2OH$	k_3rd(temp,cair,8.E-27,3.5,	Atkinson et al. (1999)
		a	3.E-11,0.,0.5)	
G4303	TrGNC	$C_3H_6 + NO_3 \rightarrow ONIT$	4.6E-13*EXP(-1155./temp)	Atkinson et al. (1999)
G4304	TrGC	$C_3H_7O_2 + HO_2 \rightarrow C_3H_7OOH$	k_Pr02_H02	Atkinson $(1997)^*$
G4305	TrGNC	$C_3H_7O_2 + NO \rightarrow .96 CH_3COCH_3 + .96 HO_2$	k_Pr02_N0	Atkinson et al. $(1999)^*$
	T A A	$+.96 \text{ NO}_2 + .04 \text{ C}_3 \text{H}_7 \text{ONO}_2$		
G4306	TrGC	$C_3H_7O_2 + CH_3O_2 \rightarrow CH_3COCH_3 + .8$	k_Pr02_CH302	Kirchner and Stockwell (1996)
a	T aa	$HCHO + .8 HO_2 + .2 CH_3OH$		
G4307	TrGC	$C_3H_7OOH + OH \rightarrow .3 C_3H_7O_2 + .7$	k_CH3UUH_UH	see note
a 4000	таа	$CH_3COCH_3 + .7 OH$		
G4308	IrGC	$CH_3CH(O_2)CH_2OH + HO_2 \rightarrow CH_2CH(O_2)CH_2OH + HO_2 \rightarrow CH_2CH(O_2)CH(O_2)CH_2OH + HO_2CH(O_2)CH(O_2$	6.5E-13*EXP(650./temp)	Muller and Brasseur (1995)
C1200	TONO	$CH_{2}CH_{1}(OOH_{1})CH_{2}OH_{1}$	$4.95, 10 + 5 \times D(190, (+))$	Müller and Program (1005)*
G4309	IIGNU	$08 \text{ HCHO} + 08 \text{ HO}_{2} + 08 \text{ NO}_{2} + 02 \text{ ONIT}$	4.2E-12*EXP(180./temp)	Muller and Brasseur (1995)
C/310	TrCC	$CH_{2}CH(OOH)CH_{2}OH \rightarrow OH \rightarrow 5$	$38E - 12 \times E \times $	Müller and Brassour (1905)
04510	1160	$CH_{2}CH(O_{2})CH_{2}OH + 5 CH_{2}COCH_{2}OH +$	5.6E 12*EXF(200.7 temp)	Muller and Drasseur (1995)
		$5 \text{ OH} + \text{H}_2\text{O}$		
G4311	TrGC	$CH_2COCH_2 + OH \rightarrow CH_2COCH_2O_2 + H_2O_2$	1 33E-13+3 82E-11*EXP(-2000 /	Sander et al. (2006)
01011	1100		temp)	Sunder of an (2000)
G4312	TrGC	$CH_3COCH_2O_2 + HO_2 \rightarrow CH_3COCH_2O_2H$	8.6E-13*EXP(700./temp)	Tyndall et al. (2001)
G4313	TrGNC	$CH_3COCH_2O_2 + NO \rightarrow NO_2 + CH_3C(O)OO$	2.9E-12*EXP(300./temp)	Sander et al. (2006)
		+ HCHO		
G4314	TrGC	$CH_3COCH_2O_2 + CH_3O_2 \rightarrow .5 CH_3COCHO$	7.5E-13*EXP(500./temp)	Tyndall et al. (2001)
		$+ .5 \text{ CH}_3\text{OH} + .3 \text{ CH}_3\text{C}(\text{O})\text{OO} + .8 \text{ HCHO}$	-	- • • •
		$+ .3 \text{ HO}_2 + .2 \text{ CH}_3 \text{COCH}_2 \text{OH}$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4315	TrGC	$\begin{array}{l} \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{O}_{2}\mathrm{H} + \mathrm{OH} \rightarrow .3 \ \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{O}_{2} \\ + .7 \ \mathrm{CH}_{3}\mathrm{COCHO} + .7 \ \mathrm{OH} \end{array}$	k_CH300H_OH	see note
G4316	TrGC	$CH_3COCH_2OH + OH \rightarrow CH_3COCHO + HO_2$	2.15E-12*EXP(305./temp)	Dillon et al. (2006)
G4317	TrGC	$CH_3COCHO + OH \rightarrow CH_3C(O)OO + CO$	8.4E-13*EXP(830./temp)	Tyndall et al. (1995)
G4318	TrGNC	$MPAN + OH \rightarrow CH_3COCH_2OH + NO_2$	3.2E-11	Orlando et al. (2002)
G4319	TrGNC	$MPAN \rightarrow MVKO2 + NO_2$	k_PAN_M	see note
G4320	TrGNC	$C_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Atkinson et al. (1999)
G4400	TrGC	$C_4H_{10} + OH \rightarrow C_4H_9O_2 + H_2O$	1.81E-17*temp*temp*EXP(114./temp)	Atkinson (2003)
G4401	TrGC	$C_4H_9O_2 + CH_3O_2 \rightarrow .88 CH_3COC_2H_5 + .68$ HCHO + 1.23 HO ₂ + .12 CH ₃ CHO + .12 $C_2H_5O_2 + .18 CH_3OH$	k_Pr02_CH302	see note
G4402	TrGC	$C_4H_9O_2 + HO_2 \rightarrow C_4H_9OOH$	k_Pr02_H02	see note
G4403	TrGNC	$C_4H_9O_2 + NO \rightarrow .84 NO_2 + .56 CH_3COC_2H_5$ + .56 HO ₂ + .28 C ₂ H ₅ O ₂ + .84 CH ₃ CHO + .16 ONIT	k_Pr02_NO	see note
G4404	TrGC	$C_4H_9OOH + OH \rightarrow .15 C_4H_9O_2 + .85$ $CH_3COC_2H_5 + .85 OH + .85 H_2O$	k_CH300H_OH	see note
G4405	TrGC	$\begin{array}{l} \mathrm{MVK} + \mathrm{O}_3 \rightarrow .45 \ \mathrm{HCOOH} + .9 \ \mathrm{CH}_3 \mathrm{COCHO} \\ + .1 \ \mathrm{CH}_3 \mathrm{C(O)OO} + .19 \ \mathrm{OH} + .22 \ \mathrm{CO} + .32 \\ \mathrm{HO}_2 \end{array}$.5*(1.36E-15*EXP(-2112./temp) +7.51E-16*EXP(-1521./temp))	Pöschl et al. (2000)
G4406	TrGC	$\rm MVK + OH \rightarrow \rm MVKO2$.5*(4.1E-12*EXP(452./temp) +1.9E-11*EXP(175./temp))	Pöschl et al. (2000)
G4407	TrGC	$MVKO2 + HO_2 \rightarrow MVKOOH$	1.82E-13*EXP(1300./temp)	Pöschl et al. (2000)
G4408	TrGNC	$\begin{array}{l} \mathrm{MVKO2} + \mathrm{NO} \rightarrow \mathrm{NO}_2 + .25 \ \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO} + \\ .25 \ \mathrm{CH}_3\mathrm{COCH}_2\mathrm{OH} + .75 \ \mathrm{HCHO} + .25 \ \mathrm{CO} + \\ .75 \ \mathrm{HO}_2 + .5 \ \mathrm{CH}_3\mathrm{COCHO} \end{array}$	2.54E-12*EXP(360./temp)	Pöschl et al. (2000)
G4409	TrGNC	$MVKO2 + NO_2 \rightarrow MPAN$.25*k_3rd(temp,cair,9.7E-29,5.6, 9.3E-12,1.5,0.6)	Pöschl et al. $(2000)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4410	TrGC	$MVKO2 + CH_3O_2 \rightarrow .5 CH_3COCHO + .375$	2.E-12	von Kuhlmann (2001)
		$CH_3COCH_2OH + .125 CH_3C(O)OO + 1.125$		
		$HCHO + .875 HO_2 + .125 CO + .25 CH_3OH$		
G4411	TrGC	$MVKO2 + MVKO2 \rightarrow CH_3COCH_2OH +$	2.E-12	Pöschl et al. (2000)
		$CH_3COCHO + .5 CO + .5 HCHO + HO_2$		
G4412	TrGC	$MVKOOH + OH \rightarrow MVKO2$	3.E-11	Pöschl et al. (2000)
G4413	TrGC	$CH_3COC_2H_5 + OH \rightarrow MEKO2$	1.3E-12*EXP(-25./temp)	Atkinson et al. (1999)
G4414	TrGC	$MEKO2 + HO_2 \rightarrow MEKOOH$	k_Pr02_H02	see note
G4415	TrGNC	$\mathrm{MEKO2} + \mathrm{NO} \rightarrow .985 \ \mathrm{CH}_3\mathrm{CHO} + .985$	k_PrO2_NO	see note
		$CH_3C(O)OO + .985 NO_2 + .015 ONIT$		
G4416	TrGC	$MEKOOH + OH \rightarrow .8 MeCOCO + .8 OH +$	k_CH300H_OH	see note
		.2 MEKO2		
G4417	TrGNC	$ONIT + OH \rightarrow CH_3COC_2H_5 + NO_2 + H_2O$	1.7E-12	Atkinson et al. $(1999)^*$
G4500	TrGC	$ISOP + O_3 \rightarrow .28 \text{ HCOOH} + .65 \text{ MVK} + .1$	7.86E-15*EXP(-1913./temp)	Pöschl et al. (2000)
		$MVKO2 + .1 CH_3C(O)OO + .14 CO + .58$		
		$\rm HCHO + .09 \ H_2O_2 + .08 \ CH_3O_2 + .25 \ OH +$		
		$.25 \text{ HO}_2$		
G4501	TrGC	$ISOP + OH \rightarrow ISO2$	2.54E-11*EXP(410./temp)	Pöschl et al. (2000)
G4502	TrGNC	$ISOP + NO_3 \rightarrow ISON$	3.03E-12*EXP(-446./temp)	Pöschl et al. (2000)
G4503	TrGC	$ISO2 + HO_2 \rightarrow ISOOH$	2.22E-13*EXP(1300./temp)	Boyd et al. $(2003)^*$
G4504	TrGNC	$ISO2 + NO \rightarrow .88 NO_2 + .88 MVK + .88$	2.54E-12*EXP(360./temp)	Pöschl et al. $(2000)^*$
		$HCHO + .88 HO_2 + .12 ISON$		
G4505	TrGC	$ISO2 + CH_3O_2 \rightarrow .5 MVK + 1.25$	2.E-12	von Kuhlmann (2001)
		$\mathrm{HCHO} + \mathrm{HO}_2 + .25 \ \mathrm{CH}_3\mathrm{COCHO} + .25$		
		$CH_3COCH_2OH + .25 CH_3OH$		
G4506	TrGC	$ISO2 + ISO2 \rightarrow 2 MVK + HCHO + HO_2$	2.E-12	Pöschl et al. (2000)
G4507	TrGC	$ISOOH + OH \rightarrow MVK + OH$	1.E-10	Pöschl et al. (2000)
G4508	TrGNC	$ISON + OH \rightarrow CH_3COCH_2OH + NACA$	1.3E-11	Pöschl et al. (2000)
G6100	StTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow Cl_2 + O_2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6102b	StTrGCl	$ClO + ClO \rightarrow 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)
G6102c	StTrGCl	$ClO + ClO \rightarrow Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Atkinson et al. (2007)
G6103	StTrGCl	$Cl_2O_2 \rightarrow ClO + ClO$	k_C10_C10/(9.3E-28*EXP(8835./	Atkinson et al. (2007), Sander
			temp))	et al. $(2006)^*$
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl$	2.2E-12*EXP(340./temp)	Atkinson et al. (2007)
G6205	StTrGCl	$\rm HCl + OH \rightarrow Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6300	StTrGNCl	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)
G6301	StTrGNCl	$\text{ClO} + \text{NO}_2 \rightarrow \text{ClNO}_3$	k_3rd_iupac(temp,cair,1.6E-31,	Atkinson et al. (2007)
			3.4,7.E-11,0.,0.4)	
G6302	TrGCl	$\text{ClNO}_3 \rightarrow \text{ClO} + \text{NO}_2$	6.918E-7*exp(-10909./temp)*cair	Anderson and Fahey (1990)
G6304	StTrGNCl	$\text{ClNO}_3 + \text{Cl} \rightarrow \text{Cl}_2 + \text{NO}_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3O_2$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. $(2006)^*$
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	3.3E-12*EXP(-115./temp)	Sander et al. (2006)
G6408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow H_2O + 3 Cl$	1.64E-12*EXP(-1520./temp)	Sander et al. (2006)
G6409	TrGCCl	$Cl + C_2H_4 \rightarrow .66666667 CH_3CH(O_2)CH_2OH$	k_3rd_iupac(temp,cair,1.85E-29,	Atkinson et al. (2006)
		+ HCl	3.3,6.0E-10,0.0,0.4)	
G6410	TrGCCl	$Cl + CH_3CHO \rightarrow HCl + CH_3C(O)OO$	7.9e-11	Atkinson et al. $(2006)^*$
G6411	TrGCCl	$C_2H_2 + Cl \rightarrow CH_3O_2 + HCl$	k_3rd_iupac(temp,cair,6.1e-30,	Atkinson et al. (2006)
			3.0,2.0e-10,0.,0.6)	
G7100	StTrGBr	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7102a	StTrGBr	$BrO + BrO \rightarrow 2 Br + O_2$	2.7E-12	Atkinson et al. (2007)
G7102b	StTrGBr	$BrO + BrO \rightarrow Br_2 + O_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)
G7200	StTrGBr	$Br + HO_2 \rightarrow HBr + O_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	StTrGBr	$BrO + HO_2 \rightarrow HOBr + O_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	StTrGBr	$\mathrm{HBr} + \mathrm{OH} \rightarrow \mathrm{Br} + \mathrm{H}_2\mathrm{O}$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7204	StTrGBr	$Br_2 + OH \rightarrow HOBr + Br$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7300	TrGBr	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGNBr	$BrO + NO \rightarrow Br + NO_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGNBr	$BrO + NO_2 \rightarrow BrNO_3$	k_Br0_N02	Atkinson et al. $(2007)^*$
G7303	$\mathrm{Tr}\mathrm{GBr}$	$BrNO_3 \rightarrow BrO + NO_2$	k_Br0_N02/(5.44E-9*exp(14192./	Orlando and Tyndall (1996),
			temp)*1.E6*R_gas*temp/(atm2Pa*N_	Atkinson et al. $(2007)^*$
			A))	
G7400	StTrGBr	$Br + HCHO \rightarrow HBr + CO + HO_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	$\mathrm{Tr}\mathrm{GBr}$	$Br + CH_3OOH \rightarrow CH_3O_2 + HBr$	2.66E-12*EXP(-1610./temp)	Mallard et al. (1993)
G7402a	$\mathrm{Tr}\mathrm{GBr}$	$BrO + CH_3O_2 \rightarrow HOBr + HCHO$	0.8/1.1*5.7E-12	Aranda et al. (1997)
G7402b	$\mathrm{Tr}\mathrm{GBr}$	$BrO + CH_3O_2 \rightarrow Br + HCHO + HO_2$	0.3/1.1*5.7E-12	Aranda et al. (1997)
G7403	StTrGBr	$CH_3Br + OH \rightarrow H_2O + Br$	2.35E-12*EXP(-1300./temp)	Sander et al. (2006)
G7404	TrGCBr	$Br + C_2H_4 \rightarrow .66666667 CH_3CH(O_2)CH_2OH$	2.8E-13*EXP(224./temp)/(1.+1.13E+	Atkinson et al. (2006)
		+ HBr	24*EXP(-3200./temp)/C(ind_02))	
G7405	TrGCCl	$Br + CH_3CHO \rightarrow HBr + CH_3C(O)OO$	1.8e-11*EXP(-460./temp)	Atkinson et al. (2006)
G7406	TrGCBr	$Br + C_2H_2 \rightarrow CH_3O_2 + HBr$	6.35e-15*EXP(440./temp)	Atkinson et al. (2006)
G7407	$\mathrm{Tr}\mathrm{GBr}$	$CHBr_3 + OH \rightarrow H_2O + 3 Br$	1.35E-12*EXP(-600./temp)	Sander et al. $(2006)^*$
G7408	$\mathrm{Tr}\mathrm{GBr}$	$CH_2Br_2 + OH \rightarrow H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	Sander et al. $(2006)^*$
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.3E-15	Mallard et al. (1993)
G7601	TrGClBr	$Br + Cl_2 \rightarrow BrCl + Cl$	1.1E-15	Mallard et al. (1993)
G7602	TrGClBr	$Br_2 + Cl \rightarrow BrCl + Br$	1.2E-10	Mallard et al. (1993)
G7603a	StTrGClBr	$BrO + ClO \rightarrow Br + OClO$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGClBr	$BrO + ClO \rightarrow Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	StTrGClBr	$BrO + ClO \rightarrow BrCl + O_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGClBr	$BrCl + Cl \rightarrow Br + Cl_2$	1.5E-11	Mallard et al. (1993)
G7605	$\mathrm{Tr}\mathrm{GBr}$	$CHCl_2Br + OH \rightarrow H_2O + Br$	2.0E-12*EXP(-840./temp)	see note
G7606	$\mathrm{Tr}\mathrm{GBr}$	$CHClBr_2 + OH \rightarrow H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	see note
G7607	$\mathrm{Tr}\mathrm{GBr}$	$CH_2ClBr + OH \rightarrow H_2O + Br$	2.4E-12*EXP(-920./temp)	Sander et al. $(2006)^*$
G9200	StTrGS	$SO_2 + OH \rightarrow H_2SO_4 + HO_2$	k_3rd(temp,cair,3.3E-31,4.3,	Sander et al. (2006)
			1.6E-12,0.,0.6)	
G9400a	TrGS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2004)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G9400b	TrGS	$DMS + OH \rightarrow DMSO + HO_2$	k_DMS_OH	Atkinson et al. $(2004)^*$
G9401	TrGNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGS	$DMSO + OH \rightarrow .6 SO_2 + HCHO + .6 CH_3O_2$	1.E-10	Hynes and Wine (1996)
		$+ .4 \text{ HO}_2 + .4 \text{ CH}_3 \text{SO}_3 \text{H}$		
G9403	TrGS	$\rm CH_3SO_2 \rightarrow SO_2 + CH_3O_2$	1.9E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$\rm CH_3SO_2 + O_3 \rightarrow \rm CH_3SO_3$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\rm CH_3SO_3 + HO_2 \rightarrow CH_3SO_3H$	5.E-11	Barone et al. (1995)
G9600	TrGSCl	$DMS + Cl \rightarrow CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGSBr	$DMS + Br \rightarrow CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGSBr	$\rm DMS + BrO \rightarrow DMSO + Br$	2.54E-14*EXP(850./temp)	Ingham et al. (1999)

Rate coefficients for three-body reactions are defined via the function k_3rd($T, M, k_0^{300}, n, k_{inf}^{300}, m, f_c$). In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T), k_{inf}(T)$, and k_{ratio}, k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
(300 K)^m

(1)

(2)

$$k_{\inf}(T) = k_{\inf}^{300} \times \left(\frac{500\text{K}}{T}\right)$$
$$k_{e}(T)M$$

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)}$$
(3
k_3rd =
$$\frac{k_0(T)M}{1+k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1+(\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Atkinson et al. (2005) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300\text{K}}{T}\right)^n$$

$$k_{\text{inf}}(T) = k_{\text{inf}}^{300} \times \left(\frac{300\text{K}}{T}\right)^m$$

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_c)$$

$$k_0(T)M \propto \int_{1+(\log_{10}(k_c))}^{1+(\log_{10}(k_c))}$$

k_3rd_iupac = $\frac{\kappa_0(1)m}{1+k_{\rm ratio}} \times f_c^{-1}$

G2110: The rate coefficient is: k_H02_H02 = (1.5E-12*EXP(19./temp)+1.7E-33*EXP(1000./temp)*cair)* (1.+1.4E-21*EXP(2200./temp) *C(ind_H20)). The value for the first (pressure-independent) part is from Christensen et al. (2002), the water term from Kircher and Sander (1984).

G3109: The rate coefficient is: k_NO3_NO2 = k_ 3rd(temp,cair,2.E-30,4.4,1.4E-12,0.7,0.6).
G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.
G3203: The rate coefficient is: k_NO2_HO2 = k_3rd(temp,cair,1.8E-31,3.2,4.7E-12,1.4, 0.6).

G3206: The rate coefficient is: k_HNO3_OH = 2.4E-14 * EXP(460./temp) + 1./ (1./ (6.5E-34 * EXP(1335./temp)*cair) + 1./ (2.7E-17 * EXP(2199./temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4103: Sander et al. (2006) recommend a zero product yield for HCHO.

(5G4107: The rate coefficient is: k_CH300H_0H = 3.8E-12*EXP(200./temp).

(6C4109: The same temperature dependence assumed as for $CH_3CHO+NO_3$.

(\mathcal{C} 4201: The product distribution is from von Kuhlmann (2001) (see also Neeb et al. (1998)).

 $G_{\rm fratio}^{(0)}$ G4206: The rate coefficient was calculated by $G_{\rm ratio}^{(1)}$ on Kuhlmann (pers. comm. 2004) using self re- $G_{\rm ratio}^{(2)}$ cons of CH₃OO and C₂H₅OO from Sander

et al. (2003) and geometric mean as suggested by Madronich and Calvert (1990) and Kirchner and Stockwell (1996). The product distribution (branching=0.5/0.25/0.25) is calculated by von Kuhlmann (pers. comm. 2004) based on Villenave and Lesclaux (1996) and Tyndall et al. (2001).

G4207: Same value as for G4107: CH₃OOH+OH assumed.

G4216: The value 1.0E-11 is from Atkinson et al. (1999), the temperature dependence from Kirchner and Stockwell (1996).

G4218: Same value as for G4107: $CH_3OOH+OH$ assumed.

G4219: According to Pöschl et al. (2000), the same value as for $CH_3CHO+OH$ can be assumed.

G4220: This is 50% of the upper limit given by Sander et al. (2003), as suggested by von Kuhlmann (2001).

G4221: The rate coefficient is: $k_PAN_M = k_PA_NO2/9.E-29*EXP(-14000./temp)$, i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G4301: The product distribution is for terminal olefin carbons from Zaveri and Peters (1999).

G4304: The rate coefficient is: $k_Pr02_H02 =$ 1.9E-13*EXP(1300./temp). Value for generic RO₂ + HO₂ reaction from Atkinson (1997) is used.

G4305: The rate coefficient is: $k_PrO2_NO = 2.7E-12*EXP(360./temp)$.

G4307: Same value as for G4107: CH₃OOH+OH G4416: Same value as for G4107: CH₃OOH+OH assumed.

G4309: The products are from von Kuhlmann (2001).

G4315: Same value as for G4107: CH₃OOH+OH assumed.

G4319: Same value as for PAN assumed.

G4401: Same value as for propyl group assumed (k_Pr02_CH302).

G4402: Same value as for propyl group assumed (k_Pr02_H02).

G4403: Same value as for propyl group assumed (k_Pr02_N0).

G4404: Same value as for G4107: CH₃OOH+OH assumed.

G4409: The factor 0.25 was recommended by Uli k_3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, Poeschl (pers. comm. 2004).

G4414: Same value as for propyl group assumed (k_Pr02_H02).

G4415: Same value as for propyl group assumed (k_Pr02_N0).

assumed

G4417: Value for $C_4H_9ONO_2$ used here.

G4503: Same temperature dependence assumed as for other $RO_2 + HO_2$ reactions.

G4504: Yield of 12 % RONO₂ assumed as suggested in Table 2 of Sprengnether et al. (2002).

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G6402: The initial products are probably HCl and CH_2OOH (Atkinson et al., 2006). It is assumed that CH₂OOH dissociates into HCHO and OH.

G7302: The rate coefficient is: $k_Br0_N02 =$ 0.6).

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7408: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7605: Same value as for G7408: CH_2Br_2+OH assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7606: Same value as for G7408: CH_2Br_2+OH assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7607: It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G9400: Addition path. The rate coefficient $k_DMS_OH = 1.0E-39*EXP(5820./temp)$ is: *C(ind_02)/ (1.+5.0E-30*EXP(6280./temp) *C(ind_02)).

 Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J1000	StTrGJ	$O_2 + h\nu \rightarrow O(^{3}P) + O(^{3}P)$	jx(ip_02)	see note
J1001a	StTrGJ	$O_3 + h\nu \rightarrow O(^1D)$	jx(ip_O1D)	see note
J1001b	StTrGJ	$O_3 + h\nu \rightarrow O(^3P)$	jx(ip_O3P)	see note
J2101	StTrGJ	$H_2O_2 + h\nu \rightarrow 2 \text{ OH}$	jx(ip_H2O2)	see note
J3101	StTrGNJ	$NO_2 + h\nu \rightarrow NO + O(^3P)$	jx(ip_NO2)	see note
J3103a	StTrGNJ	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_NO2O)	see note
J3103b	StTrGNJ	$NO_3 + h\nu \rightarrow NO$	jx(ip_NOO2)	see note
J3104a	StTrGNJ	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	see note
J3200	$\mathrm{Tr}\mathrm{GJ}$	$HONO + h\nu \rightarrow NO + OH$	jx(ip_HONO)	see note
J3201	StTrGNJ	$HNO_3 + h\nu \rightarrow NO_2 + OH$	jx(ip_HNO3)	see note
J3202	StTrGNJ	$HNO_4 + h\nu \rightarrow .667 NO_2 + .667 HO_2 + .333 NO_3 + .333 OH$	jx(ip_HNO4)	see note
J4100	StTrGJ	$CH_3OOH + h\nu \rightarrow HCHO + OH + HO_2$	jx(ip_CH3OOH)	see note
J4101a	StTrGJ	$\rm HCHO + h\nu \rightarrow H_2 + CO$	jx(ip_COH2)	see note
J4101b	StTrGJ	$\rm HCHO + h\nu \rightarrow \rm H + \rm CO + \rm HO_2$	jx(ip_CHOH)	see note
J4200	TrGCJ	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	see note
J4201	TrGCJ	$CH_3CHO + h\nu \rightarrow CH_3O_2 + HO_2 + CO$	jx(ip_CH3CH0)	see note
J4202	TrGCJ	$CH_3C(O)OOH + h\nu \rightarrow CH_3O_2 + OH$	jx(ip_PAA)	see note
J4203	TrGNCJ	$NACA + h\nu \rightarrow NO_2 + HCHO + CO$	0.19*jx(ip_CHOH)	see note
J4204	TrGNCJ	$PAN + h\nu \rightarrow .6 CH_3C(O)OO + .6 NO_2 + .4 CH_3O_2 + .4 NO_3$	jx(ip_PAN)	see note
		$+ .4 \text{ CO}_2$		
J4300	TrGCJ	$C_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH3OOH)	see note
J4301	TrGCJ	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O)OO + CH_3O_2$	jx(ip_CH3COCH3)	see note
J4302	TrGCJ	$CH_3COCH_2OH + h\nu \rightarrow CH_3C(O)OO + HCHO + HO_2$	0.074*jx(ip_CHOH)	see note
J4303	TrGCJ	$CH_3COCHO + h\nu \rightarrow CH_3C(O)OO + CO + HO_2$	jx(ip_CH3COCHO)	see note
J4304	TrGCJ	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O)OO + HO_2 + OH$	jx(ip_CH3OOH)	see note
J4305	TrGNCJ	$MPAN + h\nu \rightarrow CH_3COCH_2OH + NO_2$	jx(ip_PAN)	see note
J4306	TrGNCJ	$C_3H_7ONO_2 + h\nu \rightarrow CH_3COCH_3 + NO_2 + HO_2$	3.7*jx(ip_PAN)	see note
J4400	TrGCJ	$C_4H_9OOH + h\nu \rightarrow OH + .67 \ CH_3COC_2H_5 + .67 \ HO_2 + .33$	jx(ip_CH3OOH)	see note
		$C_2H_5O_2 + .33 CH_3CHO$		

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J4401	TrGCJ	$MVK + h\nu \rightarrow CH_3C(O)OO + HCHO + CO + HO_2$	0.019*jx(ip_COH2)	see note
			+.015*jx(ip_CH3COCHO)	
J4402	TrGCJ	$MVKOOH + h\nu \rightarrow OH + .5 CH_3COCHO + .25 CH_3COCH_2OH$	jx(ip_CH3OOH)	see note
		$+ .75 \text{ HCHO} + .75 \text{ HO}_2 + .25 \text{ CH}_3 \text{C(O)OO} + .25 \text{ CO}$		
J4403	TrGCJ	$CH_3COC_2H_5 + h\nu \rightarrow CH_3C(O)OO + C_2H_5O_2$	0.42*jx(ip_CHOH)	see note
J4404	TrGCJ	$MEKOOH + h\nu \rightarrow CH_3C(O)OO + CH_3CHO + OH$	jx(ip_CH3OOH)	see note
J4405	TrGCJ	$MeCOCO + h\nu \rightarrow 2 CH_3C(O)OO$	2.15*jx(ip_CH3COCH0)	see note
J4406	TrGNCJ	$ONIT + h\nu \rightarrow NO_2 + .67 CH_3 COC_2 H_5 + .67 HO_2 + .33 C_2 H_5 O_2$	3.7*jx(ip_PAN)	see note
		+ .33 CH ₃ CHO		
J4500	TrGCJ	$ISOOH + h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH300H)	see note
J4501	TrGNCJ	$ISON + h\nu \rightarrow MVK + HCHO + NO_2 + HO_2$	3.7*jx(ip_PAN)	see note
J6000	StTrGClJ	$Cl_2 + h\nu \rightarrow Cl + Cl$	jx(ip_Cl2)	see note
J6100	StTrGClJ	$Cl_2O_2 + h\nu \rightarrow 2 Cl$	1.4*jx(ip_Cl2O2)	see note
J6101	StTrGClJ	$OClO + h\nu \rightarrow ClO + O(^{3}P)$	jx(ip_OClO)	see note
J6201	StTrGClJ	$HOCl + h\nu \rightarrow OH + Cl$	jx(ip_HOCl)	see note
J6300	TrGNClJ	$ClNO_2 + h\nu \rightarrow Cl + NO_2$	jx(ip_ClNO2)	see note
J6301a	StTrGNClJ	$\text{ClNO}_3 + h\nu \rightarrow \text{Cl} + \text{NO}_3$	jx(ip_ClNO3)	see note
J6301b	StTrGNClJ	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{ClO} + \text{NO}_2$	jx(ip_ClONO2)	see note
J7000	StTrGBrJ	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	see note
J7100	TrGBrJ	$BrO + h\nu \rightarrow Br + O(^{3}P)$	jx(ip_BrO)	see note
J7200	StTrGBrJ	$HOBr + h\nu \rightarrow Br + OH$	jx(ip_HOBr)	see note
J7300	TrGNBrJ	$BrNO_2 + h\nu \rightarrow Br + NO_2$	jx(ip_BrNO2)	see note
J7301	StTrGNBrJ	$BrNO_3 + h\nu \rightarrow 0.29 Br + 0.29 NO_3 + 0.71 BrO + 0.71 NO_2$	jx(ip_BrNO3)	see note
J7401	TrGBrJ	$CH_2Br_2 + h\nu \rightarrow 2 Br$	jx(ip_CH2Br2)	see note
J7402	$\mathrm{Tr}\mathrm{GBr}\mathrm{J}$	$ m CHBr_3 + h\nu \rightarrow 3 \ Br$	jx(ip_CHBr3)	see note
J7600	StTrGClBrJ	$BrCl + h\nu \rightarrow Br + Cl$	jx(ip_BrCl)	see note
J7602	TrGClBrJ	$CH_2ClBr + h\nu \rightarrow Br + Cl$	jx(ip_CH2ClBr)	see note
J7603	TrGClBrJ	$CHCl_2Br + h\nu \rightarrow Br + 2 Cl$	jx(ip_CHCl2Br)	see note
J7604	TrGClBrJ	$CHClBr_2 + h\nu \rightarrow 2 Br + Cl$	jx(ip_CHClBr2)	see note

J-values are calculated with an external module and then supplied to the MECCA chemistry J6100: Stimpfle et al. (2004) claim that the combination of absorption cross sections from Burkholder et al. (1990) and the Cl_2O_2 formation rate coefficient by Sander et al. (2003) can approximately reproduce the observed Cl_2O_2/ClO ratios and ozone depletion. They give an almost zenith-angle independent ratio of 1.4 for Burkholder et al. (1990) to Sander et al. (2003) J-values. The IUPAC recommendation for the Cl_2O_2 formation rate is about 5 to 15 % less than the value by Sander et al. (2003) but more than 20 % larger than the value by Sander et al. (2000). The J-values by Burkholder et al. (1990) are within the uncertainty range of the IUPAC recommendation.

J7301: The quantum yields are from Sander et al. (2003).

substance	$k_{ m H}^{\ominus}$	$-\Delta_{ m soln}H/R$	reference
substance	M/atm	Κ	reference
O_2	1.3×10^{-3}	1500.	Wilhelm et al. (1977)
O_3	1.2×10^{-2}	2560.	Chameides (1984)
OH	$3.0{ imes}10^1$	4300.	Hanson et al. (1992)
HO_2	3.9×10^{3}	5900.	Hanson et al. (1992)
H_2O_2	$1. \times 10^{5}$	6338.	Lind and Kok (1994)
$\rm NH_3$	58.	4085.	Chameides (1984)
NO	1.9×10^{-3}	1480.	Schwartz and White (1981)
NO_2	7.0×10^{-3}	2500.	Lee and Schwartz $(1981)^*$
NO_3	2.	2000.	Thomas et al. (1993)
HONO	$4.9{ imes}10^1$	4780.	Schwartz and White (1981)
HNO_3	$2.45{ imes}10^6/1.5{ imes}10^1$	8694.	Brimblecombe and Clegg $(1989)^*$
HNO_4	1.2×10^{4}	6900.	Régimbal and Mozurkewich (1997)
CH_3O_2	6.	5600.	Jacob (1986)*
CH_3OOH	3.0×10^{2}	5322.	Lind and Kok (1994)
HCHO	7.0×10^{3}	6425.	Chameides (1984)
HCOOH	3.7×10^{3}	5700.	Chameides (1984)
$\rm CO_2$	3.1×10^{-2}	2423.	Chameides (1984)
Cl_2	9.2×10^{-2}	2081.	Bartlett and Margerum (1999)
HCl	2./1.7	9001.	Brimblecombe and $Clegg$ (1989)
HOCl	6.7×10^{2}	5862.	Huthwelker et al. (1995)
Br_2	7.7×10^{-1}	3837.	Bartlett and Margerum (1999)
HBr	1.3	10239.	Brimblecombe and Clegg $(1989)^*$
HOBr	9.3×10^{1}	5862.	Vogt et al. $(1996)^*$
BrCl	9.4×10^{-1}	5600.	Bartlett and Margerum (1999)
SO_2	1.2	3120.	Chameides (1984)
H_2SO_4	$1. \times 10^{11}$	0.	see note
DMSO	$5. imes 10^{4}$	6425.	De Bruyn et al. $(1994)^*$

Table 3: Henry's law coefficients

The temperature dependence of the Henry constants is:

$$K_{\rm H} = K_{\rm H}^{\ominus} \times \exp\left(\frac{-\Delta_{\rm soln}H}{R}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right)$$

where $\Delta_{\text{soln}} H = \text{molar enthalpy of dissolution}$ [J/mol] and R = 8.314 J/(mol K). NO₂: The temperature dependence is from Lax (1969). Chameides (1984). HOBr: This

 HNO_3 : Calculated using the acidity constant from Davis and de Bruin (1964).

 CH_3O_2 : This value was estimated by Jacob (1986).

HOBr: This value was estimated by Vogt et al. (1996).

 H_2SO_4 : To account for the very high Henry's law coefficient of H_2SO_4 , a very high value was chosen arbitrarily.

HBr: Calculated using the acidity constant from DMSO: Lower limit cited from another reference.

substance	$lpha^{\ominus}$	$\frac{-\Delta_{\rm obs}H/R}{\rm K}$	reference
O ₂	0.01	2000.	see note
O_3	0.002	0.	DeMore et al. $(1997)^*$
OH	0.01	0.	Takami et al. $(1998)^*$
HO_2	0.5	0.	Thornton and Abbatt (2005)
H_2O_2	0.077	3127.	Worsnop et al. (1989)
$\rm NH_3$	0.06	0.	DeMore et al. $(1997)^*$
NO	5.0×10^{-5}	0.	Saastad et al. $(1993)^*$
NO_2	0.0015	0.	Ponche et al. $(1993)^*$
NO_3	0.04	0.	Rudich et al. $(1996)^*$
N_2O_5	0.1	0.	DeMore et al. $(1997)^*$
HONO	0.04	0.	DeMore et al. $(1997)^*$
HNO_3	0.5	0.	Abbatt and Waschewsky $(1998)^*$
HNO_4	0.1	0.	DeMore et al. $(1997)^*$
CH_3O_2	0.01	2000.	see note
CH_3OOH	0.0046	3273.	Magi et al. (1997)
HCHO	0.04	0.	DeMore et al. $(1997)^*$
HCOOH	0.014	3978.	DeMore et al. (1997)
$\rm CO_2$	0.01	2000.	see note
Cl_2	0.038	6546.	Hu et al. (1995)
HCl	0.074	3072.	Schweitzer et al. $(2000)^*$
HOCl	0.5	0.	see note
$CINO_3$	0.108	0.	Deiber et al. $(2004)^*$
Br_2	0.038	6546.	Hu et al. (1995)
HBr	0.032	3940.	Schweitzer et al. $(2000)^*$
HOBr	0.5	0.	Abbatt and Waschewsky (1998)*
$BrNO_3$	0.063	0.	Deiber et al. $(2004)^*$
BrCl	0.38	6546.	see note
SO_2	0.11	0.	DeMore et al. (1997)
H_2SO_4	0.65	0.	Pöschl et al. $(1998)^*$

Table 4: Accommodation coefficients

Table 4: Accommodation coefficients (... continued)

substance	α^{\ominus}	$\frac{-\Delta_{\rm obs}H/R}{{ m K}}$	reference
CH_3SO_3H	0.076	1762.	De Bruyn et al. (1994)
DMSO	0.048	2578.	De Bruyn et al. (1994)

The temperature dependence of the accommodation coefficients is given by (Jayne et al., 1991):

$$\begin{aligned} \frac{\alpha}{1-\alpha} &= & \exp\left(\frac{-\Delta_{\rm obs}G}{RT}\right) \\ &= & \exp\left(\frac{-\Delta_{\rm obs}H}{RT} + \frac{\Delta_{\rm obs}S}{R}\right) \end{aligned}$$

where $\Delta_{\rm obs}G$ is the Gibbs free energy barrier of the transition state toward solution (Jayne et al., 1991), and $\Delta_{\rm obs}H$ and $\Delta_{\rm obs}S$ are the corresponding enthalpy and entropy, respectively. The equation can be rearranged to:

$$\ln\left(\frac{\alpha}{1-\alpha}\right) = \frac{-\Delta_{\rm obs}H}{R} \times \frac{1}{T} + \frac{-\Delta_{\rm obs}S}{R}$$

and further:

$$d\ln\left(\frac{\alpha}{1-\alpha}\right)/d\left(\frac{1}{T}\right) = \frac{-\Delta_{obs}H}{R}$$

If no data were available, a value of $\alpha = 0.01$, $\alpha = 0.1$, or $\alpha = 0.5$, and a temperature dependence of $-\Delta_{\rm obs} H/R = 2000$ K has been assumed.

O₂: Estimate.

O₃: Value measured at 292 K.

OH: Value measured at 293 K.

NH₃: Value measured at 295 K.

NO: Value measured between 193 and 243 K.

NO₂: Value measured at 298 K.

 NO_3 : Value is a lower limit, measured at 273 K. N_2O_5 : Value for sulfuric acid, measured between 195 and 300 K.

HONO: Value measured between 247 and 297 K.

HNO₃: Value measured at room temperature. Abbatt and Waschewsky (1998) say $\gamma > 0.2$. Here $\alpha = 0.5$ is used.

HNO₄: Value measured at 200 K for water ice.

CH₃O₂: Estimate.

HCHO: Value measured between 260 and 270 K.

CO₂: Estimate.

HCl: Temperature dependence derived from published data at 2 different temperatures

HOCl: Assumed to be the same as α (HOBr).

ClNO₃: Value measured at 274.5 K.

HBr: Temperature dependence derived from published data at 2 different temperatures

HOBr: Value measured at room temperature. Abbatt and Waschewsky (1998) say $\gamma > 0.2$. Here $\alpha = 0.5$ is used.

BrNO₃: Value measured at 273 K.

BrCl: Assumed to be the same as $\alpha(Cl_2)$.

 H_2SO_4 : Value measured at 303 K.

#	labels	reaction	rate coefficient	reference
H1001f_a01	TrAa01MblScScm	$O_3 \rightarrow O_3(aq)$	k_exf(01,ind_03)	see note
H1001b_a01	${\rm TrAa01MblScScm}$	$O_3(aq) \rightarrow O_3$	k_exb(01,ind_03)	see note
H2102f_a01	TrAa01MblScScm	$H_2O_2 \rightarrow H_2O_2(aq)$	k_exf(01,ind_H2O2)	see note
H2102b_a01	TrAa01MblScScm	$\rm H_2O_2(aq) \rightarrow \rm H_2O_2$	k_exb(01,ind_H2O2)	see note
H3200f_a01	TrAa01NMblScScm	$\rm NH_3 \rightarrow \rm NH_3(aq)$	k_exf(01,ind_NH3)	see note
H3200b_a01	TrAa01NMblScScm	$\rm NH_3(aq) \rightarrow \rm NH_3$	k_exb(01,ind_NH3)	see note
H3201_a01	TrAa01MblNScScm	$N_2O_5 \rightarrow HNO_3(aq) + HNO_3(aq)$	k_exf_N2O5(01)*C(ind_H2O_	Behnke et al. (1994) ,
			a01)	Behnke et al. $(1997)^*$
H3203f_a01	TrAa01MblNScScm	$HNO_3 \rightarrow HNO_3(aq)$	k_exf(01,ind_HNO3)	see note
H3203b_a01	TrAa01MblNScScm	$HNO_3(aq) \rightarrow HNO_3$	k_exb(01,ind_HNO3)	see note
H4100f_a01	TrAa01MblScScm	$\rm CO_2 \rightarrow \rm CO_2(aq)$	k_exf(01,ind_CO2)	see note
H4100b_a01	TrAa01MblScScm	$\rm CO_2(aq) \rightarrow \rm CO_2$	k_exb(01,ind_CO2)	see note
H6000f_a01	TrAa01ClMblSc	$Cl_2 \rightarrow Cl_2(aq)$	k_exf(01,ind_Cl2)	see note
H6000b_a01	TrAa01ClMblSc	$\operatorname{Cl}_2(\operatorname{aq}) \to \operatorname{Cl}_2$	k_exb(01,ind_Cl2)	see note
H6200f_a01	TrAa01ClMblScScm	$\mathrm{HCl} \to \mathrm{HCl}(\mathrm{aq})$	k_exf(01,ind_HCl)	see note
H6200b_a01	TrAa01ClMblScScm	$\mathrm{HCl}(\mathrm{aq}) \to \mathrm{HCl}$	k_exb(01,ind_HCl)	see note
H6201f_a01	TrAa01ClMblSc	$HOCl \rightarrow HOCl(aq)$	k_exf(01,ind_HOCl)	see note
H6201b_a01	TrAa01ClMblSc	$HOCl(aq) \rightarrow HOCl$	k_exb(01,ind_HOCl)	see note
H6300_a01	TrAa01ClMblN	$N_2O_5 + Cl^-(aq) \rightarrow ClNO_2 + NO_3^-(aq)$	k_exf_N2O5(01) * 5.E2	Behnke et al. (1994) ,
				Behnke et al. $(1997)^*$
H6301_a01	TrAa01ClMblN	$\text{ClNO}_3 \rightarrow \text{HOCl}(\text{aq}) + \text{HNO}_3(\text{aq})$	$k_exf_ClNO3(01) * C(ind_$	see note
			H2O_a01)	
H6302_a01	TrAa01ClMblN	$\text{ClNO}_3 + \text{Cl}^-(\text{aq}) \rightarrow \text{Cl}_2(\text{aq}) + \text{NO}_3^-(\text{aq})$	k_exf_ClNO3(01) * 5.E2	see note
H7000f_a01	TrAa01BrMblSc	$Br_2 \to Br_2(aq)$	k_exf(01,ind_Br2)	see note
H7000b_a01	TrAa01BrMblSc	$Br_2(aq) \to Br_2$	k_exb(01,ind_Br2)	see note
H7200f_a01	${\rm TrAa01BrMblScScm}$	$\mathrm{HBr} \to \mathrm{HBr}(\mathrm{aq})$	k_exf(01,ind_HBr)	see note
H7200b_a01	${\rm TrAa01BrMblScScm}$	$\mathrm{HBr}(\mathrm{aq}) \to \mathrm{HBr}$	k_exb(01,ind_HBr)	see note
H7201f_a01	TrAa01BrMblSc	$\mathrm{HOBr} \to \mathrm{HOBr}(\mathrm{aq})$	k_exf(01,ind_HOBr)	see note
H7201b_a01	TrAa01BrMblSc	$HOBr(aq) \rightarrow HOBr$	k_exb(01,ind_HOBr)	see note

Table 5: Reversible (Henry's law) transfer and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H7300_a01	TrAa01BrMblN	$N_2O_5 + Br^-(aq) \rightarrow BrNO_2 + NO_3^-(aq)$	k_exf_N2O5(01) * 3.E5	Behnke et al. (1994) ,
				Behnke et al. $(1997)^*$
H7301_a01	TrAa01BrMblN	$BrNO_3 \rightarrow HOBr(aq) + HNO_3(aq)$	k_exf_BrNO3(01) * C(ind_	see note
			H2O_a01)	
H7302_a01	TrAa01BrMblN	$BrNO_3 + Br^-(aq) \rightarrow Br_2(aq) + NO_3^-(aq)$	k_exf_BrNO3(01) * 3.E5	see note
H7600f_a01	TrAa01ClBrMblSc	$BrCl \rightarrow BrCl(aq)$	k_exf(01,ind_BrCl)	see note
H7600b_a01	TrAa01ClBrMblSc	$BrCl(aq) \rightarrow BrCl$	k_exb(01,ind_BrCl)	see note
H7601_a01	TrAa01ClBrMblN	$\text{ClNO}_3 + \text{Br}^-(\text{aq}) \rightarrow \text{BrCl}(\text{aq}) + \text{NO}_3^-(\text{aq})$	k_exf_ClNO3(01) * 3.E5	see note
H7602_a01	TrAa01ClBrMblN	$BrNO_3 + Cl^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_BrNO3(01) * 5.E2	see note
H9100f_a01	TrAa01SMblScScm	$SO_2 \rightarrow SO_2(aq)$	$k_exf(01, ind_S02)$	see note
H9100b_a01	TrAa01SMblScScm	$\mathrm{SO}_2(\mathrm{aq}) ightarrow \mathrm{SO}_2$	k_exb(01,ind_SO2)	see note
H9200_a01	TrAa01SMblScScm	$H_2SO_4 \rightarrow H_2SO_4(aq)$	$xnom7sulf*k_exf(01,ind_$	see note
			H2SO4)	
H9401_a01	TrAa01SMbl	$CH_3SO_3H \rightarrow CH_3SO_3^-(aq) + H^+(aq)$	k_exf(01,ind_CH3SO3H)	see note

Table 5: Reversible (Henry's law) transfer and irreversible ("heterogenous") uptake

The forward (k_exf) and backward (k_exb) rate coefficients are calculated in the file messy_mecca_aero.f90 using the accommodation coefficients in subroutine mecca_aero_alpha and Henry's law constants in subroutine mecca_aero_henry.

 $k_{\rm mt} = {\rm mass}$ transfer coefficient

lwc = liquid water content of aerosol mode

H3201, H6300, H6301, H6302, H7300, H7301, H7302, H7601, H7602: For uptake of X (= N₂O₅, ClNO₃, BrNO₃) and subsequent reaction with H₂O, Cl⁻, and Br⁻, we define $k_{\text{exf}}(X) = k_{\text{mt}}(X) \times lwc/([H_2O] + 5.0E2[Cl⁻] + 3.0E5[Br⁻]).$

H6301, H6302, H7601: The total uptake is de-

termined by $k_{\rm mt}$ (ClNO₃). The relative rates are assumed to be the same as for N₂O₅ (H3201, H6300, H7300).

H7301, H7302, H7602: The total uptake is determined by $k_{\rm mt}$ (BrNO₃). The relative rates are assumed to be the same as for N₂O₅ (H3201, H6300, H7300).

#	labels	reaction	$K_0[M^{m-n}]$	_	reference
				$\Delta H/R[K]$	
EQ21_a01	TrAa01MblScScm	$H_2O \rightleftharpoons H^+ + OH^-$	1.0E-16	-6716	Chameides (1984)
EQ30_a01	TrAa01MblNScScm	$\mathrm{NH}_4^+ \rightleftharpoons \mathrm{H}^+ + \mathrm{NH}_3$	5.88E-10	-2391	Chameides (1984)
EQ32_a01	TrAa01MblNScScm	$HNO_3 \rightleftharpoons H^+ + NO_3^-$	15	8700	Davis and de Bruin (1964)
EQ40_a01	TrAa01MblScScm	$\mathrm{CO}_2 \rightleftharpoons \mathrm{H}^+ + \mathrm{HCO}_3^-$	4.3E-7	-913	Chameides $(1984)^*$
EQ61_a01	TrAa01ClMblScScm	$\mathrm{HCl} \rightleftharpoons \mathrm{H}^+ + \mathrm{Cl}^-$	1.7 E6	6896	Marsh and McElroy (1985)
EQ71_a01	TrAa01BrMblScScm	$\mathrm{HBr} \rightleftharpoons \mathrm{H}^+ + \mathrm{Br}^-$	1.0E9		Lax (1969)
EQ73_a01	TrAa01ClBrMbl	$BrCl + Cl^{-} \rightleftharpoons BrCl_{2}^{-}$	3.8	1191	Wang et al. (1994)
EQ74_a01	TrAa01ClBrMbl	$BrCl + Br^{-} \rightleftharpoons Br_2Cl^{-}$	1.8E4	7457	Wang et al. (1994)
EQ75_a01	TrAa01ClBrMbl	$Br_2 + Cl^- \rightleftharpoons Br_2Cl^-$	1.3	0	Wang et al. (1994)
EQ76_a01	TrAa01ClBrMbl	$\mathrm{Br}^- + \mathrm{Cl}_2 \rightleftharpoons \mathrm{Br}\mathrm{Cl}_2^-$	4.2 E 6	14072	Wang et al. (1994)
EQ90_a01	TrAa01SMblScScm	$SO_2 \rightleftharpoons H^+ + HSO_3^-$	1.7E-2	2090	Chameides (1984)
EQ91_a01	TrAa01SMblScScm	$\mathrm{HSO}_3^- \rightleftharpoons \mathrm{H}^+ + \mathrm{SO}_3^{2-}$	6.0E-8	1120	Chameides (1984)
EQ92_a01	TrAa01SMblScScm	$\mathrm{HSO}_4^- \rightleftharpoons \mathrm{H}^+ + \mathrm{SO}_4^{2-}$	1.2E-2	2720	Seinfeld and Pandis (1998)
EQ93_a01	${\rm TrAa01SMblScScm}$	$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$	1.0E3		Seinfeld and Pandis (1998)

Table 6: Acid-base and other eqilibria

EQ40: For $pK_a(CO_2)$, see also Dickson and Millero (1987).

	Table	7:	Aqueous	phase	reactions
--	-------	----	---------	-------	-----------

#	labels	reaction	$k_0 \left[M^{1-n} s^{-1} \right]$	$-E_a/R[K]$	reference
A6204_a01	TrAa01ClMbl	$Cl_2 \rightarrow Cl^- + HOCl + H^+$	21.8	-8012	Wang and Margerum
					(1994)
A6208_a01	TrAa01ClMbl	$\mathrm{HOCl} + \mathrm{Cl}^- + \mathrm{H}^+ \to \mathrm{Cl}_2$	2.2E4	-3508	Wang and Margerum
					(1994)
A7202_a01	TrAa01BrMbl	$Br_2 \rightarrow Br^- + HOBr + H^+$	9.7E1	-7457	Beckwith et al. (1996)
A7208_a01	TrAa01BrMbl	$\mathrm{HOBr} + \mathrm{Br}^- + \mathrm{H}^+ \to \mathrm{Br}_2$	1.6E10		Beckwith et al. (1996)
A7602_a01	TrAa01ClBrMbl	$\mathrm{Br}^- + \mathrm{HOCl} + \mathrm{H}^+ \to \mathrm{BrCl}$	1.32 E6		Kumar and Margerum
					(1987)
A7603_a01	TrAa01ClBrMbl	$HOBr + Cl^- + H^+ \rightarrow BrCl$	2.3E10		see note
A7604_a01	TrAa01ClBrMbl	$BrCl \rightarrow Cl^- + HOBr + H^+$	3.0 E6		Liu and Margerum (2001)
A9101_a01	TrAa01SMblScScm	$\mathrm{SO}_3^{2-} + \mathrm{O}_3 \to \mathrm{SO}_4^{2-}$	$1.5\mathrm{E9}$	-5300	Hoffmann (1986)
A9206_a01	${\rm TrAa01SMblScScm}$	$\mathrm{HSO}_3^- + \mathrm{O}_3 \to \mathrm{SO}_4^{2-} + \mathrm{H}^+$	3.7 E5	-5500	Hoffmann (1986)
A9209_a01	${\rm TrAa01SMblScScm}$	$\mathrm{HSO}_3^- + \mathrm{H}_2\mathrm{O}_2 \to \mathrm{SO}_4^{2-} + \mathrm{H}^+$	5.2 E6	-3650	Martin and Damschen
					(1981)
A9601_a01	TrAa01SClMbl	$\mathrm{SO}_3^{2-} + \mathrm{HOCl} \rightarrow \mathrm{Cl}^- + \mathrm{HSO}_4^-$	$7.6\mathrm{E8}$		Fogelman et al. (1989)
A9605_a01	TrAa01SClMbl	$HSO_3^- + HOCl \rightarrow Cl^- + HSO_4^- + H^+$	7.6 E8		see note
A9702_a01	TrAa01SBrMbl	$SO_3^{2^-} + HOBr \rightarrow Br^- + HSO_4^-$	$5.0\mathrm{E9}$		Troy and Margerum
					(1991)
A9705_a01	TrAa01SBrMbl	$\mathrm{HSO}_3^- + \mathrm{HOBr} \to \mathrm{Br}^- + \mathrm{HSO}_4^- + \mathrm{H}^+$	5.0E9		see note

A9605: assumed to be the same as for SO_3^{2-} + A9705: assumed to be the same as for SO_3^{2-} + HOBr.

References

- Abbatt, J. P. D. and Waschewsky, G. C. G.: Heterogeneous interactions of HOBr, HNO₃, O₃, and NO₂ with deliquescent NaCl aerosols at room temperature, J. Phys. Chem. A, 102, 3719–3725, 1998.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O₃ chemiluminescence detector, J. Phys. Chem., 94, 644–652, 1990.
- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The BrO + CH₃O₂ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, 1997.
- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215– 290, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version August 1999, http://www. iupac-kinetic.ch.cam.ac.uk/, 1999.

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of O_x, HO_x, NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, Jr., R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version March 2005, http://www. iupac-kinetic.ch.cam.ac.uk/, 2005.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625– 4055, 2006.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III — gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, 2007.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmo-

spheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, 1995.

- Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410–3414, 1999.
- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, 1996.
- Behnke, W., Scheer, V., and Zetzsch, C.: Production of BrNO₂, Br₂ and ClNO₂ from the reaction between sea spray aerosol and N₂O₅, J. Aerosol Sci., 25, S277–S278, 1994.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, 1997.
- Boyd, A. A., Flaud, P.-M., Daugey, N., and Lesclaux, R.: Rate constants for RO₂ + HO₂ reactions measured under a large excess of HO₂, J. Phys. Chem. A, 107, 818–821, 2003.
- Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95, 1989.
- Burkholder, J. B., Orlando, J. J., and Howard, C. J.: Ultraviolet absorption cross sections of Cl₂O₂ between 210 and 410 nm, J. Phys. Chem., 94, 687–695, 1990.

- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211–2222, 1996.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, 1984.
- Christensen, L. E., Okumura, M., Sander, S. P., Salawitch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of $HO_2 +$ $HO_2 \rightarrow H_2O_2 + O_2$: Implications for stratospheric H₂O₂, Geophys. Res. Lett., 29, doi: 10.1029/2001GL014525, 2002.
- Davis, Jr., W. and de Bruin, H. J.: New activity coefficients of 0-100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem., 26, 1069–1083, 1964.
- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99D, 16927–16932, 1994.
- Deiber, G., George, C., Le Calvé, S., Schweitzer, F., and Mirabel, P.: Uptake study of ClONO₂ and BrONO₂ by halide containing droplets, Atmos. Chem. Phys., 4, 1291–1299, 2004.

- DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, CA, 1997.
- Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res. A, 34, 1733–1743, 1987.
- Dillon, T. J., Horowitz, A., Hölscher, D., Crowley, J. N., Vereecken, L., and Peeters, J.: Reaction of HO with hydroxyacetone (HOCH₂C(O)CH₃): rate coefficients (233-363 K) and mechanism, Phys. Chem. Chem. Phys., 8, 236–246, 2006.
- Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, 1989.
- Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.: Measurement of OH and HO₂ radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985, 1992.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145–1154, 1986.

- Hu, J. H., Shi, Q., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Reactive uptake of Cl₂(g) and Br₂(g) by aqueous surfaces as a function of Br⁻ and I⁻ ion concentration: The effect of chemical reaction at the interface, J. Phys. Chem., 99, 8768–8776, 1995.
- Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and Brimblecombe, P.: Solubility of HOCl in water and aqueous H₂SO₄ to stratospheric temperatures, J. Atmos. Chem., 21, 81–95, 1995.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and Crowley, J. N.: Kinetics and products of the reactions BrO + DMS and Br + DMS at 298 K, J. Phys. Chem. A, 103, 7199– 7209, 1999.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, 1986.
- Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase alcohol and organic acid molecules by water surfaces, J. Phys. Chem., 95, 6329–6336, 1991.

- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions $Br(^{2}P_{3/2}) + CH_{3}SCH_{3} \leftrightarrow CH_{3}SCH_{2}$ + HBr. Heat of formation of the CH₃SCH₂ radical, J. Phys. Chem., 98, 7128-7135, 1994.
- Kircher, C. C. and Sander, S. P.: Kinetics and mechanism of HO_2 and DO_2 disproportionations, J. Phys. Chem., 88, 2082–2091, 1984.
- Kirchner, F. and Stockwell, W. R.: Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, J. Geophys. Res., 101D, 21007-21 022, 1996.
- Kumar, K. and Margerum, D. W.: Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid, Inorg. Chem., 26, 2706–2711, 1987.
- Lax, E.: Physiker, Springer Verlag, Berlin, 1969.
- Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, 1981.
- Lind, J. A. and Kok, G. L.: Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99D, 21119, 1994.

- Liu, Q. and Margerum, D. W.: Equilibrium and kinetics of bromine chloride hydrolysis, Environ. Sci. Technol., 35, 1127-1133, 2001.
- Madronich, S. and Calvert, J. G.: Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., 95D, 5697–5715, 1990.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., , Mirabel, P., and George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A, 101, 4943-4949, 1997.
- Mallard, W. G., Westlev, F., Herron, J. T. Hampson, R. F., and Frizzel, D. H.: NIST Chemical Kinetics Database: Version 5.0, National Institute of Standards and Technology, Gaithersburg, MD, 1993.
- Taschenbuch für Chemiker und Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075-1080, 1985.
 - Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621, 1981.
 - McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions. Geophys. Res. Lett., 28, 3135-3138, 2001.

- Müller, J.-F. and Brasseur, G.: IMAGES: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res., 100D, 16445-16490, 1995.
- Neeb, P., Horie, O., and Moortgat, G. K.: The ethene-ozone reaction in the gas phase, J. Phys. Chem. A, 102, 6778–6785, 1998.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19398–19405, 1996.
- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with $CH_2 = C(CH_3)C(O)OONO_2$ (MPAN), Atmos. Environ., 36, 1895–1900, 2002.
- Ponche, J. L., George, C., and Mirabel, P.: Mass transfer at the air/water interface: Mass accommodation coefficients of SO₂, HNO₃, NO₂ and NH₃, J. Atmos. Chem., 16, 1–21, 1993.
- Pöschl, U., Canagaratna, M., Javne, J. T., Molina, L. T., Worsnop, D. R., Kolb, C. E., and Molina, M. J.: Mass accommodation coefficient of H₂SO₄ vapor on aqueous sulfuric acid surfaces and gaseous diffusion coefficient of H_2SO_4 in N_2/H_2O , J. Phys. Chem. A, 102, 10082-10089, 1998.
- Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J.: Development and intercompar-

ison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29–52, 2000.

- Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829, 1997.
- Rudich, Y., Talukdar, R. K., Imamura, T., Fox, R. W., and Ravishankara, A. R.: Uptake of NO₃ on KI solutions: Rate coefficient for the NO₃ + I⁻ reaction and gas-phase diffusion coefficients for NO₃, Chem. Phys. Lett., 261, 467–473, 1996.
- Saastad, O. W., Ellermann, T., and Nielsen, C. J.: On the adsorption of NO and NO₂ on cold H₂O/H₂SO₄ surfaces, Geophys. Res. Lett., 20, 1191–1193, 1993.
- Sander, S. P., Friedl, R. R., DeMore, W. B., Golden, D. M., Kurylo, M. J., Hampson, R. F., Huie, R. E., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling. Supplement to evaluation 12: Update of key reactions. Evaluation number 13, JPL Publication 00-3, Jet Propulsion Laboratory, Pasadena, CA, http: //jpldataeval.jpl.nasa.gov/, 2000.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K.,

Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.

- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, 2006.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by Pfafflin, J. R. and Ziegler, E. N., vol. 4, pp. 1–45, Gordon and Breach Science Publishers, NY, 1981.
- Schweitzer, F., Mirabel, P., and George, C.: Uptake of hydrogen halides by water droplets, J. Phys. Chem. A, 104, 72–76, 2000.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH

and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821– 4827, 2003.

- Sprengnether, M., Demerjian, K. L., Donahue, N. M., and Anderson, J. G.: Product analysis of the OH oxidation of isoprene and 1,3butadiene in the presence of NO, J. Geophys. Res., 107D, doi:10.1029/2001JD000716, 2002.
- Stimpfle, R. M., Wilmouth, D. M., Salawitch, R. J., and Anderson, J. G.: First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex, J. Geophys. Res., 109, doi:10.1029/ 2003JD003811, 2004.
- Takami, A., Kato, S., Shimono, A., and Koda, S.: Uptake coefficient of OH radical on aqueous surface, Chem. Phys., 231, 215–227, 1998.
- Thomas, K., Volz-Thomas, A., and Kley, D.: Zur Wechselwirkung von NO₃-Radikalen mit wässrigen Lösungen: Bestimmung des Henryund des Massenakkomodationskoeffizienten, Ph.D. thesis, Institut für Chemie und Dynamik der Geosphäre 2, Forschungszentrum Jülich GmbH, Germany, 1993.
- Thornton, J. and Abbatt, J. P. D.: Measurements of HO₂ uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss, J. Geophys. Res., 110D, doi:10.1029/ 2004JD005402, 2005.

- Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, 1991.
- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde, Int. J. Chem. Kinetics, 27, 1009– 1020, 1995.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157– 12182, 2001.
- Villenave, E. and Lesclaux, R.: Kinetics of the cross reactions of CH₃O₂ and C₂H₅O₂ radicals

with selected peroxy radicals, J. Phys. Chem., 100, 14372–14382, 1996.

- Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, doi:10.1038/383327A0, 1996.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3D-modeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- Wang, T. X. and Margerum, D. W.: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/baseassisted mechanisms, Inorg. Chem., 33, 1050– 1055, 1994.

Wang, T. X., Kelley, M. D., Cooper, J. N., Beck-

with, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, 1994.

- Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, 1977.
- Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L. R., van Doren, J. M., Jayne, J. T., and Davidovits, P.: The temperature dependence of mass accommodation of SO₂ and H₂O₂ on aqueous surfaces, J. Phys. Chem., 93, 1159–1172, 1989.
- Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for largescale applications, J. Geophys. Res., 104D, 30 387–30 415, 1999.