Improved convergence and stability properties in a
three-dimensional higher-order ice sheet model

Reply to List of Comments

by J.J. Fiirst, O. Rybak, H. Goelzer, B. De Smedt, P. de Groen and P. Huybrechts

First of all we want to thank all three reviewers for the critical and therefore useful
comments they gave on the presented document. All comments are considered and helped
to improve the quality of our work. In the following the responses to the reviewers
comments are denoted in italic.

Review 3:

General comments

This manuscript presents a finite difference stencil with a different choice of flux points than
used by Pattyn (2003) and compares the performance of a certain linear and nonlinear solver
choice at a single grid resolution for a few model problems. Although the issues of discretization
properties and solver convergence are mixed in the manuscript, but I will discuss them
separately here.

The described stencil is a classical method for discretizing nonlinear elliptic terms, therefore it’s
hard to call “novel”. The choice of locations at which to evaluate such intermediate quantities is a
topic discussed in most books on finite difference methods, Ferziger and Peri¢ (1996) or LeVeque
(2007) for example. More recent work regarding choice of flux points has used the mimetic finite
difference formalism to maintain local conservation and add support for non-smooth and
unstructured meshes, see Hyman et al. (2002) for an introduction. In any case, the present
formulation is a classical choice of flux points (though not usually regarded as the best—face
midpoints would typically be preferred for conservation reasons), not locally conservative, and
still only second order accurate. It may be better than the unconventional choice used by Pattyn
(2003), but it doesn’t qualify as “novel”. (The approach used by “DIR” is typically dismissed by
the numerical methods community due to undesirable accuracy, stability, and sparsity
properties.)

If the goal is to compare the performance of two stencils, the accuracy, stability, and conservation
properties should be compared in a setting independent of the iterative solver. A sequence of
successively refined grids should be constructed and errors evaluated. A problem with a
manufactured solution can be used to provide an exact solution or a very high resolution solution
computed with a known robust method can be used as a reference. If the authors would like to
establish that their choice of stencil is more practical, it would be worth giving special attention
to the performance in regions with discontinuous bed slope since basal topography is rough in
practice (at the spatial scale of feasible meshes). The method should be evaluated on its ability to
produce non-oscillatory solutions, to locally conserve momentum (integrate stress around a
control volume, the current formulation appears to be non-conservative due to the transformed
coordinates, but I could be wrong), and accuracy (e.g. as assessed by grid refinement).

The iterative solver convergence results appear to be strongly influenced by artifacts of the
solution algorithm and what appears to be a flawed methodology for solver tolerance. See my
comments for lines 14.23, 15.12, and 19.6 for details. The linear solver especially is not robust for
this problem and without further analysis, no significance should be ascribed to its erratic
convergence behavior. I am a developer of the PETSc solvers package and we answer questions
about similar solver issues every day via our mailing lists and support email. Such solver-related
issues are documented in various books including Saad (2003); Kelley (1995); Smith et al.



(1996). While the different convergence behavior for Bi-CGSTAB with each finite difference
stencil is perhaps an interesting observation, it does not warrant a paper. The present method
uses no preconditioning and I am surprised that the authors were patient enough to wait for
more than one million linear iterations. It is extremely common for iterative solvers, especially
for nonsymmetric problems, to not converge at all without preconditioning. Regardless, the
required iteration count for second order elliptic operators necessarily increases proportional to
(Ax)-1 under grid refinement. This can be rectified by preconditioning, which is usually
mandatory and, depending on the method, can solve the problem in a constant number of
iterations independent of grid size. Additionally, the slow convergence of the Picard nonlinear
iteration can be overcome by switching to a Newton iteration with grid sequencing for
globalization. The nonlinear equations for every model configuration in this paper can be solved
to a relative tolerance of 10-10 in at most 10 linear iterations independent of grid resolution
using a Newton-Krylov-Multigrid method. A demonstration of this using a Q1 finite element
discretization has been available as a tutorial in PETSc (Balay et al,, 2011) since early 2010, see
src/snes/examples/tutorials/ex48.c. I mention this not to cry “you didn’t cite my (unpublished)
work,” but rather to illustrate constructively that the iterative solution methods in this paper
cannot be considered robust or efficient by any reasonable standard, for example, compared to
what is achievable by applying established methods in a straightforward manner.

First of all we want to thank especially this reviewer for the amount and quality of the
provided comments on numerical concepts and methods in scientific computing. A lot of
insight was gained and the manuscript essentially profited from a mathematically more
precise vocabulary. It has never been the purpose to claim that the stencil we use for the
discretisation is novel but if at all we thought this about the reformulation of the force
balance in the two operators. However, the three places in the text, where we refer to our
variant of a discretisation as novel, are rewritten.

We also agree that the presented work does not represent a state of the art method in
mathematical standards but rather should be seen as ‘small’ step forward in improving an
existing way of discretising the higher-order LMLa equations. A large community applies
existing code that uses a discretisation that resembles the DIR scheme which exhibits the
described problems. From this background, the presented work is rather a practical
approach to ice sheet modelling than a mathematically thorough study on characteristics
of a specific way of discretisation. The suggested discretisation could provide groups using
a similar discretisation with a quickly implementable method that solves some numerical
issues without replacing their established solving method or their preconditioning. The
revised version of the manuscript now also gives additional references to state of the art
mathematical discretisation techniques, preconditioning and solving methods for
nonsymmetric systems of linear equations. The reader is therefore directly guided to
relevant, general literature but also to specific advances presented in SIAM publications.

The suggested ideas on testing our spatial discretisation using successive grid refinements
and detailed analysis of performance at discontinuities are suitable tools for a
mathematically rigorous study. Since our manuscript represents a model development of
an existing ice sheet model and since STAG is not state of the art for discretising the Stokes
equation, we think it is a pure academic exercise to mathematically vindicate our approach
further. Concerning preconditioning the used variant of BiCG is based on a simple diagonal
inverse, which is certainly not the most sophisticated choice but proved its robustness for
our ice sheet model applications.

By now, we have certainly a broader view on ongoing research in numerical method for
solving nonsymmetric systems of linear equations. In the future we hope that we can pick
up some of the ideas for implementation in our ice sheet models.

The paper needs a moderate amount of editing for English grammar.

During the revision process, English grammar was further adapted within the internal
correspondences.



Specific comments

2.8 ISMIP-HOM offers relatively non-discerning test cases and did not establish the correctness of
reported results. For the test cases relevant to the model, the range is reported for the results is
as large as the mean, indicating that there were implementation errors in those submissions,
casting further doubt on the significance of statistics like the mean. This sentence seems to
suggest an overemphasis on ISMIP-HOM as a “benchmark” and even as sufficient demonstration
that the claimed equations are being solved.

This comment is consistent with the latter remark on verification and validation. We agree
with the reviewer that the ISMIP-HOM model intercomparison does not provide neither a
verification nor a validation of the solution provided by any numerical implementation.
The presented experiments have no analytic solution nor is a reliable solution provided
with a very high accuracy. In consequence it is not a strict “mathematical benchmark” but
as indicated an intercomparison opportunity for glaciologicists to test the feasibility of
their models. The intercomparison was also meant to reveal dynamic differences between
higher-order models and the more comprehensive FS models. For these reasons, we avoided
the word ‘benchmark’ and sticked to ‘model intercomparison study’ throughout the text.
The most prominent adjustments are listed:

Correction in the abstract: ‘The reprise of the ISMIP-HOM experiments indicates that both
discretisations are capable of reproducing the higher-order model inter-comparison
results.’

Correction in the introduction: ‘Thereafter results from repeating the ISMIP-HOM
experiments (Pattyn et al,2008) are presented for the two discretisations.’

Correction in the conclusion: ‘In general both discretisations reproduce the results
presented in the ISMIP-HOM model intercomparison study.’

3.23 Use of “entirely” is not really appropriate here. They solve the Stokes problem without
further changes to the continuum model.

Corrected as follows: ‘The most comprehensive Full-Stokes (FS) models solve the force
balance equation without further simplifications to the underlying equations of continuum
mechanics.’

4.1 While SIA may be “feasible”, this does not imply that it is “suitable”. In particular, the long-
term evolution is significantly influenced by flow in regions where SIA is a very poor
approximation. That SIA has an a priori assumption of minimal sliding should be mentioned
more explicitly in this part.

Corrected as suggested along with the comment from reviewer 2.

4.29 These equations do not only involve horizontal derivatives, so “horizontal PDEs” is an odd
choice of terms. The PDEs are genuinely 3D PDEs, but only solve for two components of velocity.

Corrected accordingly: ‘.. remaining two partial differential equations (PDE) for the
horizontal velocity components.’

5.1 This paragraph is confusing since it mixes stability and consistency of a discretization with
convergence of an algebraic solver for the discrete equations. There is no citation for “smoothing
algorithms”, but it is usually the responsibility of an algebraic solver to solve the algebraic
equations up to a tolerance at least as small as spatial discretization error.

Corrected the paragraph. Now we distinguish between stability, consistency of the
discretisation and the convergence properties of a numerical solver.

5.13 This sentence is just not true. A discretization may produce algebraic equations for which a
certain iterative method performs well, but the spatial discretization in no way provides “direct
control” of the convergence properties of the iterative solver.



Corrected as follows: “.., an adjustment of the discretisation of the underlying dynamic
equations gives direct control on the consistency of their numerical representation. ’

5.20 Mattheij et al is an odd choice of reference for “proposing” a staggered grid finite difference
method. Harlow and Welch (1965), for example, would be a more appropriate reference for
staggered grid FD for incompressible flow with free surface.

We thank the reviewer for the provided reference and it is added. Following the general
comments additional reference was made to LeVeque (2007) and Ferziger and Peric
(1997). While the first provides a profound basis on numerical concepts the latter
specialises on the discretisation of differential equations.

Corrected.

5.27 The model is not “validated” or even “verified” in this work, it is only compared to some
other models that have not been verified or validated either. “Verification” and “validation” have
precise meanings when applied to computation. See Babuska and Oden (2004) or Roache (1997)
for details and further discussion.

As already mentioned under point 2.8. the reviewer correctly states that the ISMIP-HOM
did not claim the correctness of the reported results. Therefore we follow the suggestion of
the reviewer and avoided the terms ‘validated’ and ‘verified'.

Corrected.

7.16 Remove ambiguity by writing an equation for “horizontal gradients of the vertically directed
shearing field”.

Corrected by adding: (9,7 ,,,d,T,, <<d.T_, ).

9.1 In most cases, the actual solutions have only one weak derivative and certainly not two
classical derivatives. This is a somewhat pedantic matter because the finite difference method is
algebraically equivalent to a Petrov-Galerkin method in which only one derivative is used.

We agree with the reviewer and want to stress that the conversion of the force balance
equation to a weak formulation also allows for a uniform treatment of the bulk equation
and the upper and lower boundary conditions. Consequently it prevents inconsistencies in
the discretisation of the force balance of the boundary layers and the intermediate ice
layers.

Not adjusted. The weak formulation is commonly used in finite element (FE)
implementations of the force balance in ice dynamics. For details we refer the interested
reader to Zwinger et al, 2007 and Pattyn et al, 2008, which provides additional references
to further FE ice dynamic models and standard literature on the subject.

10.11 This evaluation of viscosity at staggered points has little to do with the Arakawa B grid
which is was originally formulated to address the divergence relation in the shallow water
equations. The classification of Arakawa and Lamb (1977) applies more directly to the choice of
location for ice thickness nodes relative to velocity nodes. Although the elliptic equations in the
LMLa model are of different character, there is still a useful analogy in the divergence operator
applied to stress, however compatible (locally conservative) discretizations for this would be
based on a C-type grid instead of the B grid chosen here. It would be useful if the authors could
justify their rationale for choosing the present formulation instead of the more commonly used C
grid.

We admit that the reference to the Arakawa B grid was meant to give an additional
illustration of the centred computation of viscosities. Indeed we admit that this gives rise
for confusion since in the original form it was meant to describe computational nodes for
velocities and pressure (while the latter one translates into ice thickness). To avoid any
confusion we omit the reference to the Arakawa grid in the context of viscosities.



Corrected by removing the reference to Arakawa and Lamb (1977).

13.9 A negative diagonal and positive off-diagonal is not a “CFL criterion”. I think the authors are
trying to invoke the notion of “positivity” as described in Chapter 4 of Wesseling (2001) which
notes the discrete maximum principle under the sign criterion above combined with a sum of
zero (needed anyway for consistency). A discrete maximum principle is not needed for stability
(indeed, it does not exist for high order approximations?!), but it is a desirable property for a
discretizations, especially when solutions are not smooth. This section should use “discrete
maximum principle” instead of “stability” and should not use the term “CFL criterion” which
refers to an entirely different issue.

Corrected along the lines of one comment from the first reviewer. We rewrote the chapter
and show now that the STAG discretisation gives a matrix in the class of M-matrices which
in this particular case is equivalent to the maximum principle. The chapter has been
restructured while the previously suggested condition, which now serves for invertibility,
remains the same. The title was change to ‘Operator Invertibility’.

13.15 This sentence does not make sense. The compact stencil improves matrix sparsity which
reduces the cost per iteration. Additionally, the larger diagonal relative to off-diagonal entries
makes local smoothers more effective. This property is made more precise by the technique of
local Fourier analysis which quantifies h-ellipticity, a necessary and sufficient condition for the
existence of a pointwise smoother, an important property for efficient multigrid schemes, see
Trottenberg et al. (2001) for details. It appears that a preconditioner is not used in the present
work, but popular inexpensive preconditioners such as incomplete factorization, Jacobi, and
Gauss-Seidel are more effective when when the coefficient of h-ellipticity is larger. Analyzing the
present method within this context may explain the observed convergence rates.

We agree with the reviewer that leaving the compact stencil for the discretisation does not
imply an increased error propagation. We correct this mistake by reformulating: ‘Leaving
the compact stencil can give rise to enhanced, spurious oscillations in the solution close to
the lateral boundaries.’

Corrected.

Concerning the preconditioning of the BiCG solver. It was not explicitely mentioned in the
manuscript that our implementation uses a basic diagonal preconditioning. In the
manuscript we provide now the information on the preconditioner. We admit that this
might not be the most favourable choice and therefore we give the reference to Manguoglu
et al. (2009) in the outlook. Our aim remains however to show the influence of the
discretisation on the convergence behaviour.

Corrected by adding: ‘One prominent solver for such systems is the bi-conjugate gradient
(BiCG) method (Press et al, 2003) with a diagonal preconditioner.’

14.23 The BiCG method is not a monotone method for nonsymmetric matrices, therefore the
residual can grow between successive iterations. In fact, the monotonicity of BiCG is notorious
and motivated the development (and success) of the stabilized variant (Van der Vorst, 1992)
which is also not a monotone method, but is less erratic. Even with a monotone method such as
GMRES (Saad and Schultz, 1986) (in exact arithmetic), there is no guarantee that successive

1 Wesseling (2001) introduces the topic in the context of advection, for which linear nonoscillatory
schemes are at most first order accurate (Godunov’s Theorem). All practical discretizations for
advection of higher than first order accuracy are nonlinear. The situation is different for elliptic
systems, which typically have far fewer problems with oscillations, for which second order linear
nonoscillatory schemes are readily available, and for which higher order linear methods are
frequently practical.



iterates should move significantly between iterations until the residual is small. Indeed, it is
common for iterates to remain essentially constant for several iterations before converging
rapidly. If the convergence test is actually comparing successive iterates as indicated in the text,
then it is a fundamental misuse of the method. If instead the norm of the residual ||Ax - b]| is

being used as a convergence test, this should be stated. A combination of relative and absolute
tolerances are typically used to define convergence.

It is indeed necessary to specify the used convergence test of the linear iterations more in
detail. A build in criteria is chosen as described in Press et al. (2003) which is accessed by
itol=4. This criteria uses the maximum norm to define a relative tolerance for successive
solutions based on the preconditioner and the BiCG search direction vector.

Corrected as suggested: ‘A build in criteria is applied that successively computes the ratio
of two maximum norms. The numerator shows the precondition matrix applied on the
residual while the denominator holds the current correction vector (see Press et al, 2003).
A relative tolerance defines the threshold for which the iteration is aborted.’

Concerning BiCG and other available solver method see answer on 19.6.

15.12 Although the term “error” is used, I am once again left with the impression that the norm of
the difference between successive iterations is used to define convergence. Although the Picard
iteration can be shown to be contractive under modest conditions, there is no guarantee that a
small difference between successive iterations implies that the current iterate is anywhere near
the solution. Indeed, I have observed this near-stagnation for the same continuum equations as
modeled here, but with nonlinear basal sliding. Instead of comparing successive iterates, the
residual of the nonlinear equations should be used as a convergence test.

The convergence test in the non-linear iterations is precisely the one the reviewer states.
Obviously our description is ambiguous and therefore we follow the formulation of the
reviewer to specify the criteria. Moreover we avoid now the term ‘error’ in our
manuscript and use ‘accuracy’ instead.

Corrected as suggested in section ‘Non-linear Iteration’: ‘Instead, true Picard iterations are
used until the ratio of the Euclidean norm of the residual and the norm of the solution
between successive iterations falls below a certain threshold.’

Corrected as suggested in section ‘Residual Decrease’: “The norm of the residual between
successive solutions for the velocity field during iteration is referred to as the iteration
accuracy.’

19.6 As mentioned before, BiCG is well-known to exhibit erratic convergence behavior.
Divergence of this iteration says little to nothing about the spatial discretization, instead it is an
indication that the operator should either use a different Krylov method (e.g. BICGSTAB, GMRES,
or many others) or use a more effective preconditioner. If the authors wish to assert that the DIR
scheme is not stable, they can compute the eigenvalues with smallest real part. (This can be done
efficiently for large sparse matrices using software packages such as SLEPc Hernandez et al.
(2005).)

It is also worth noting that since the continuum equations are self-adjoint and uniformly elliptic,
spatial discretizations can produce a positive definite matrix for which the conjugate gradient
method can be used, thus also guaranteeing monotonic convergence (in exact arithmetic). This
property is “automatic” for Galerkin methods such as the finite element method. Finite difference
methods often do not lose symmetry due to boundary condition implementation and the
handling of non-uniform grids. This is not fundamental, however, and the mimetic approach (e.g.
Hyman et al.,, 2002) produces finite difference schemes that do preserve symmetry.

The reviewer surely is right that there are mathematically strict criteria for the stability of
discretisations of any operator. An extensive eigenvalue analysis however exceeds the scope
of a model development study. The aim of the study is to improve a discretisation that is
widely used in glaciology. We still think that using the same preconditioned solver for two



discretisations still allows a direct comparison. In our case we note that the previous DIR
scheme actually can cause divergence of the solution. For the same experiments STAG does
not diverge. Admittedly BiCG exhibits erratic convergence behaviour and therefore
divergence might arise from this fact. But Fig. 4 clearly shows the positive influence of the
discretisation on the successive accuracies. Therefore we do not agree that divergence says
little to nothing about the spatial discretisation. The more regular decay in the STAG
accuracy (see Fig. 4) reassures us on the influence of the STAG discretisation on the solvers
convergence behaviour.

Not adjusted.

We appreciate this comment together with 14.23 since they point out insufficiencies of the
BiCG method but they also provide references to mathematical improvements of this
solving method and others approaches. For completeness we provide now reference to
recent development of mathematical solvers as well as preconditioning and finite
difference discretisations.

Correction in summary & outlook: ‘To decrease computational costs significantly we
suggest the application of other mathematical solvers as since BiCG is known to exhibit
erratic convergence behaviour. A stabilised version of Bi-CG (BiCGstab) was suggested by
Van der Vorst (1992) and its convergence rate was improved with ML(K)-BiCGstab
applying a Lanczos process using multiple starting left Lanczos vectors (Yeung et al, 1999).
But there are also other techniques to solve nonsymmetric systems of linear equations as
the generalized minimal residual (GMRES in Saad and Schultz, 1986), multigrid
approaches (see Wesseling and Sonneveld, 1980; Trottenberg et al, 2001), the induced
dimension reduction (IDR) method (Sonneveld and van Gijzen, 2008; van Gijzen and
Sonneveld, submitted) or a combination of IDR and BiCGstab called IDRstab (Sleijpen and
van Gijzen, 2010). In line with replacing the solver is the use of a more appropriate
preconditioner for matrix inversion for incompressible fluid dynamics (see Manguoglu et
al, 2009).

25.15 The second term on the right hand side should use f,_,,,.

Corrected but in fact it was the first term that bore the mistake.



