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1 General comments

This manuscript presents a finite difference stencil with a different choice of flux points than used by Pattyn
(2003) and compares the performance of a certain linear and nonlinear solver choice at a single grid resolution
for a few model problems. Although the issues of discretization properties and solver convergence are mixed
in the manuscript, but I will discuss them separately here.

The described stencil is a classical method for discretizing nonlinear elliptic terms, therefore it’s hard to
call “novel”. The choice of locations at which to evaluate such intermediate quantities is a topic discussed
in most books on finite difference methods, Ferziger and Perić (1996) or LeVeque (2007) for example. More
recent work regarding choice of flux points has used the mimetic finite difference formalism to maintain
local conservation and add support for non-smooth and unstructured meshes, see Hyman et al. (2002) for
an introduction. In any case, the present formulation is a classical choice of flux points (though not usually
regarded as the best—face midpoints would typically be preferred for conservation reasons), not locally
conservative, and still only second order accurate. It may be better than the unconventional choice used by
Pattyn (2003), but it doesn’t qualify as “novel”. (The approach used by “DIR” is typically dismissed by the
numerical methods community due to undesirable accuracy, stability, and sparsity properties.)

If the goal is to compare the performance of two stencils, the accuracy, stability, and conservation
properties should be compared in a setting independent of the iterative solver. A sequence of successively
refined grids should be constructed and errors evaluated. A problem with a manufactured solution can be
used to provide an exact solution or a very high resolution solution computed with a known robust method
can be used as a reference. If the authors would like to establish that their choice of stencil is more practical,
it would be worth giving special attention to the performance in regions with discontinuous bed slope since
basal topography is rough in practice (at the spatial scale of feasible meshes). The method should be
evaluated on its ability to produce non-oscillatory solutions, to locally conserve momentum (integrate stress
around a control volume, the current formulation appears to be non-conservative due to the transformed
coordinates, but I could be wrong), and accuracy (e.g. as assessed by grid refinement).

The iterative solver convergence results appear to be strongly influenced by artifacts of the solution
algorithm and what appears to be a flawed methodology for solver tolerance. See my comments for lines
14.23, 15.12, and 19.6 for details. The linear solver especially is not robust for this problem and without
further analysis, no significance should be ascribed to its erratic convergence behavior. I am a developer of
the PETSc solvers package and we answer questions about similar solver issues every day via our mailing
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lists and support email. Such solver-related issues are documented in various books including Saad (2003);
Kelley (1995); Smith et al. (1996). While the different convergence behavior for Bi-CGSTAB with each finite
difference stencil is perhaps an interesting observation, it does not warrant a paper. The present method
uses no preconditioning and I am surprised that the authors were patient enough to wait for more than one
million linear iterations. It is extremely common for iterative solvers, especially for nonsymmetric problems,
to not converge at all without preconditioning. Regardless, the required iteration count for second order
elliptic operators necessarily increases proportional to (∆x)−1 under grid refinement. This can be rectified
by preconditioning, which is usually mandatory and, depending on the method, can solve the problem in
a constant number of iterations independent of grid size. Additionally, the slow convergence of the Picard
nonlinear iteration can be overcome by switching to a Newton iteration with grid sequencing for globalization.
The nonlinear equations for every model configuration in this paper can be solved to a relative tolerance
of 10−10 in at most 10 linear iterations independent of grid resolution using a Newton-Krylov-Multigrid
method. A demonstration of this using a Q1 finite element discretization has been available as a tutorial in
PETSc (Balay et al., 2011) since early 2010, see src/snes/examples/tutorials/ex48.c. I mention this
not to cry “you didn’t cite my (unpublished) work,” but rather to illustrate constructively that the iterative
solution methods in this paper cannot be considered robust or efficient by any reasonable standard, for
example, compared to what is achievable by applying established methods in a straightforward manner.

The paper needs a moderate amount of editing for English grammar.

2 Specific comments

2.8 ISMIP-HOM offers relatively non-discerning test cases and did not establish the correctness of reported
results. For the test cases relevant to the model, the range is reported results is as large as the mean,
indicating that there were implementation errors in those submissions, casting further doubt on the
significance of statistics like the mean. This sentence seems to suggest an overemphasis on ISMIP-HOM
as a “benchmark” and even as sufficient demonstration that the claimed equations are being solved.

3.23 Use of “entirely” is not really appropriate here. They solve the Stokes problem without further changes
to the continuum model.

4.1 While SIA may be “feasible”, this does not imply that it is “suitable”. In particular, the long-term
evolution is significantly influenced by flow in regions where SIA is a very poor approximation. That
SIA has an a priori assumption of minimal sliding should be mentioned more explicitly in this part.

4.29 These equations do not only involve horizontal derivatives, so “horizontal PDEs” is an odd choice of
terms. The PDEs are genuinely 3D PDEs, but only solve for two components of velocity.

5.1 This paragraph is confusing since it mixes stability and consistency of a discretization with convergence
of an algebraic solver for the discrete equations. There is no citation for “smoothing algorithms”, but
it is usually the responsibility of an algebraic solver to solve the algebraic equations up to a tolerance
at least as small as spatial discretization error.

5.13 This sentence is just not true. A discretization may produce algebraic equations for which a certain
iterative method performs well, but the spatial discretization in no way provides “direct control” of
the convergence properties of the iterative solver.

5.20 Mattheij et al is an odd choice of reference for “proposing” a staggered grid finite difference method.
Harlow and Welch (1965), for example, would be a more appropriate reference for staggered grid FD
for incompressible flow with free surface.

5.27 The model is not “validated” or even “verified” in this work, it is only compared to some other models
that have not been verified or validated either. “Verification” and “validation” have precise meanings
when applied to computation. See Babuška and Oden (2004) or Roache (1997) for details and further
discussion.
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7.16 Remove ambiguity by writing an equation for “horizontal gradients of the vertically directed shearing
field”.

9.1 In most cases, the actual solutions have only one weak derivative and certainly not two classical
derivatives. This is a somewhat pedantic matter because the finite difference method is algebraically
equivalent to a Petrov-Galerkin method in which only one derivative is used.

10.11 This evaluation of viscosity at staggered points has little to do with the Arakawa B grid which is
was originally formulated to address the divergence relation in the shallow water equations. The
classification of Arakawa and Lamb (1977) applies more directly to the choice of location for ice
thickness nodes relative to velocity nodes. Although the elliptic equations in the LMLa model are of
different character, there is still a useful analogy in the divergence operator applied to stress, however
compatible (locally conservative) discretizations for this would be based on a C-type grid instead of
the B grid chosen here. It would be useful if the authors could justify their rationale for choosing the
present formulation instead of the more commonly used C grid.

13.9 A negative diagonal and positive off-diagonal is not a “CFL criterion”. I think the authors are trying to
invoke the notion of “positivity” as described in Chapter 4 of Wesseling (2001) which notes the discrete
maximum principle under the sign criterion above combined with a sum of zero (needed anyway for
consistency). A discrete maximum principle is not needed for stability (indeed, it does not exist for high
order approximations1), but it is a desirable property for a discretizations, especially when solutions are
not smooth. This section should use “discrete maximum principle” instead of “stability” and should
not use the term “CFL criterion” which refers to an entirely different issue.

13.15 This sentence does not make sense. The compact stencil improves matrix sparsity which reduces
the cost per iteration. Additionally, the larger diagonal relative to off-diagonal entries makes local
smoothers more effective. This property is made more precise by the technique of local Fourier analysis
which quantifies h-ellipticity, a necessary and sufficient condition for the existence of a pointwise
smoother, an important property for efficient multigrid schemes, see Trottenberg et al. (2001) for
details. It appears that a preconditioner is not used in the present work, but popular inexpensive
preconditioners such as incomplete factorization, Jacobi, and Gauss-Seidel are more effective when
when the coefficient of h-ellipticity is larger. Analyzing the present method within this context may
explain the observed convergence rates.

14.23 The BiCG method is not a monotone method for nonsymmetric matrices, therefore the residual can
grow between successive iterations. In fact, the monotonicity of BiCG is notorious and motivated the
development (and success) of the stabilized variant (Van der Vorst, 1992) which is also not a monotone
method, but is less erratic. Even with a monotone method such as GMRES (Saad and Schultz, 1986)
(in exact arithmetic), there is no guarantee that successive iterates should move significantly between
iterations until the residual is small. Indeed, it is common for iterates to remain essentially constant
for several iterations before converging rapidly. If the convergence test is actually comparing successive
iterates as indicated in the text, then it is a fundamental misuse of the method. If instead the norm
of the residual ‖Ax− b‖ is being used as a convergence test, this should be stated. A combination of
relative and absolute tolerances are typically used to define convergence.

15.12 Although the term “error” is used, I am once again left with the impression that the norm of the
difference between successive iterations is used to define convergence. Although the Picard iteration
can be shown to be contractive under modest conditions, there is no guarantee that a small difference
between successive iterations implies that the current iterate is anywhere near the solution. Indeed,
I have observed this near-stagnation for the same continuum equations as modeled here, but with

1Wesseling (2001) introduces the topic in the context of advection, for which linear nonoscillatory schemes are at most first
order accurate (Godunov’s Theorem). All practical discretizations for advection of higher than first order accuracy are nonlinear.
The situation is different for elliptic systems, which typically have far fewer problems with oscillations, for which second order
linear nonoscillatory schemes are readily available, and for which higher order linear methods are frequently practical.
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nonlinear basal sliding. Instead of comparing successive iterates, the residual of the nonlinear equations
should be used as a convergence test.

19.6 As mentioned before, BiCG is well-known to exhibit erratic convergence behavior. Divergence of this
iteration says little to nothing about the spatial discretization, instead it is an indication that the
operator should either use a different Krylov method (e.g. BiCGSTAB, GMRES, or many others) or
use a more effective preconditioner. If the authors wish to assert that the DIR scheme is not stable,
they can compute the eigenvalues with smallest real part. (This can be done efficiently for large sparse
matrices using software packages such as SLEPc Hernandez et al. (2005).)

It is also worth noting that since the continuum equations are self-adjoint and uniformly elliptic,
spatial discretizations can produce a positive definite matrix for which the conjugate gradient method
can be used, thus also guaranteeing monotonic convergence (in exact arithmetic). This property is
“automatic” for Galerkin methods such as the finite element method. Finite difference methods often
do not lose symmetry due to boundary condition implementation and the handling of non-uniform
grids. This is not fundamental, however, and the mimetic approach (e.g. Hyman et al., 2002) produces
finite difference schemes that do preserve symmetry.

25.15 The second term on the right hand side should use fk− 1
2
.
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Ferziger, J. and Perić, M. (1996). Computational methods for fluid dynamics. Springer.

Harlow, F. and Welch, J. (1965). Numerical calculation of time-dependent viscous incompressible flow of
fluid with free surface. Physics of Fluids, 8(12):2182.

Hernandez, V., Roman, J., and Vidal, V. (2005). SLEPc: A scalable and flexible toolkit for the solution of
eigenvalue problems. ACM Transactions on Mathematical Software (TOMS), 31(3):351–362.

Hyman, J., Morel, J., Shashkov, M., and Steinberg, S. (2002). Mimetic finite difference methods for diffusion
equations. Computational Geosciences, 6(3):333–352.

Kelley, C. (1995). Iterative methods for linear and nonlinear equations. Society for Industrial Mathematics.

LeVeque, R. (2007). Finite difference methods for ordinary and partial differential equations. Society for
Industrial and Applied Mathematics.

Pattyn, F. (2003). A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity,
ice stream development, and ice flow across subglacial lakes. J. Geophys. Res, 108(2382):10–1029.

Roache, P. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid
Mechanics, 29(1):123–160.

Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial Mathematics, 3rd edition.

Saad, Y. and Schultz, M. (1986). GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869.

Smith, B., Bjørstad, P., and Gropp, W. (1996). Domain decomposition: parallel multilevel methods for
elliptic partial differential equations. Cambridge Univ Press, New York.

4

http://mcs.anl.gov
mcs.anl.gov/petsc


Trottenberg, U., Oosterlee, C., and Schüller, A. (2001). Multigrid. Academic Press.

Van der Vorst, H. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13:631.

Wesseling, P. (2001). Principles of computational fluid dynamics, volume 29. Springer Verlag.

5


	General comments
	Specific comments

