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Abstract

A wide variety of different marine plankton system models have been coupled with
ocean circulation models, with the aim of understanding and predicting aspects of en-
vironmental change. However, an ability to make reliable inferences about real-world
processes from the model behaviour demands a quantitative understanding of model5

error that remains elusive. Assessment of coupled model output is inhibited by rela-
tively limited observing system coverage of biogeochemical components. Any direct
assessment of the plankton model is further inhibited by uncertainty in the physical
state. Furthermore, comparative evaluation of plankton models on the basis of their
design is inhibited by the sensitivity of their dynamics to many adjustable parameters.10

The Marine Model Optimization Testbed is a new software tool designed for rigorous
analysis of plankton models in a multi-site 1-D framework, in particular to address un-
certainty issues in model assessment. A flexible user interface ensures its suitability to
more general inter-comparison, sensitivity and uncertainty analyses, including model
comparison at the level of individual processes, and to state estimation for specific15

locations.
The principal features of MarMOT are described and its application to model calibra-

tion is demonstrated by way of a set of twin experiments, in which synthetic observa-
tions are assimilated in an attempt to recover the true parameter values of a known
system. The experimental aim is to investigate the effect of different misfit weighting20

schemes on parameter recovery in the presence of error in the plankton model’s en-
vironmental input data. Simulated errors are derived from statistical characterizations
of the mixed layer depth, the horizontal flux divergences of the biogeochemical tracers
and the initial state. Plausible patterns of uncertainty in these data are shown to pro-
duce strong temporal and spatial variability in the expected simulation error over an an-25

nual cycle, indicating differences in the significance attributable to model-data misfits at
different data points. An inverse scheme using ensemble-based estimates of the sim-
ulation error variance to allow for this environment error performs well compared with
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weighting schemes used in previous plankton model calibration studies. The efficacy
of the new scheme in real-world applications will depend on the quality of statistical
characterizations of the input data. Practical approaches towards developing reliable
characterizations are discussed.

1 Introduction5

Ocean biogeochemical general circulation models (OBGCMs) have a key contribution
to make to the goal of understanding biogeochemical cycles at global and regional
scales. These models are highly simplified “mechanistic” models of a generic plank-
ton ecosystem, coupled with 3-dimensional ocean circulation models that provide the
physical environment to which the plankton models respond. Reliable plankton models10

are needed to make inferences about the potential role of the marine biota in environ-
mental change. However, the contrast between the complexity of biological systems
and the limited data available to empirically constrain model structure and parame-
ter values has led to a wide range of different representations of the marine plankton
system. Each model is one of a still wider set of competing hypotheses concerning15

the dominant mechanisms that control the biological response to change in the phys-
ical and chemical environment. The level of complexity that can be justified in these
models, given the available biogeochemical data, has been a subject of some debate
(Anderson, 2005; Le Quéré, 2006). To resolve this we must be able to comparatively
evaluate models on the basis of their structure and process formulations. Behaviour of20

plankton models in OBGCMs is sensitive to the details of the physical dynamics (Sinha
et al., 2010). Dependence on a particular physical model in comparative assessments
of model designs should therefore be avoided if future biogeochemical simulations are
to benefit from improved representations of the physical environment.

Direct comparison of plankton models on the basis of their design is inhibited by pa-25

rameter uncertainty: behaviour of each model depends on many adjustable parameters
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that are poorly known or difficult to quantify. Although some of these values can be de-
termined experimentally under controlled conditions, the corresponding values in na-
ture are generally highly variable in space and time or across taxa. Fasham and Evans
(1995) and Matear (1995) started to address this problem by fitting plankton models
to observations from time-series sites in the temperate North Atlantic and subarctic5

Pacific respectively, using non-linear data assimilation techniques to seek optimal pa-
rameter sets. Matear (1995) investigated 3 different ecosystem configurations with
3, 4 and 7 nitrogen compartments and concluded that the data from the study site
were insufficient to justify either of the more complex models over the simple nitrate-
phytoplankton-zooplankton model. Dadou et al. (2004) compared 3 alternative con-10

figurations, spanning a similar range of complexity, at an oligotrophic study site in the
eastern North Atlantic and were not able to objectively discriminate between the de-
signs on the basis of their misfit results.

To test models’ predictive ability it is necessary to examine their misfit with respect
to unassimilated data as in the more recent model inter-comparison experiments of15

Friedrichs et al. (2006, 2007). In an experiment with 12 models (Friedrichs et al., 2007),
data from Arabian Sea and Equatorial Pacific sites were used and models calibrated
at one site were cross-validated at the other. Here, the more complex models with
multiple plankton functional groups tended to perform better, provided only a small
number of parameters were optimized, suggesting greater portability and predictive20

skill associated with model design.
The results obtained from all of these optimization experiments are dependent on

the external inputs to the plankton model. Friedrichs et al. (2006) examined the impact
of uncertainty in the physical forcing and demonstrated that likely errors in the physical
forcing data can have a major impact on biogeochemical simulations, causing a cali-25

bration process to yield inappropriate parameter values. One approach to solving this
problem is to improve the physical forcing. Joint assimilation of physical and biogeo-
chemical data, as advocated by Friedrichs et al. (2006), seems likely to be beneficial.
However, the inadequacy of data coverage combined with the sensitivity of plankton
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models to their forcing data inevitably makes the problem persistent, motivating a for-
mal treatment of uncertainty.

The uncertainty introduced by horizontal processes poses a further problem for 1-D
studies that has yet to be satisfactorily addressed. Flux divergences associated with
mesoscale eddy activity are particularly problematical in this respect. The issue does5

not arise explicitly when calibrating a model to simulate a climatological annual cycle
(Matear, 1995; Hurtt and Armstrong, 1996, 1999; Spitz et al., 1998, 2001; Schartau
and Oschlies, 2003; Dadou et al., 2004; Losa et al., 2004). In these cases, mesoscale
and inter-annual variability are both interpreted as noise superimposed on the average
annual cycle. Alternatively, mesoscale variability can be treated as noise superimposed10

on spatially averaged plankton concentrations. On this basis, Hemmings et al. (2003,
2004) treated all satellite chlorophyll data within either 150 km or 100 km as equally
representative of the calibration site. A problem with both approaches is that averaging
tends to smooth out features such as blooms, in effect changing the apparent response
of the system that we are attempting to model.15

Simulating the dynamics for specific years at specific locations seems preferable,
particularly if we want plankton models that will benefit from increased resolution in
general circulation models, but it requires more supporting data. Year-specific forc-
ing can be derived from in situ observations (Fasham and Evans, 1995; Schartau et
al., 2001; Fasham et al., 2006), from a 1-D physical model with appropriate meteo-20

rological forcing (Prunet et al., 1996a,b; Faugeras et al., 2003, 2004; Kettle, 2009),
from a 3-D circulation model (Fennel et al., 2001; Schartau et al., 2001) or from a
combination of in situ and 3-D model data (Friedrichs et al., 2006, 2007). However,
the local forcing is only relevant when local effects are dominant. The presence of
strong mean flows in some regions, together with the ubiquity of mesoscale patchi-25

ness associated with fronts and eddies means that such dominance cannot generally
be assumed. Friedrichs et al. (2007) determined that horizontal advective divergence
of nutrients could have first order effects on the biogeochemistry at the Equatorial Pa-
cific site and introduced an additional source/sink term computed from a 1/3◦ coupled
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biological-physical model to account for these, while acknowledging the issue of un-
known error in the 3-D model.

Other approaches to the horizontal flux divergence problem have been applied with
some success to specific data sets. Fasham et al. (1999) used data from a 3 week
North Atlantic spring bloom survey that followed a drogued buoy, deployed within an5

anti-cyclonic eddy, to minimize contamination of the biological dynamics by non-local
effects. In a calibration exercise using data from the SOIREE iron fertilization exper-
iment, Fasham et al. (2006) parameterized diffusive flux divergence effects using a
mixing rate based on the dilution of a passive tracer added to the iron enriched water.
A novel “variable lag” fitting technique introduced by Wallhead et al. (2006) allows for10

phase differences associated with mesoscale patchiness. Survey data from a relatively
wide area could thereby be combined without explicitly resolving mesoscale processes
yet avoiding the risk of smoothing out temporal variability.

It is clear that a thorough investigation of the impact of uncertainty in all factors that
contribute to uncertainty in plankton model simulations is a high priority. The associ-15

ated data management issues, in combination with the need to perform a wide range
of computationally expensive model analyses involving many different simulations has
been a factor inhibiting rapid progress in this area. The MarMOT software system has
been developed as a generic tool applicable to different plankton models with the aim
of removing this barrier. The system is first described in Sect. 2 in terms of its key20

features. In Sect. 3, it is used to evaluate a proposed model calibration method with
explicit treatment of environmental uncertainty. In the final section, we discuss some
of the practical issues faced in model assessment and and suggest other applications
of the MarMOT system.

2 The MarMOT system25

The Marine Model Optimization Testbed is essentially a multi-site 1-D simulator for
rigorous plankton model evaluation. Following the testbed concept of Friedrichs et
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al. (2006, 2007), MarMOT provides a common physical and computational environ-
ment in which different plankton ecosystem models can be calibrated and compared. It
is designed to support computationally intensive experiments in which models are eval-
uated many times with different inputs. A flexible interface makes it easy to apply to
a wide range of sensitivity analyses, uncertainty analyses and parameter optimization5

experiments. MarMOT does not include a 1-D physical model. All physical forcing is
instead provided by external input data. Plankton model responses to a wide range of
different physical environments can be examined by providing different instances of the
forcing data derived from models or observations or a combination of both. With appro-
priate treatment of uncertainty in these input data ensembles, the plankton ecosystem10

components of OBGCMs can be assessed independently as hypotheses concerning
the dominant biogeochemical processes they are designed to represent.

Figure 1 gives an overview of the MarMOT system in terms of its main components
and the data flows between them. Simulations are controlled by data selected from
a number of input tables, referred to as “item tables”, each containing one or more15

instances of a particular input item. Different instances of each item are combined
according to entries in a further input table: the “case table”. Each case table en-
try defines a simulation case determined by a specific combination of input data and
identified by a site name (or number) and an ensemble member name (or number).

A particular case table defines a set of simulations for one or more ensemble mem-20

bers at one or more sites. The set of ensemble members may vary between sites
if required. Ensemble configurations for multiple sites can involve site-specific infor-
mation (e.g. water depth), ensemble-member specific information (e.g. plankton model
identifier in a multi-model comparison experiment), information specific to the combina-
tion of site and ensemble member (e.g. forcing data) and independent information (e.g.25

simulation time period). A cross-referencer links the appropriate item instances to the
case table, determining the required data for each item either from an explicit reference
or from the context implied by the site and/or the ensemble member. Free model pa-
rameters can be optimized over all cases in a given case table, so it is straight-forward
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to set up multi-site and calibration experiments. Multi-member calibrations are likewise
possible.

The core of the system is the MarMOT Model Evaluator (MME) that performs plank-
ton ecosystem model runs according to the specifications in the case table. It calcu-
lates a cost function value dependant on the misfit between simulation variables and a5

set of observations or other reference values provided as an additional case-dependent
input item. It can also provide a range of different output tables that are selected or de-
selected according to user requirements. Further details of the system design are
given in Appendix A.

2.1 Model evaluator10

2.1.1 Cost function

The MME outputs a cost function value that is a weighted average of all model-data
misfits, over all specified simulation cases (or zero in the absence of any applicable
data). Profile variable values are interpolated linearly in depth from level mid-points to
the observation depth. The misfit cost is then defined by15

J =
1
N

C∑
k=1

m∑
j=1

nk∑
i=1

pi jkwi jk(xi jk−yi jk)2 (1)

N =
C∑
k=1

m∑
j=1

nk∑
i=1

pi jk (2)

where C is the number of cases, nk is the number of observation points (in space and
time) for case k and m is the number of observed variables; xi jk is the simulated value
of the j -th variable at the i -th observation point and yi jk is its observed value. The20

coefficient pi jk is 1 if the variable is present in the observation set or 0 otherwise. The
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coefficient wi jk is a weight specified in the observation set or 1 if no weight is given. An
output table can be produced giving all simulated and observed values, model-data dif-
ferences, user weights and weighted misfits (squared differences) at each observation
point.

Model-data differences may optionally be calculated in log or square root space, in5

which case x is replaced by log10x or
√
x, respectively and y is likewise replaced by

log10y or
√
y . Log transformations emphasize relative error and are appropriate for

variables that tend to exhibit log-normal distributions. However, in ecological analyses
it is often unclear whether absolute or relative errors should be considered. Square root
transformations have been applied as a compromise in some studies for this reason10

(Fasham and Evans, 1995; Evans, 1999; Dadou et al., 2004; Fasham et al., 2006).
Parameter penalty terms are not presently supported in MarMOT. Although such

terms have been widely used in the literature to inhibit excessive deviation of parameter
values from their prior expected values, their specification normally relies on subjective
prior information. Ideally, parameters should be prevented from assuming values far15

outside their expected ranges by ensuring that the set of adjustable parameters is
adequately constrained by the data (Friedrichs et al., 2007). Cases where this doesn’t
work can potentially provide useful information about deficiencies in the model design.
Where parameter bounds are required, prior constraints can be imposed independently
of the cost function using optimizer features described in Sect. 2.2.20

2.1.2 1-D simulations

The remaining MME features described here relate to each individual simulation case.
Case-specific input data include the model selection, fixed model parameter values,
forcing and boundary condition data (including initial conditions). In addition the model
time-step, vertical grid, advection scheme and photosynthesis sub-model can be varied25

between simulations, allowing the sensitivity of the solution to these factors to be ex-
plored in a single experiment. The available photosynthesis sub-models are described
in Appendix B.
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The 1-D equation for the evolution of a biogeochemical tracer concentration Ci in a
MarMOT simulation is

dCi
dt

= −(wp+wi )
∂Ci
∂z

+
∂wp

∂z
Ci +

∂
∂z

(
Kρ
∂Ci
∂z

)
+SMSi (C,F )+pi (Ci ,p

?
i )+ri (C

ref
i −Ci ). (3)

The first three terms represent the vertical flux divergence. wp is the vertical velocity of5

the water, wi is the active vertical velocity of the biological material relative to the water
(if any) and Kρ is the turbulent diffusion coefficient. SMSi is the source-minus-sink term
from the selected plankton model which is a function of the state vector C and a forcing
vector F . wi is provided by the plankton model and currently assumed to be constant.
The last two terms define the boundary condition: pi is a perturbation term driven by an10

applied perturbation p?, which may be stochastic, and the final term is a relaxation term
given by the product of a rate ri and the deviation of Ci from a reference concentration
Cref
i . In addition, if a non-zero depth is specified for the turbulent upper mixed layer,

rapid mixing is parameterized by complete homogenization of tracers above this depth
at each time step. Partial mixing of the model level spanning the specified depth is15

optional.
Forcing data for the model can be periodic, representing a repeating annual cycle,

or year specific. The standard forcing variables for a 1-D plankton model simulation
determine the light availability at the sea surface and the transport of passive tracers in
the water column. In MarMOT, they comprise the downwelling solar radiation incident20

on the sea surface, either as a daily mean or a point-in-time estimate, the mixed layer
depth, the depth-dependent turbulent diffusion coefficient Kρ and vertical velocity wp.
Additional model-specific forcing variables are also catered for.

In perturbed simulations, the perturbation for an individual tracer can be indepen-
dent of the concentration Ci or it can be applied to log-transformed or square root-25

transformed concentration so that pi becomes a function of concentration. In either
1950
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case, the applied perturbation p?i is given by the sum of a prescribed perturbation µpert
i

and a stochastic term. The latter is modelled as a first order auto-regressive process
such that the perturbation at time step n is

p?i =µ
pert
i +qn (4)

where5

qn =aqn−1+εn. (5)

The value a is determined from the auto-correlation coefficient for q at a time lag of
24 h as specified by a fixed simulation parameter. εn is a normally distributed random
variable with zero mean. Its standard deviation is set to give an expected p?i standard

deviation matching that prescribed by external data σpert
i in cases where the process is10

stationary. The actual perturbation process can be non-stationary: µpert
i and σpert

i are
handled as forcing variables and both can be time- and depth-dependent. εn covaries
at all depths and is scaled according to the local value of σpert

i . Any negative post-
perturbation tracer concentrations are set to zero.

Each relaxation rate ri is handled as a forcing variable, as is the reference concentra-15

tion Cref
i for each tracer. Any of these variables can vary independently in time and/or

depth if required. The relaxation rate can be set to fully relax one or more tracers to
reference data at each time step. Any of the tracers can thus be held at fixed values or
fully determined by external fields. Used in this way, the relaxation scheme is a pow-
erful diagnostic tool that makes it possible to examine the behaviour of individual parts20

of the model independently. A further option allows relaxation to be restricted to grid
points above or below the mixed layer depth, the euphotic zone depth (1 % light level)
or the greater of the two.
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2.1.3 Horizontal flux divergence

The appropriate boundary condition for parameterizing horizontal flux divergence de-
pends on the nature of the experiments to be performed. If the aim is to produce the
best approximation to the true ocean state at a site then the horizontal flux divergences
to be represented, together with their uncertainty, are real-world flux divergences. How-5

ever for model assessment or calibration they are flux divergences consistent with the
model and parameter set under evaluation that would be obtained with a perfect phys-
ical simulation.

The perturbation and relaxation terms can be used in combination to provide a
suitable boundary condition for representing uncertain real-world flux divergences. A10

stochastic perturbation rate represents horizontal flux divergence that causes the so-
lution to diverge from a locally forced solution. The relaxation term ensures that, as
information from the local solution is lost, the solution tends towards some prior es-
timate of the system state, provided by Cref

i . The prior state estimate is effectively
assimilated during integration. Any cost function value obtained is a measure of the15

quality of the simulation, rather than the skill of the model. For model assessment or
calibration, the required horizontal flux divergences are model-specific and there is no
prior state estimate. Flux divergence is then represented solely by the perturbation
term.

When both perturbation and relaxation are applied, the magnitude of the relaxation20

change should be balanced against that of the perturbation change to ensure that
information is replaced at a rate consistent with the expected change due to horizontal
flux divergence. This can be achieved in MarMOT using a constraint that allows the
maximum relaxation rate to be controlled by the perturbation standard deviation.

At each time step, a new perturbation-limited relaxation rate25

r ′i =min

(
Ri

|Cref
i −Ci |

,rext
i

)
(6)
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is determined for each tracer i , where Ri is a maximum permitted magnitude for the
rate of change in concentration due to relaxation and rext

i is the input relaxation rate.
The degree of limitation is determined by a relaxation control factor ψ such that

Ri =ψσ
pert
i (7)

so ψ controls the significance of the relaxation change, relative to the random pertur-5

bations. Alternatively, if σpert
i is defined in transformed variable space

Ri =Ciψσ
pert
i (8)

or

Ri =2
√
Ciψσ

pert
i (9)

for log and square root transformations, respectively.10

The maximum permitted relaxation rate is determined separately for each tracer.
However, it is desirable to use the same relaxation rate for all tracers to preserve re-
lationships between different tracers in the prior state estimate. At each time step, a
universal relaxation rate

ri =min
i

(r ′i ) (10)15

is therefore applied to all relaxed tracers.

2.2 Optimizer

The optimizer is well suited to non-linear problems in multi-dimensional parameter
space: it includes a genetic algorithm for identifying promising areas of a bounded
parameter space and a non-gradient direction set algorithm for bounded or unbounded20

local minimization. The two algorithms can be used in combination or independently.
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The genetic algorithm is a global method in the sense that it is able to locate multiple
minima in the cost function. However, it searches the parameter space in discrete in-
tervals, limiting the accuracy with which it can locate a particular minimum. In contrast,
the direction set algorithm navigates towards a local minimum from a given starting
point, making it unsuited to finding the global minimum in a cost function with complex5

topography, but can give greater accuracy. Local algorithms can be applied to global
problems by performing repeated searches from different initial points in parameter
space to increase the likelihood of locating the global minimum. In MarMOT, the direc-
tion set algorithm can be initialized from an input table of parameter vectors or from a
set of pre-conditioned parameter vectors output by the genetic algorithm.10

The genetic algorithm provided is a micro-genetic algorithm (µGA) (Krishnakumar,
1989), based on an implementation by Carroll (1996). It has been applied to the prob-
lem of plankton model optimization by Schartau and Oschlies (2003), Weber et al.
(2005) and Kettle (2009) and by Ward et al. (2010) who compared its performance with
the local variational adjoint technique employed by Friedrichs et al. (2007). An initial15

set of parameter vectors is required to define the population for the genetic algorithm
to work on. In MarMOT, this can either be from an input table or generated randomly.
The bounds for each parameter can be defined in terms of the actual parameter values
or log-transformed values.

The direction set algorithm was designed by Powell (1964) to locate a cost function20

minimum in a continuous free parameter space. The version of Powell’s algorithm
used is that described in Press et al. (1992), with reference to Acton (1970). Line
minimization is performed using Brent’s method (Brent, 1973). No gradient information
is used so it does not require the provision of an adjoint code for calculating the cost
function gradient with respect to the model parameters. It is therefore more straight-25

forward to apply than the variational adjoint method in situations where the formulation
of the plankton model is not fixed. The algorithm has been applied in a number of
plankton model calibration studies (Fasham and Evans, 1995; Fasham et al., 1999;
Evans, 1999; Dadou et al., 2004; Fasham et al., 2006).
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Powell’s algorithm treats the parameter space as infinite. However, to support
bounded minimizations, transformations can be applied to any parameter value P (in
original or log space) to provide an unbounded value P ? for the optimizer.

P ? =

{ P−Pmid
P−Plower

, P < Pmid
P−Pmid
Pupper−P

, P > Pmid

}
(11)

Pmid =
1
2

(Plower+Pupper) (12)5

where Plower and Pupper are the required bounds in the original finite parameter space.
P ? tends to infinity as P approaches either bound, so any point P ? in the infinite space
seen by the optimizer maps to a value P where Plower < P < Pupper. The behaviour
of the search algorithm with respect to the original parameter space is affected as a
consequence of the modified cost function J ′(P ?) = J(P ) presented to the optimizer.10

Transformations are dimension specific, so bounded and unbounded parameters can
be optimized simultaneously.

The parameter transformation is based on that introduced by Fasham et al. (1999)
for the same purpose. In that study, a parameter penalty term was also included in
the cost function formulation to weight against large deviations of the transformed pa-15

rameters from their prescribed prior values. In MarMOT, prior parameter information is
provided purely in terms of allowable ranges so that the value of the cost function J(P )
is unaffected by the parameter values, except via the simulation.

The optimizer can output cost function values and corresponding parameter vec-
tors for all function evaluations if required. Any requested simulation output tables are20

produced for the final optimal parameter vector.

3 Application to model calibration

A potentially robust method for parameter optimization at time-series sites is proposed
here and compared with established methods by way of a set of twin experiments in
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which the true parameter values are known. We focus on the design of the cost func-
tion. The more general calibration problem normally includes a parameter selection
phase guided by a sensitivity analysis to determine which parameters can be indepen-
dently constrained and/or which parameters are likely to impact on model outputs of
particular scientific interest. The required sensitivity analyses can be performed effi-5

ciently using MarMOT but are outside the scope of the present demonstration.

3.1 Cost function design

In inverse analyses of plankton ecosystem models, parameter optimization is generally
performed by minimization of a cost function. Maximum likelihood methods have also
been employed (Hurtt and Armstrong, 1996, 1999), in which an optimizer is applied to10

the problem of maximizing a function describing the likelihood of the observations con-
ditional on the truth of the model. The two techniques are essentially equivalent and
give point estimates of the model parameters. Alternatively, in a fully Bayesian scheme,
the likelihood is multiplied by prior probability distributions for the parameters to esti-
mate the complete posterior distributions (Harmon and Challenor , 1997) or combined15

distributions for the parameters and the system state (Dowd and Meyer, 2003).
The weight given to individual model-data misfits in a particular cost function or like-

lihood function is fundamental to the effectiveness of data assimilation for controlling
model parameter values. As discussed by Evans (2003), a wide variety of different
approaches have been used in the literature, having a potentially major impact on pa-20

rameter estimates and the resultant estimates of key biogeochemical quantities from
the calibrated model simulations.

Unweighted misfits have been used (Fasham and Evans, 1995) or sometimes
weights have been used in a subjective way to give more influence to observations that
are felt to be more reliable or more important to fit (Fasham et al., 1999, 2006). The25

square root transform used by Fasham and Evans (1995), Evans (1999) and Fasham
et al. (2006), while not weighting individual misfits explicitly, has the effect of giving
more influence to misfits occurring when values of model and data are low. This
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is a compromise between treatment of absolute and relative errors; absolute errors
might be considered more important in the context of estimating total element fluxes,
whereas relative errors might be favoured by arguments based on representing eco-
logical structure (Evans, 1999). Hurtt and Armstrong (1996); Fasham et al. (1999);
Hurtt and Armstrong (1999) scaled model-data differences relative to the model values5

at the observation points, giving equal weight to equal relative departures.
More typically, some characteristic scale is determined for each assimilated data

type, designed to reflect its variability relative to other data types over the whole data
set. Weights wj (Eq. 1) are chosen to be inversely proportional to the mean of all
observations of the same type (Spitz et al., 2001), the square of the mean (Kuroda10

and Kishi, 2004) or their variance (Friedrichs et al., 2006, 2007; Kettle, 2009; Ward
et al., 2010). Friedrichs et al. (2007) and Ward et al. (2010) found it necessary to
introduce a subjective up-weighting of misfit to primary production observations due to
the high variability of these data. Evans (2003) suggested that if focusing on the cycle
of a particular element it may be desirable to give the same weight to all misfits for15

that element, regardless of the form in which it occurs. Dadou et al. (2004) therefore
used a single scaling factor for all nitrogen variables, based on the maximum observed
nitrate, and used intuitive arguments to determine relative scaling factors for primary
production and particle fluxes based on the maximum observed values of other relevant
properties.20

In general, characteristic scales are used because of the absence of information
required to properly estimate error variances. In some studies though, the variable-
specific weight is presented as the reciprocal of an assumed or estimated observation
error variance (Prunet et al., 1996a,b; Fennel et al., 2001; Faugeras et al., 2003, 2004);
for a particular variable, either absolute or relative error variances are taken to be con-25

stant. Schartau et al. (2001) used a combination of constant absolute and relative
error variance estimates for chlorophyll and primary production data. Finally, season-
ally varying observation error variance estimates have been used in inverse modelling
of the annual cycle (Matear, 1995), while Hemmings et al. (2003, 2004) estimated
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error variances specific to individual chlorophyll observations from spatial variances in
satellite data.

3.1.1 An uncertainty-based weighting scheme

A formal weighting scheme is developed here, with explicit consideration given to the
different sources of error contributing to the model-data misfit. Misfit arises from a5

combination of error in the observations and error in the simulation. Error in the ob-
servations includes both measurement error and error of representativity. The latter is
error due to small-scale variability or, more specifically, the mismatch between the vol-
ume of water sampled and the minimum scale resolved by the simulation. It includes
error due to small-scale variations in both space and time. Error in the simulation is the10

sum of model error, attributable to deficiencies in the model, and environment error,
attributable to error in its environmental inputs (forcing data and boundary conditions).
For a model with optimizable parameters, model error can be treated as the sum of
parameter error and structural error components. The structural error is the residual
error for the true parameter set (assuming such a set exists conceptually). It is the15

error associated with the model design and includes error attributable to values of any
fixed model parameters.

Assuming that errors are additive and independent, the simulated and observed val-
ues of variable j at observation point i at site k are then

xi jk = xi jkT+εi jkENV+εi jkP+εi jkS (13)20

yi jk = xi jkT+εi jkOBS (14)

where xi jkT is the true value (i.e. that for a perfect simulation) and εi jkENV, εi jkP, εi jkS
and εi jkOBS are the environment error, parameter error, structural error and total ob-
servation error, respectively. The variance in the model-data difference xi jk−yi jk is
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σ2
i jk =σ

2
i jkOBS

+σ2
i jkS

+σ2
i jkP+σ

2
i jkENV (15)

where the terms on the right hand side are the variances for each error component.
The error variance of interest in a particular analysis depends on the objective. If

it is to improve the simulation then the aim is to minimize the total simulation error
variance. The residual variance for a perfect solution is the observation error variance5

σ2
i jkOBS, so the estimated observation error variance determines the significance of a

given misfit. However, to improve the plankton model we aim to minimize only the
model error variance σ2

i jkP +σ2
i jkS and so must determine significance on the basis

of estimates of the residual variance σ2
i jkOBS +σ

2
i jkENV. This reduces the significance

of each individual misfit to take into account the effects of uncertainty in the model’s10

environmental inputs.
For quantifying model error, a normalized model-data misfit statistic is therefore pro-

posed:

Mi jk =
(xi jk−yi jk)2

σ2
i jkOBS

+σ2
i jkENV

. (16)

Here, the denominator (corresponding to the reciprocal of wi jk in Eq. (1) defines a15

significance threshold for the square of the model-data difference. The expected value
of Mi jk for a perfect model is 1; if the model-data difference is no larger than might
be expected as a result of observation error and environment error then there is no
evidence for model error so the data gives us no cause to reject the model.

In a calibration exercise, the aim is either to find the parameter set that minimizes20

the model error or to estimate real-world parameter values. Equation 16 is applica-
ble to the first case, parameter optimization, in which parameter values are permit-
ted to compensate for structural error. In the second case, parameter estimation,
the aim is to minimize the parameter error variance σi jkP, so the residual variance is

σ2
i jkOBS+σ

2
i jkENV+σ

2
i jkS. Thus the significance of a given misfit for parameter estimation25
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is less than that for parameter optimization or model assessment. The appropriate mis-
fit statistic is

M ′
i jk =

(xi jk−yi jk)2

σ2
i jkOBS

+σ2
i jkENV+σ

2
i jkS

. (17)

If the model-data difference is no larger than might be expected as a result of ob-
servation error, environment error and structural error then there is no evidence for5

parameter error, given the data, so no cause to reject the parameter set. Parameter
estimation is a more difficult problem than parameter optimization because the prob-
lem of estimating the varying contribution of structural error between data points is not
easily tractable.

A value for σi jkOBS can in principle be derived from repeat observations, if available.10

An appropriate value for σi jkENV can be obtained from ensemble integrations of the
model with different input data. The method of estimating σi jkENV relies on a good
characterization of uncertainty in forcing data and boundary conditions, requiring a
thorough analysis of relevant satellite and in situ data available for the site and its
surroundings. Local modelling studies, including data assimilating hindcasts, might15

provide additional information. For a calibration exercise, ensemble simulations must
also provide adequate coverage of the parameter space.

3.1.2 Other weighting considerations

Cases are common in the literature where different numbers of observations are avail-
able for different data types. They are generally treated in one of two ways: in some20

studies, misfits for different variables are weighted by the reciprocal of the number of
observations of each type (Hurtt and Armstrong, 1999; Schartau et al., 2001; Schar-
tau and Oschlies, 2003; Faugeras et al., 2003, 2004; Hemmings et al., 2003, 2004;
Friedrichs et al., 2007; Kettle, 2009; Ward et al., 2010), while in others, no such weight-
ing is applied (Matear, 1995; Prunet et al., 1996a; Hurtt and Armstrong, 1996; Spitz et25
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al., 2001; Friedrichs, 2002; Dadou et al., 2004; Kuroda and Kishi, 2004; Friedrichs et
al., 2006). The choice is significant: Fasham and Evans (1995) performed experiments
with and without a weighting factor that increased the influence of the small number of
zooplankton observations in their data set, obtaining two different optimal parameter
sets for which simulated primary production differed by a factor of about 2.5

Explicit weighting to balance the contributions of different data types is objectively
justifiable if error correlations are much greater between variables of the same type
than between different data types. However, this cannot generally be assumed and
Evans (2003) argues that, while such balancing has the advantage of emphasizing
scarce but important measurements, it may not be desirable in a formal procedure.10

As discussed by Evans (2003), we can expect simulation errors arising from model
error or external factors to introduce both serial correlations and correlations between
variables via the model dynamics. This could be allowed for by the use of a non-
diagonal covariance matrix in the cost function formulation. However, the issue has not
been addressed in previous studies and a full treatment is not presently supported in15

MarMOT.
Another issue arises when optimizing over multiple sites. Schartau and Oschlies

(2003) optimized parameters for three Atlantic sites simultaneously and found with their
initial weighting scheme that observations at a particular site had a much greater in-
fluence than those at the other sites. This was a consequence of order-of-magnitude20

variations in property concentrations between sites. The problem was countered by
introducing a weight based on variables’ mean values at each site, an approach also
adopted by Friedrichs et al. (2007) in simultaneous optimizations for sites in the Ara-
bian Sea and Equatorial Pacific. No site-specific weighting was used in the two-site
calibration of Hurtt and Armstrong (1999) or the multi-site calibrations of Hemmings et25

al. (2003, 2004).
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When the objective is to achieve a particular compromise between sites or between
variables that is dictated by an application of the model then some subjective weight-
ing can be justified. However, when it is to make inferences about the model such
weighting is undesirable. Furthermore, it is possible that improved normalization of
model-data misfits could reduce the need for it.5

3.2 Twin experiments

A set of identical twin experiments are presented in which synthetic observations are
generated from a model with a particular parameter set, taken to represent the true
system. The same model with 5 free parameters is then optimized to fit these data in
an attempt to recover the original “true” parameter values. Results for the proposed10

method are compared with those obtained using established weighting schemes. The
plankton model is a recent version of the HadOCC (Hadley Centre Ocean Carbon
Cycle) model, based on the model of Palmer and Totterdell (2001), in which organic
carbon fluxes are controlled by a 4 compartment nitrogen cycle. The state variables
are dissolved inorganic nitrogen (DIN), phytoplankton, zooplankton and detritus. A full15

description of the model’s nitrogen cycle is given in Appendix C. The parameters to be
optimized are specified in Table 2.

The first step is to create a statistical characterization of the environmental inputs
representing a given scenario with reasonably realistic patterns of uncertainty. One
realization of this synthetic environment represents the true environment and the cor-20

responding simulation is used to generate the observation set. A second realization
is treated as the best available estimate of the true environment and used to drive
trial simulations with varying parameter vectors in the optimization experiments. This
realization of the environmental data is referred to as the optimization environment.
To examine the robustness of the results with respect to environment error, the set of25

optimization experiments is repeated for different realizations. Estimates of the envi-
ronment error variances σ2

i jkENV are determined from ensemble realizations using the
same synthetic environment model, so they reflect the impact of known uncertainty in
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the environmental inputs. In a real-world experiment, the reliability of the data assimi-
lation results will depend on how well the environmental uncertainty can be character-
ized.

The chosen scenario is based on an annual cycle at three sites with 1-D simu-
lations being driven by data from a global ocean biogeochemical general circulation5

model; the NEMO (Nucleus for European Modelling of the Ocean) model coupled with
the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and
Acidification) biogeochemical model is used to provide physical forcing data and bio-
geochemical flux divergence statistics. These are derived from 5 day mean fields from
a simulation at 1/4◦ resolution with 64 vertical levels, referred to as ORCA025-N20110

(Popova et al., 2010). The run was undertaken at the National Oceanography Centre
as part of the DRAKKAR collaboration (Barnier, 2006) with model integration being
performed on HECToR, the UK National Supercomputing Centre facility. The selected
sites are at 31◦ N 64◦ W, 47◦ N 20◦ W and 59◦ N 19◦ W corresponding to the BATS,
NABE and OWS-INDIA sites used by Schartau and Oschlies (2003).15

A number of different 1-D simulations were performed at each site in connection with
the twin experiments. An overview is given in Table 3. Simulation Group A provides a
synthetic climatology used to create an ensemble of initial states. Simulation Group B
is an ensemble simulation providing an estimate of the expected environment error
variances for a known system as an illustrative example of the impact of environmental20

uncertainty. Simulation Group C provides parameter-independent environment error
variance estimates for the parameter optimization experiments. Simulation Group D
provides the true system state for the true environment. This state is used in generat-
ing synthetic observations for assimilation in a set of optimization experiments compris-
ing Simulation Group E. The observed variables are DIN, particulate organic nitrogen25

(PON), phytoplankton chlorophyll and primary production. For the purposes of this ex-
periment, PON is defined as the sum of the organic nitrogen tracers (phytoplankton,
zooplankton and detritus).
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3.2.1 Statistical characterization of the synthetic environment

Estimates of the mixed layer depth, the horizontal flux divergences and the initial state
at each site are treated as uncertain and represented by input ensembles. The meth-
ods for ensemble generation are described below. The potential impact of uncertainty
in solar radiation, vertical velocity, interior vertical diffusion and the monthly mean hor-5

izontal flux divergence is not explored: the “true” values of these variables are used
throughout. The vertical diffusion coefficient is set to zero so that only numerical diffu-
sion occurs below the mixed layer.

For the mixed layer depth, the level of uncertainty is based on the assumption that
time-varying mixed layer depth statistics for a 1◦ square area are known. Mixed layer10

depth at a given time is described by a log-normal distribution with mean and variance
determined from the distribution of turbocline depths over all ORCA025 grid points
within a 1◦ square area centred on each site location, using data from the scenario
year (2005). The turbocline depth at each grid point is taken to be an equally likely
representation of the depth of the mixed layer at the site. Mixed layer depth values are15

generated at 5 day intervals with no temporal inter-dependency and linearly interpo-
lated between these times. The characteristics of the mixed layer depth input ensemble
are summarized in Fig. 2.

For the horizontal flux divergences it is assumed that depth-dependent monthly
means and standard deviations are available from a model-based climatology. In20

a real-world experiment it would be important to ensure that these statistics were
consistent with the model being analyzed. This is not an issue in the twin experiment
context, so statistics derived from the ORCA025-N201 output are used despite its
dependency on a different plankton model. Inter-annual variability in the actual 3-D
simulation provides separate realizations of the circulation, the statistical properties25

of which are taken be representative of uncertainty in our knowledge of the true
circulation affecting conditions in the scenario year. The 3-D model resolution is
eddy-permitting, so the advective flux divergences can be expected to represent some
limited eddy diffusion effects.
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All perturbations are applied in transformed tracer space so are concentration de-
pendent. A square root transformation was chosen for all tracers at all sites, giving a
rate of change for tracer concentration Ci of

pi =2
√
Cip

?
i (18)5

in response to a perturbation p?i applied to
√
Ci . The choice of tracer transformation

was a compromise supported by a Box and Cox (1964) analysis in which a maximum
likelihood method is used to determine the optimum variance-stabilizing transformation
from those available in MarMOT (log, square root or none). The applied perturbation
was derived from the advective flux divergence of the transformed tracer as determined10

from the 5 day mean concentration and velocity fields output by the 3-D model, so

p?i =−∇h · (uh

√
Ci ) (19)

where the subscript h denotes vectors in the horizontal plane and uh is the current
velocity. Spatial variation in the flow is ignored and taken to be zero, so that the applied
perturbation is simply the product of the local flow rate and the horizontal gradient of15 √
Ci in the direction of the flow. This is calculated for all times and depth levels over

15 yr of the 3-D simulation (1991–2005) and binned by month to obtain statistics µpert
i

and σpert
i for one annual cycle. The resulting tracer perturbation input fields for each

site are shown in Figs. 3 and 4. Different realizations of the perturbation rate anomaly,
consistent with σpert

i , are generated internally from different input seed values. A 24 h20

auto-correlation coefficient of 0.5 is used for all simulations.
There is clearly strong correlation between state variables in the mean flux diver-

gences represented in Fig. 3. Correlation structure arising from the plankton dynamics
would likewise be expected in any anomalies, although the present MarMOT system
only generates perturbation rate anomalies for different variables independently. Func-25

tionality to introduce correlation structure on the basis of input statistics would be a
useful extension.
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For the initial state, it is assumed that multi-variate monthly climatological statistics
are available for all tracers at depths of 5, 10, 20, 40, 60, 80, 100, 150, 200, 250, 300,
500, 750 and 1000 m. A synthetic climatology is created for each site from a 15 yr
HadOCC integration to the start of the scenario year with the true parameter set (Sim-
ulation Group A). Excessive model drift due to absent horizontal processes is avoided5

by relaxing the DIN tracer towards climatology at all depths below the combined mixed
layer and euphotic zone, with a 60 day relaxation time scale (r = 0.0167 d−1). The
reference concentrations for relaxation are given by local annual mean nitrate profiles
from the World Ocean Atlas (Garcia et al., 2010) and the 15 yr integrations are ini-
tialized from a steady state annual cycle obtained from repeat integrations of the first10

year. Monthly statistics from the resulting climatology are used to construct a prob-
ability model for randomly generating system states as needed, preserving vertical
covariances and covariances between tracers as characterized by the first 5 principal
components of the anomalies. These explain 76 %, 62 % and 74 % of the variance at
BATS, NABE and OWS-INDIA sites, respectively. A multi-variate state representative15

of December or January is selected with equal probability to initialize simulations at the
start of the calendar year. The main characteristics of the initial state input ensemble
are summarized in Fig. 5.

3.2.2 Environment error for a known system

Given a statistical characterization of the input data, the expected environment error in20

the simulation is dependent on the plankton model and its parameter values. Estimates
of the environment error fields for a known system, specifically the HadOCC model with
default parameters (Table C), are given by a 100 member ensemble simulation at each
site (Simulation Group B). A square root transformation is applied to each observed
variable, on the basis of a Box-Cox analysis (Box and Cox, 1964), to stabilize the25

ensemble variance. The ensemble standard deviation for each transformed variable
gives an estimate of its expected r.m.s. environment error. Estimates are shown in
Fig. 6 as a function of depth and time.
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There are particular patterns in Fig. 6 that are directly linked with uncertainty in mixed
layer depth (Fig. 2) during seasonal deepening of the boundary layer. At NABE and
OWS-INDIA, clear bands of high standard deviation in transformed PON and chloro-
phyll are evident in the region of the maximum mixing depth from late summer onwards.
These are also seen at BATS and NABE from January to March where corresponding5

bands are present in the DIN plots. In contrast, at OWS-INDIA where there is much
greater variability in mixed layer depth over the ensemble, there are no obvious peaks
in the depth distributions of the ensemble standard deviation over the winter period.
At OWS-INDIA particularly high ensemble variance occurs in transformed DIN as the
mixed layer deepens in the autumn. This extends throughout the boundary layer and10

appears to be the result of high variability in the advective DIN flux divergence (see
Fig. 4), much of which is above the mixed layer depth. Variability in DIN flux divergence
is similarly high at BATS at this time but below the mixed layer depth, contributing to a
sub-surface band of high simulation variance in DIN from spring through to the end of
the year. Other high variance patterns in late spring and early summer appear to be as-15

sociated with the biological response to spring shoaling of the mixed layer. These are
symptomatic of more complex interactions between the variance in the input ensemble
and the biological dynamics.

Another important point with respect to the transformed DIN ensemble standard de-
viation is its strong increase over the year at OWS-INDIA. Here, the ensemble variance20

is much higher over the full depth range at the end of December than at the beginning
of the year. The situation is similar at BATS, although less obvious. In contrast, the DIN
pattern at NABE is much more suggestive of a repeatable annual cycle. The net growth
in transformed DIN error variance at BATS and OWS-INDIA over 1 yr of integration may
be due to deficiencies in the statistical representation of the horizontal flux divergences.25

This should be further investigated with a view to possible refinement of the boundary
condition. In particular, the use of a square root transformation in the advective flux
divergence calculation (Eq. 19) may not be appropriate over all times and depths at
which it is applied. Preliminary analyses of the 3-D biogeochemical simulation suggest
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that the flux divergences might be better represented using a variable power law trans-
formation that adapts to time and depth variations in their probability distributions.

3.2.3 Parameter-independent environment error

In a calibration exercise, the true parameter vector is unknown so parameter uncer-
tainty must be considered. In the experiments presented here, a single standard devi-5

ation estimate s2
i jkENV is used at each data point for the whole free parameter space to

be searched by the optimizer. s2
i jkENV was determined by pooling variances calculated

for 100 different parameter vectors in the 5-dimensional parameter space, chosen ac-
cording to a Latin hypercube design (McKay et al., 1979). For improved coverage, a
maximin criterion (Johnson et al., 1990) was applied to 500 randomly generated hyper-10

cubes, selecting the design minimizing the Euclidean distance between pairs of sample
points. For each parameter vector, the error variance estimates were determined us-
ing 100 realizations of the environment, requiring 10 000 simulations at each site in
Simulation Group C.

The parameter-independent field estimates from the 10 000 member ensemble are15

shown in Fig. 7. The differences between the error standard deviation patterns shown
in Figs. 6 and 7 give an indication of the effect of parameter uncertainty. While the
patterns are broadly similar, it is clear that many of the details are sensitive to the
parameter values, suggesting that the use of parameter-specific environment error es-
timates in the cost function could be beneficial. This option would be computationally20

more expensive and is not explored in the optimization experiments presented here.

3.2.4 Synthetic observations

The observations for the scenario year are generated from a simulation with the true en-
vironment (Simulation Group D) by sampling the output and adding observation errors.
The resulting observation data set comprises monthly DIN and PON concentrations25

at depths of 10, 30, 50, 100, 200, 300 and 500 m, monthly chlorophyll concentrations
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and primary production fluxes at 10, 30, 50, 100 and 200 m and upper mixed layer
chlorophyll concentrations at 5 day intervals. Plausible errors are applied to square
root or log transformed values as specified in Table 1. For the log-transformed bio-
logical variables, the error standard deviations are derived from nominal relative errors
by averaging positive and negative errors in log space. The actual relative errors are5

shown in brackets.

3.2.5 Parameter optimization

A set of three experiments is performed with different weighting schemes, one using
a characteristic scale for each variable, another based on the known observation er-
ror statistics and a third using these in combination with the simulation error variances10

determined using the environmental input ensemble. The first two schemes are repre-
sentative of established schemes described in Sect. 3.1.

In Experiment 1, we consider observation error variance estimates based on the
inherent variability in the data set and, following Friedrichs et al. (2006), set the uncer-
tainty to 25 % of the standard deviation s for all observations of the same type at the15

same site. So for variable j at site k the weights in the MarMOT cost function (Eq. 1)
are

wi jk =
16

s2
jk

. (20)

In Experiment 2, the known observation error statistics are used, so

wi jk =
1

σ2
jOBS

. (21)20

Model-data differences are calculated in square root space or log space, according to
the transformation used for generating observation errors.
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In Experiment 3, the weights are derived following the new method proposed in
Sect. 3.1, using environmental simulation error variance estimates s2

i jkENV. Weights
for individual misfits are of the form

wi jk =
1

s2
i jkOBS

+s2
i jkENV

. (22)

Model-data differences are calculated in square root space. For chlorophyll, PON and5

primary production, the observation error is specified in log10 space and the expected
error in square root space depends on the untransformed observation value Ω= y2

i jk
according to

si jkOBS = ln(10)

√
Ω

2
σjOBS. (23)

For DIN,10

si jkOBS =σjOBS. (24)

While the presence of significant correlation structure in the simulation error is ac-
knowledged, no allowance is made for covariances in the cost function weighting. The
adverse effects are reduced by removing duplicate simulation values that occur at mul-
tiple sampling depths within the upper mixed layer. Where this occurs, all mixed layer15

observations below 10 m are excluded.
The optimization procedure was identical for each set of optimization experiments.

Initial optimization was performed with the µGA which was run for a minimum of
1000 generations to provide a pre-conditioned set of parameter vectors for local
searches with the direction set algorithm. On any convergence in the parameter vector20

population, defined by uniformity across the population in at least 95 % of the bits in
the binary code describing the parameter vectors, a new random population is gener-
ated, retaining the best individual. Additional generations after Generation 1000 were
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run until the next convergence. The algorithm was configured with uniform cross-over
between bit strings at a probability of 0.5. Bounds are required for the µGA but are
removed for the local search to avoid enforcing artificial constraints when locating min-
ima close to the boundaries of the parameter space. Log transformations are used to
prevent parameters taking negative values. Details for each parameter are given in Ta-5

ble 2. Within the µGA, each parameter was represented by 8 bits giving 256 possible
values prior to refinement by the local searches.

The population size for the µGA was 5, chosen to match the number of free parame-
ters following the recommendation of Schartau and Oschlies (2003). Initial parameter
vectors in the original population were distributed in parameter space according to a10

Latin hypercube design. The direction set algorithm was applied to each unique pa-
rameter vector in the final population and the lowest cost result selected. To investigate
the sensitivity of the result to the initial parameter vectors, each application of the opti-
mizer was repeated for 5 alternative designs, choosing those with the largest minimum
Euclidean distances from a sample of 500 randomly generated hypercubes.15

A single set of three optimization experiments is referred to as Simulation Group E.
Simulation Group E was repeated for 10 different realizations of the optimization en-
vironment. Because the mixed layer depth varies between different realizations of the
environment error, a slightly different observation set is used for each set of experi-
ments. A further set of three optimization experiments was performed using the true20

environment.

3.2.6 Results

Results of the cost function minimization procedure in each optimization experiment are
shown in Table 4, together with the cost function value for the true parameter vector
J(P true). The initial minima and maxima show the range of the cost J over a super25

population of 25 parameter vectors, comprising the 5 distinct initializations of the µGA
population. The final cost range is that for the 5 output parameter vectors, each being
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the lowest cost vector for one µGA initialization after local minimization. Final cost
ranges are small indicating low sensitivity to the details of optimizer initialization.

In Experiment 3, the final cost values J(P opt) and the true parameter costs J(P true)
both tend to be close to unity in the presence of environmental error. The costs for
the other optimization experiments are consistently larger, indicating that the level of5

uncertainty present is greater than that allowed for in the cost function design. If the
true parameter vector were not known a priori, there would be a risk of such high costs
leading to rejection of the true hypothesis. Cost function values are particularly large in
Experiment 2. This is a consequence of relative errors in organic tracer concentrations
that are much larger than the small observation errors associated with small concentra-10

tions. The effect can be attributed to our simple treatment of observation error, which in-
evitably underestimates expected error as the observed concentration tends to zero. A
more sophisticated treatment would be to represent the error as a sum of absolute and
relative terms as done by Schartau et al. (2001). Where the true environment is used,
Experiment 2 gives cost values close to unity (J(P opt)= 1.2 and J(P true)= 1.2) since15

the weighting used is consistent with the uncertainty present. In contrast, the corre-
sponding Experiment 3 results show much lower costs (J(P opt)=0.53, J(P true)=0.54).

The final costs are always less than J(P true) except when the true environment is
used, indicating some degree of over-fitting. This is expected where the cost function
is distorted by error in the observations or environmental inputs but should be reduced20

by an effective weighting scheme. The cost differences J(P opt)−J(P true) suggest that
over-fitting is worst in Experiment 1, with a mean cost difference of −2.8 in the presence
of non-zero environment error compared with −1.1 and −0.14 in Experiments 2 and 3,
respectively. The Experiment 1 mean cost difference is a factor of 20 greater than that
for Experiment 3. This contrasts with factors of about 4 and 6 for the initial cost minima25

and maxima respectively, so is not simply due to a parameter-independent scaling of
the cost function. It should also be noted that for 5 out of 10 environment error real-
izations, the Experiment 1 cost function is greater at the location of the true parameter
vector than the cost function minimum found prior to any application of the optimizer.
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This is a clear indication of a high over-fitting risk not seen in the Experiment 2 or 3
results.

The final parameter values obtained in each experiment for each input environment
are shown in Fig. 8. All distinct values are shown for each of the 5 optimizer initializa-
tion cases but only the optimal values (those associated with the minimum costs) are5

highlighted. Table 5 gives summary statistics for the parameter recovery errors over all
non-zero realizations of the environment error. Where multiple initialization of the op-
timizer produced more than final parameter vector with the same cost (to 6 significant
digits), parameter values are first averaged to give a single value for each environment
error realization.10

Parameter recovery is generally improved in Experiment 3, where both error sources
are accounted for. There is also less sensitivity in final parameter values to the initial
µGA population The Experiment 2 design, where the weights are based on observa-
tion error, performs better than the characteristic scale weighting used in Experiment 1,
particularly with regard to parameter biases. In Experiment 1, the initial P-E slope αsurf15

is estimated low for all but 1 case of the environment error and has a strong negative
bias (−29%). There are also some very high estimates of the sinking velocity param-
eter wD, leading to a 71 % bias. Furthermore, the r.m.s. errors in the final parameter
values show the expected error to be consistently higher than for the other two exper-
iments. In Experiment 2, although the r.m.s. errors are consistently higher than those20

for Experiment 3, the biases are smaller for 2 of the 5 parameters suggesting some
room for improvement in the environment error weighting.

Closer inspection of the values for the parameters gmax and m2 from all experiments
shows them to be highly correlated. This is perhaps unsurprising considering their role
in the model dynamics, since the maximum grazing rate gmax impacts directly on nitro-25

gen transfer into the zooplankton pool and the density-dependent mortality m2 impacts
directly on transfer out. It is thus possible to compensate for excessively high values of
one parameter by high values of the other, keeping zooplankton nitrogen stable. This
leads to a positive bias in both parameters. High values do increase the throughput of
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nitrogen from phytoplankton food to DIN potentially impacting on chlorophyll and DIN
observations but this effect is attenuated by recycling which fuels more phytoplankton
growth. Nevertheless, other features of the system make some observational con-
straint possible. It is notable that the cost function design in Experiment 3 appears
more robust in the face of this correlation tendency between parameters than either of5

the other designs.
To examine the implication of the parameter recovery errors for model estimates of

key carbon fluxes, simulations were run with each of the 10 optimal parameter vec-
tors using the true environment. Table 6 gives error statistics, over this 10 member
ensemble, for the annual mean primary production integrated over the water column at10

each site. Corresponding estimates of the export flux of sinking particles to the ocean
interior are given in Table 7. The export is represented by the downward flux of par-
ticulate carbon at a site-dependent reference depth zref, given by wDθDD(zref). zref is
set at 250, 400 and 100 m for BATS, NABE and OWS-INDIA respectively, just below
the maximum depth of winter mixing for all ensemble members. In all experiments, the15

sinking particle flux r.m.s. errors and biases are consistent across sites and strongly
reflect the statistics for the sinking rate parameter wD. While particle flux is also af-
fected by error in the detritus concentration D(zref), such errors are not consistent over
the year so have a relatively small impact on the annual mean.

The r.m.s. errors in both primary production and sinking particle flux are lowest for20

the Experiment 3 parameter vectors and highest for the Experiment 1 parameter vec-
tors at all sites. In contrast, the biases are generally smallest for Experiment 2, rather
than Experiment 3, with the sinking particle flux biases being less than half those given
by the Experiment 3 parameter vectors. This underlines the need for further refine-
ments to the new weighting scheme, despite its improved performance generally over25

both established schemes. The characteristic scale weighting used in the Experiment 1
cost function leads to r.m.s. errors in primary production due to environment error of
14–20 %. The corresponding errors with the new method are reduced by a factor of
about 3 at each site. The sinking particle flux errors when the characteristic scale
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weighting is used are more serious at 122–128 %. These are reduced by an order of
magnitude in Experiment 3. The twin experiment configuration is of course idealistic.
It may not be possible to achieve such improvements in real-world experiments, where
characterization of uncertainty is a much more difficult problem. Nevertheless, the poor
performance of the widely used characteristic scale method in the presence of a fairly5

modest amount of synthetic environment error, combined with error in the observa-
tion data set, should be seen as a strong motivation for developing reliable statistical
characterizations for both sources of uncertainty.

4 Discussion

The MarMOT system has been designed as a tool for plankton model assessment10

and inter-comparison. The model to be assessed could be the biogeochemical sub-
component of a global or regional OBGCM or the marine biogeochemical module from
a complete earth system model. The aim is to provide a facility for evaluating plankton
models independently from a particular host model, taking into account uncertainty in
their input data.15

Model inter-comparison may be performed separately from model assessment or
models may be comparatively assessed with reference to observational data. In the
first case, MarMOT provides a flexible environment for comparing the responses of
alternative model designs to many different instances of their input data. These data
include the values of any common parameters together with the models’ shared en-20

vironmental input data: physical forcing, horizontal tracer flux divergences and initial
conditions. Such comparisons will lead to an improved understanding of the relation-
ships between models and the implications of different design decisions.

For comparative assessment, MarMOT provides a framework for handling real-world
uncertainty in the environmental input data and parameter optimization features to al-25

low models to be calibrated against observations, addressing the issue of parameter
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uncertainty. Effective calibration will allow models to be comparatively assessed, with
reference to independent observations, on the basis of their design. The large number
of adjustable parameters in most plankton models makes this non-linear inverse prob-
lem particularly challenging. Sensitivity analyses are often used as a basis for reducing
the size of the adjustable parameter vector prior to formal optimization and are well-5

supported by the MarMOT framework. The size and dimensionality of the input spaces
involved typically limit the effectiveness of Monte Carlo methods. However, drawing on
recent developments in the field of Bayesian statistics, output from ensemble integra-
tions performed in MarMOT can be used to build fast statistical emulators (O’Hagan,
2006) with which coverage can be achieved more efficiently.10

The twin experiments presented here demonstrate the application of the MarMOT
system to the inverse problem of plankton model calibration in an idealized configu-
ration. Specifically, MarMOT features are used to explore the potential of a new cost
function weighting scheme that includes a formal treatment of observation and sim-
ulation uncertainty, the latter arising as a consequence of uncertainty in the models15

environmental input data. The new scheme performs well against existing schemes
in the presence of environment error. The possibility of further improvements should
be investigated by refining the scheme to use parameter-dependent simulation error
variances. Ideally, simulation error variances would be computed for all trial parame-
ter vectors in an optimization experiment, but the computational cost of this solution is20

high. A less expensive alternative would be to use a sample of simulation error vari-
ances calculated for different points in the parameter space, as in the analysis of our
Simulation Group C, selecting the nearest neighbour for each trial parameter vector.
Statistical emulation of the simulation error variance as a function of the parameters
might also be considered. A further refinement likely to be beneficial is the inclusion of25

simulation error covariances in the cost function weighting scheme.
In a real-world context, obtaining reliable statistical characterizations of the required

environmental input data will be a major challenge. These are required for all plank-
ton model assessments, with or without parameter optimization. To constrain the
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probability distributions for these inputs we must make use of a much wider range
of supporting data than is traditionally used when comparing biogeochemical model
outputs with observations.

Background climatological statistics for physical forcing can be based on analyses of
3-D physical simulations. These should ideally be eddy-resolving. Furthermore, it is im-5

portant that they are evaluated against observational climatologies so that information
on biases can be included. Available satellite and in situ observations contemporary
with the biogeochemical evaluation data can be used to further constrain the physi-
cal forcing statistics. Assimilative physical model output might also be used, although
these data may be less reliable than output from free-running simulations if used to10

infer relationships between observed and unobserved variables. The details will de-
pend on the performance of the balancing schemes use to preserve physical laws in
the assimilation process.

Successful application of the horizontal flux divergence scheme depends on obtain-
ing good estimates for the perturbation rate statistics for each tracer. The biogeochem-15

ical flux divergences required for model assessment are those for the trial model in a
perfect 3-D physical simulation. Thus they do not exist in reality and cannot be derived
directly from observations. Furthermore, they are inevitably parameter-dependent. For
these reasons we are forced to rely on broad-based statistics derived from biogeo-
chemical simulations. Multiple 3-D simulations should be analyzed to explore sensitivity20

to model structure and parameters with the aim of developing climatological statistics
that are reasonably robust to model differences. This would allow consistent unbiased
boundary conditions to be applied to any trial model configuration. The model-based
background statistics should be further constrained by observations giving information
about the contemporary physical environment. In situ current data can be used, if avail-25

able. Otherwise, surface geostrophic current estimates derived from satellite altimetry
might be used. Evidence of physical gradients from satellite sea-surface temperature or
ocean colour measurements is also relevant since horizontal flux divergence is likely to
be increased in frontal regions, especially if there is evidence of a cross-frontal velocity
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component. These types of information can be used to modify the climatological flux
divergence probability distributions.

In common with the flux divergence boundary condition, the initial conditions in a
model assessment could be chosen to be consistent with a spin up of the trial model
in a perfect physical simulation. While the idea is conceptually appealing, a reliable5

characterization of this hypothetical system state is likely to be elusive. A more prac-
tical alternative is to use an estimate of the real-world state, explicitly restricting any
inferences about the model to its behaviour over relatively short time scales. The state
estimate would be based on observational data where possible.

In the absence of observations, initial conditions for 1-D simulations are often de-10

termined by a steady state analysis based on a repeating annual cycle. The same
approach might be taken in an ensemble simulation, provided that error growth asso-
ciated with uncertainty in the forcing data and boundary conditions does not prevent
achievement of a statistical steady state. The boundary condition would be the real-
world flux divergence condition with controlled relaxation to climatology. The relaxation15

provides an additional constraint, although the climatological reference state for unob-
served state variables would be primarily model-based with an appropriately high level
of uncertainty.

For some state variables, relevant measurements exist but the relationship between
model variables and the real-world observations is uncertain due to a combination of20

observing system limitations and simplifying assumptions made in model design. In
such cases, the observational data can be use to partially constrain model-based esti-
mates. For example, chlorophyll measurements can be used to constrain phytoplank-
ton nitrogen subject to the uncertainty introduced by an unknown nitrogen:chlorophyll
ratio. PON measurements might be used to constrain the combined phytoplankton,25

zooplankton and detritus variables in the HadOCC model. However, they are affected
by plankton avoidance of sampling bottles so will tend to under-represent zooplankton.
They could therefore be used as an upper bound estimate for the sum of phytoplankton
and detrital nitrogen or a lower bound estimate for the total organic nitrogen. A similar
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argument was used by Fasham and Evans (1995) to compare PON observations with
values derived from simulated phytoplankton, bacteria, detritus and zooplankton con-
centrations.

We have focussed on application of MarMOT to model assessment and inter-
comparison. Other applications include the comparison of plankton models at the level5

of individual processes and the provision of 1-D state estimates for specific locations of
interest. Comparison at the process level is achieved by holding individual tracer con-
centrations constant or by fully prescribing their variation using external input fields.
This in-built flexibility makes MarMOT a powerful tool for model analysis and devel-
opment. In addition, the scope of model inter-comparison studies can be reduced to10

focus on the biogeochemical interactions by applying a common photosynthesis sub-
model. 1-D state estimates with uncertainty measures can be determined on the basis
of one or more plankton models. For these applications, the real-world flux divergence
boundary condition allows climatological state estimates to be combined with model
responses to year-specific local forcing in a way that takes account of probabalistic15

horizontal flux divergence estimates contemporary with the forcing data.
MarMOT development is on-going. The software will be adapted to address some

of the specific issues identified in this study, including improvements to the boundary
condition scheme for better representing horizontal flux divergence statistics and cost
function support for parameter-dependent simulation error variances and covariances.20

In addition, the system is being extended to support models of varying biogeochemical
complexity with the aim of establishing a new community resource for plankton model
evaluation in global and regional applications.
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Appendix A

MarMOT design concepts

The MME is implemented as a specific application within a system called the Generic
Function Analyzer (GFAn). GFAn provides a cross-referencer for input selection and5

an optimizer for cost function minimization over the model parameter space. It also
provides a generic data management framework that adapts to the requirements of the
MME application to provide a MarMOT-specific user interface. GFAn is essentially an
analysis engine with a well-defined application interface that makes all of its function-
ality available to any compatible application. The full functionality of both GFAn and10

the MME can likewise be applied to any plankton ecosystem model for which the basic
input requirements are supported. This layered approach ensures the widest possi-
ble applicability of on-going improvements to the functionality of both GFAn and the
MME. The GFAn code and MME user interface are written in C and the plankton model
interface is in Fortran.15

A1 Data management

An integrated data management system is essential for efficiently handling the diverse
data requirements of different experiments. GFAn handles 3 different kinds of input
data item used in MarMOT: parameter set items, gridded domain items and non-
gridded domain items. Each instance of a parameter set item consists of a number20

of individually named values, such as plankton model parameters. There is one pa-
rameter set item for each supported plankton model, containing one or more instances
of the model’s parameter set, possibly augmented by a set of flag values for select-
ing optional or alternative features of the model. Further parameter set items provide
model-independent information such as water column depth, simulation period and a25

range of other simulation options, including which plankton model to use. Gridded-
domain items consist of one or more data arrays defined on a common regular grid

1980

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/4/1941/2011/gmdd-4-1941-2011-print.pdf
http://www.geosci-model-dev-discuss.net/4/1941/2011/gmdd-4-1941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
4, 1941–2010, 2011

Uncertainty in
plankton model

calibration

J. C. P. Hemmings and
P. G. Challenor

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with axes corresponding to one or more dimensions of the simulation domain. These
are used to define the vertical grid, initial conditions, boundary conditions and forc-
ing data. Non-gridded domain items are one or more vectors of values co-located at
arbitrary points on the model domain axes. Observations or other reference data for
comparison with the simulation output are input in this form.5

An important design consideration is the need for the system to support complex
experiments while at the same time being easily configurable for simple experiments.
Individual items are optional wherever possible. Forcing data can be supplied in a
number of different ways: as full-depth time-varying fields or as data fixed in space
or in time or simply as environmental constants. Boundary condition data are treated10

likewise. Time-varying fields can be provided at any regular interval. The interval
need not necessarily be the same for all variables: different forcing variables can be
distributed arbitrarily among a number of different input item tables, typically one for
each user-defined grid. Forcing data interpolated to the model time step is available in
the simulation output.15

GFAn provides multi-case support in the form of a flexible cross-referencing algo-
rithm that determines the required data for each simulation case. This is done either by
context or explicitly by using alphanumeric key variables to identify particular instances
of each item. The data instances selected for each case by the cross-referencer are
indicated in the log file. For each item having multiple instances, the cross-referencing20

method is determined by the presence or absence of an item key in the input item table.
Items without keys are to be referenced contextually and their instances are identified
by one or more variables referred to as case variables. In MarMOT, there are 2 case
variables: site and ensemble member. Input data can be associated with a particular
site or a particular ensemble member or both. Both case variables are used to identify25

particular simulations in the input case table and in any output tables produced.
MarMOT is configured by providing a set of input tables and optionally produces a

set of output tables, in addition to the cost function value. Each table is contained in an
ASCII file. For each input item, a table is expected with one entry for each instance of
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the data. For domain items, this table contains metadata describing the structure of the
data and the actual data values are extracted from a separate table. Alternatively, for
gridded data items, data can be extracted automatically from one or more NetCDF data
sets (Rew and Davis, 1990) to populate a user-defined grid. A case table is needed for
any experiment involving more than one simulation. Further input tables are required5

for setting up optimization experiments and output variable selection where applica-
ble. Finally, an “experiment control table” is used for assigning experiment-specific file
names to all other input and output tables. The experiment control table can specify
one or more experiments to be run, each either with or without parameter optimiza-
tion. Batches of experiments are run without the overhead of re-loading resident data.10

Comprehensive, customizable log output provides a record of the experimental config-
urations. An example of the input and output for a simple experiment is given in the
Supplement.

A2 Plankton model interface

The MarMOT Model Evaluator handles a superset of prognostic and diagnostic vari-15

ables and the necessary information is transferred between the MME data area and the
active plankton model at each time step, allowing plankton models to be implemented
with minimal changes to their native variables and code. Each model must provide
a specific set of Fortran subroutines. Generic socket subroutines on the MME side
of the interface are responsible for calling the appropriate model-specific subroutines,20

according to the model selected for the current simulation.
A plankton model subroutine “defparm” is required to define variable names and

descriptions for the parameters in the model’s parameter set item, together with any
model-specific option flags therein. Minimum and maximum allowable values for each
parameter can also be defined in this routine if applicable. A subroutine “setup” is25

expected to configure the model to use the model grid, time step and any model-
specific options supplied by MarMOT. It is also responsible for requesting any model-
specific forcing variables needed by setting the appropriate MarMOT flags. Copying of
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parameter values is done in a separate subroutine “setparm”, allowing for the possibil-
ity of time-varying parameters in future versions. “setup” also receives from MarMOT
a number of mapping vectors for use in other interface subroutines. These index the
positions of model variables in the MME arrays. The other mandatory subroutines are
“putstate” and “getstate”, responsible for copying MME state variables to model vari-5

ables and back, “biostep” for computing a biological time step and “getdiag” for return-
ing diagnostics. A subroutine “initstate” can be provided to perform any model-specific
initialization of the system state that might be applicable. To use the photosynthesis
options provided by the MME, a model must provide one further subroutine “getphotin”
to output values for the required photosynthetic parameters.10

MarMOT maintains two sets of tracers: primary tracers and derived tracers. The
concentration of each derived tracer is determined by the concentration of one or more
primary tracers and zero or more ratios describing the composition of particular ecosys-
tem components. Derived tracers such as total nitrogen or total carbon are made
available for diagnostic purposes only, while other derived tracers can be prognostic15

variables.
The initial conditions required for a simulation are model-dependent. For a given

plankton model the initial state is defined by profiles for each applicable primary tracer
and any composition ratios that will vary dynamically. Where tracers are linked by com-
position ratios, whether variable or fixed, there are alternative sets of prognostic vari-20

ables and those used within the model may be different from those initialized. MarMOT
uses nitrogen variables as the primary tracers for all organic components. Forcing data
requirements are also model-dependent. Each model indicates to the MME what forc-
ing data it requires and the MME selects the information from the input data available.
Only data relevant to the currently selected model appear in the simulation output.25

Two plankton models are currently supported: the 4 compartment nitrogen model of
Oschlies and Garçon (1999) and a version of the Hadley Centre Ocean Carbon Cycle
model developed by Palmer and Totterdell (2001). Both models are of the NPZD class,
representing the nitrogen cycle in terms of fluxes between dissolved inorganic nitrogen
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(DIN), phytoplankton, zooplankton and detritus. The HadOCC model also includes a
carbonate system in the form of additional tracers for total dissolved inorganic carbon
and alkalinity. A much wider range of models, of varying complexity, will be supported
in future versions.

Appendix B5

MarMOT photosynthesis options

The MME provides various options for the light limitation of photosynthesis: different
parameterizations can be applied independently for the attenuation of photosyntheti-
cally available radiation (PAR) in the water column, the chlorophyll-specific absorption10

of light energy by the phytoplankton and the photosynthetic response.
The PAR attenuation coefficient can be modelled as a linear function of pigment

concentration G provided by the plankton model:

KdPAR =kwater+kpigG (B1)

where kwater is the attenuation due to water, kpig is the attenuation due to pigment.15

Although widely used, this formulation ignores the effect of changes in the spectral dis-
tribution of the energy in the PAR waveband on the attenuation coefficient as the light
quality changes with depth. An alternative option is available that accounts for these
changes: an empirical approximation to the 61 wave-band model of Morel (1988), de-
veloped by Anderson (Anderson, 1993) for use in OBGCMs. Light penetration is based20

on a 3 layer model of the attenuation coefficient KdPAR, as a function of a depth-invariant
pigment concentration. The three optical layers are divided by layer boundaries at 5 m
and 23 m. KdPAR is determined from the local pigment concentration at each depth
level. Where the depth level boundaries for the current simulation do not coincide with
optical layer boundaries, KdPAR is depth averaged within levels.25
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The KdPAR profile from the attenuation model can optionally be adjusted, following
Oschlies and Garçon (1999), to allow for the geometric effect of the sun’s zenith angle
on the path length between the surface and a given depth. The correction factor is
based only on the direct path effect, tending to bias KdPAR high. However, a compen-
sating bias is introduced by basing the factor on the zenith angle at noon, when path5

length is at its daily minimum. The true effect of zenith angle on the attenuation coeffi-
cient is strongly wavelength dependent and decreases with depth (Zheng et al., 2002).
The depth dependency is not currently modelled.

Chlorophyll-specific light absorption by phytoplankton varies with depth, due to
changes in spectral distribution. This directly affects the initial slope of the10

photosynthesis-PAR curve. In many plankton models, this effect is ignored and a con-
stant value is used for the initial slope. This option is supported in MarMOT, together
with an alternative option to use the spectrally-averaged chlorophyll absorption model
of Anderson (1993). Like the attenuation coefficient model, this is based on an empiri-
cal approximation to a 61 waveband model (Morel, 1988, 1991).15

Three alternative parameterizations are provided for the light limitation of photosyn-
thesis: two for calculating the daily mean photosynthetic rate over each simulation level
and one for calculating a point-in-time rate for each level that allows the diel cycle to be
resolved explicitly when high resolution forcing data are available. The available param-
eterizations for daily mean photosynthesis are those of Evans and Parslow (1985) and20

Platt et al. (1990). These are based on different triangular and sinusoidal representa-
tions of the diel cycle respectively and use different formulations of the photosynthesis-
PAR curve. The point-in-time rate is calculated using the same photosynthesis-PAR
curve as Evans and Parslow (1985).

1985
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Appendix C

HadOCC nitrogen cycle simulation

The HadOCC model described here is a modified version of the model of Palmer and
Totterdell (2001) incorporating a number of subsequent developments (Totterdell, per-5

sonal communication, 2005). The nitrogen tracers are phytoplankton P , zooplankton
Z , detritus D and dissolved inorganic nitrogen N. The main differences from the orig-
inal version are the introduction of a variable carbon:chlorophyll ratio and changes to
the pathways of material originating from grazing and mortality. In addition, spectrally-
averaged photosynthesis is parameterized using the Anderson (1993) approximations10

(see Appendix B). There is no temperature limitation of photosynthesis and DIN limita-
tion is applied to the photosynthesis-PAR curve maximum, rather than the light-limited
photosynthetic rate, reducing its effect at low light levels. A different parameteriza-
tion of depth variation in the detrital remineralization rate is used and a number of the
parameters common to both model versions are assigned different values. Process15

parameterizations and source-minus-sink terms are defined below. Refer to Table C
for parameter values.

Photosynthesis: Daily mean biomass-specific growth rate µ̄P is calculated for
each model level using the integral approximation of Platt et al. (1990). The
photosynthesis-PAR response at depth z and time t is20

µP(z,t)= Pmax

[
1−exp

(
−
αchl(z)Ed(z,t)
θchlPmax

)]
(C1)

where the maximum nutrient-limited photosynthetic rate is given by

Pmax = Vmax
N

N+kN
. (C2)
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The carbon:chlorophyll ratio is given by the balanced growth photo-acclimation
model of Geider et al. (1997):

θchl =min

√θmin
αchlEd

µP(θchl)
,θmax

 (C3)

Downwelling PAR Ed is determined by the light attenuation coefficient model of
Anderson (1993), without the direct path adjustment of Oschlies and Garçon5

(1999). A ratio of chlorophyll to total pigment concentration of 0.8 is assumed and
Ed(0,t) is taken to be 43 % of total downwelling solar radiation at the sea surface.
The chlorophyll-specific initial slope αchl is determined from model parameter αsurf
using the Anderson (1993) chlorophyll light absorption model.

Zooplankton grazing: Phytoplankton and detritus losses due to herbivorous zoo-10

plankton activity are GP = hP and GD = hD respectively, where h is the grazing
rate per unit food concentration:

h=
BZZ
Ftot

gmax
F 2

F 2+K 2
F

; (C4)

F = max(0,Ftot − Fthreshold), where Ftot = BPP + BDD and Fthreshold =
0.01 mmol N m−3.15

Phytoplankton mortality: MP =mP 2; m= 0 for P <= 0.01 mmol N m−3, otherwise
m=mo.

Zooplankton mortality: MZ =m1Z+m2Z
2.

Detrital remineralization: λ=0.1 d−1 for z <100 m, otherwise λ= 8.58
z d−1.

1987
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Nitrogen equations:

SMSP = µ̄PP −MP−ηP −GP (C5)

SMSZ = φI(βPGP+βDGD)−MZ (C6)

SMSD =
θP

θD
(0.99MP)+

θZ

θD
(0.33MZ)

+
θP

θD
aPDGP+ (aDD−1)GD−λD (C7)5

SMSN =
{

0.01+
(

1−
θP

θD

)
0.99

}
MP+ηP

+
{

0.67+
(

1−
θZ

θD

)
0.33

}
MZ

+0.1(1−φI)(GP+GD)+
(

1−
θP

θD

)
aPDGP

+λD− µ̄PP (C8)

where aPD = 0.9(1−φI)+ (1−βP)φI and aDD = 0.9(1−φI)+ (1−βD)φI. The active10

vertical velocity of detritus relative to the water is equal to the sinking velocity
parameter wD. It is zero for all other tracers.

Numerical configuration: The vertical grid has 63 levels with 35 levels in the top
1000 m. These upper ocean levels have boundaries at approximate depths 6, 12,
19, 25, 32, 39, 46, 54, 62, 71, 80, 90, 100, 112, 124, 137, 152, 168, 187, 207,15

229, 254, 281, 312, 347, 386, 429, 477, 531, 591, 656, 729, 809, 896 and 991 m,
corresponding to those of the ORCA025 model. Levels spanning the mixed layer
depth are partially mixed. The advection scheme is an upstream differencing
scheme. The time step is 1 h.
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Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/4/1941/2011/
gmdd-4-1941-2011-supplement.zip.
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assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in30

a coupled hydrodynamical-biological model, Nonlin. Processes Geophys., 11, 515–533,
doi:10.5194/npg-11-515-2004, 2004. 1945, 1957, 1960
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Table 1. Observation errors.

Observation HadOCC Transformation Error Relative
type equivalent std. dev. error

DIN N sqrt 0.05 (mmol N m−3)0.5 variable
PON P +Z+D log 0.239 log10 units 50 % (−42 %, +73 %)
Surface chlorophyll 12.01 θP

θchl
P log 0.159 log10 units 35 % (−31 %,+44 %)

Sub-surface chlorophyll 12.01 θP

θchl
P log 0.088 log10 units 20 % (−18 %,+22 %)

Primary production µ̄PθPP log 0.184 log10 units 40 % (−35 %,+53 %)
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Table 2. Free parameter space.

Parameter Unit Symbol Minimum Maximum Transformation Local Search

Initial slope of
photosynthesis-PAR
curve

mg C (mg Chl)−1 αsurf 0.5 50 log unbounded

Half-saturation conc.
for nutrient uptake

mmol N m−3 kN 0.01 1 log unbounded

Maximum grazing rate d−1 gmax 0.1 10 log unbounded
Zooplankton density-
dependent mortality

d−1(mmol N m−3)−1 m2 0.03 3 log unbounded

Detrital sinking
velocity

m d−1 wD 0 100 none bounded
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Table 3. Overview of 1-D Plankton Model Simulations.

Simulation Product(s) Time Simulations Model Initial Forcing Boundary
group id period at each site parameters state (ORCA025) condition

A initial state 1990–2004 1 true 1990 on-site data DIN relaxation
statistics parameter repeat to climatology

vector cycle

B expected 2005 100 member true initial state on-site solar rad., wp perturbation
environment environment parameter ensemble MLD ensemble ensemble
error for true ensemble vector (100 members) (100 members) (100 members)
system

C estimated 2005 100 member sample from initial state on-site solar rad., wp perturbation
parameter- environment parameter ensemble MLD ensemble ensemble
independent ensemble space (100 members) (100 members) (100 members)
environment × 100 (100 vectors)
error param. vectors

D observation 2005 1 (true true 1 initial state on-site solar rad., wp 1 perturbation
set environment) parameter realization 1 MLD realization realization

vector

E optimal 2005 1 optimization free 1 initial state on-site solar rad.,wp 1 perturbation
parameter environment, parameter realization 1 MLD realization, realization
vectors trial parameter space
(Expts. 1–3) vectors

1997
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Table 4. Cost minimization.

Optimization Environment Initial Cost Final Cost Final Cost Range True Parameter Cost Difference
Experiment Minimum Maximum J(P opt) Cost J(P true) J(P opt)−J(P true)

1 1 6.5 68 3.9 0.0002 4.5 −0.5
1 2 7.5 80 5.1 7e-05 6.2 −1.1
1 3 6.8 73 5.1 0.0005 8.0 −3.0
1 4 5.6 64 3.6 0.02 6.4 −2.9
1 5 10.2 95 8.3 0.004 20.6 −12.3
1 6 7.0 79 4.9 7e-05 8.5 −3.6
1 7 6.5 85 4.6 0.0002 5.7 −1.0
1 8 11.0 102 9.1 0.01 9.7 −0.6
1 9 14.2 91 12.1 0.009 14.4 −2.3
1 10 8.5 81 6.3 0.1 6.8 −0.5

MEAN 8.4 82 6.3 0.02 9.1 −2.8
1 TRUE 5.3 63 2.6 1e-05 2.9 −0.3

2 1 27.9 99 23.6 0.005 23.7 −0.1
2 2 40.5 108 37.2 0.008 37.6 −0.4
2 3 29.6 98 26.3 0.4 27.2 −0.9
2 4 17.8 89 12.6 0.02 14.5 −1.9
2 5 28.8 112 25.5 0.6 27.7 −2.2
2 6 20.6 85 15.9 0.01 16.2 −0.3
2 7 40.1 108 32.4 0.02 34.9 −2.4
2 8 36.1 98 33.2 0.003 33.5 −0.4
2 9 49.9 115 48 0.1 49.8 −1.8
2 10 24.9 95 20.1 0.0008 20.4 −0.2

MEAN 31.6 101 27.5 0.1 28.5 −1.1
2 TRUE 5.6 78 1.2 1e-05 1.2 0.0

3 1 1.71 15.1 1.04 2e-05 1.07 −0.03
3 2 1.90 14.9 1.12 2e-05 1.26 −0.14
3 3 1.68 14.4 1.01 1e-05 1.03 −0.02
3 4 1.62 12.7 0.95 0.0002 1.32 −0.38
3 5 2.09 16.3 1.40 2e-05 1.64 −0.24
3 6 1.76 13.7 1.01 2e-05 1.07 −0.07
3 7 1.82 12.7 1.13 1e-05 1.17 −0.05
3 8 2.06 14.3 1.30 0.0007 1.34 −0.04
3 9 2.14 15.0 1.57 0.0002 2.02 −0.45
3 10 1.94 13.0 1.31 0.0009 1.33 −0.02

MEAN 1.87 14.2 1.18 0.0002 1.33 −0.14
3 TRUE 1.43 13.5 0.53 3e-06 0.54 0.00
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Table 5. Posterior parameter errors.

Parameter True Unit R.M.S. Error Bias

Value Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt. 3

αsurf 5.56 mg C (mg Chl)−1 (E m−2)−1 1.80 (32 %) 0.78 (14 %) 0.48 (8.7 %) −1.62 (29 %) +0.11 (2 %) −0.41 (−7 %)
kN 0.1 mmol N m−3 0.056 (56 %) 0.045 (45 %) 0.021 (20 %) −0.016 (16 %) −0.002 (2 %) +0.001 (1 %)
gmax 0.8 d−1 0.55 (68 %) 0.48 (60 %) 0.39 (48 %) +0.37 (45 %) +0.24 (30 %) +0.18 (23 %)
m2 0.3 d−1(mmol N m−3)−1 0.59 (195 %) 0.41 (136 %) 0.31 (103 %) +0.45 (149 %) +0.20 (66 %) +0.16 (52 %)
wD 10 m d−1 12.1 (121 %) 1.8 (18 %) 1.4 (14 %) +7.1 (71 %) −0.3 (3 %) +0.9 (9 %)

1999
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Table 6. Error in annual mean primary production.

Production (mmol C m−2 d−1)

R.M.S. Error Bias

Optimization BATS NABE INDIA BATS NABE INDIA
Experiment

1 1.7 (14 %) 8.5 (20 %) 4.4 (20 %) −1.3 (−11 %) −7.3 (−18 %) −3.6 (−16 %)
2 1.0 (8 %) 3.7 (9 %) 2.6 (12 %) +0.3 (2 %) +0.6 (1 %) +0.7 (3 %)
3 0.5 (4 %) 2.4 (6 %) 1.5 (7 %) −0.3 (−2 %) −1.7 (−4 %) −0.7 (−3 %)

2000
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Table 7. Error in annual mean sinking particle flux.

Particle Flux at Reference Depth (mmol C m−2 d−1)

R.M.S. Error Bias

Optimization BATS NABE INDIA BATS NABE INDIA
Experiment (250 m) (400 m) (1000 m) (250 m) (400 m) (1000 m)

1 0.154 (125 %) 0.879 (122 %) 0.825 (128 %) +0.089 (73 %) +0.512 (71 %) +0.48 (74 %)
2 0.022 (18 %) 0.128 (18 %) 0.116 (18 %) −0.004 (−3 %) −0.024 (−3 %) −0.021 (−3 %)
3 0.016 (13 %) 0.093 (13 %) 0.086 (13 %) +0.010 (8 %) +0.056 (8 %) +0.051 (8 %)

2001
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Table C1. HadOCC model parameters.

Parameter Symbol Value

Minimum C:Chl ratio θmin 20 g C (g Chl)−1

Maximum C:Chl ratio θmax 200 g C (g Chl)−1

C:N ratio for phytoplankton θP 6.625
C:N ratio for zooplankton θZ 5.625
C:N ratio for detritus θD 7.5
Maximum photosynthetic rate Vmax 2 d−1

Initial slope of photosynthesis-PAR curve αsurf 5.56 mg C (mg Chl)−1 (E m−2)−1

Half-saturation conc. for nutrient uptake kN 0.1 mmol N m−3

Phytoplankton density-dependent mortality mo 0.05 d−1(mmol N m−3)−1

Phytoplankton specific respiration η 0.05 d−1

Maximum grazing rate gmax 0.8 d−1

Half-saturation conc. for grazing kF 0.5 mmol N m−3

Fraction of grazed material ingested φI 0.77
Assimilation efficiency for phytoplankton βP 0.9
Assimilation efficiency for detritus βD 0.65
Zooplankton specific mortality m1 0.05 d−1

Zooplankton density-dependent mortality m2 0.3 d−1(mmol N m−3)−1

Detrital sinking velocity wD 10 m d−1

Parameters derived from C:N ratios (above):

Biomass-equivalent:N ratio for phytoplankton BP 1
Biomass-equivalent:N ratio for zooplankton BZ 0.87
Biomass-equivalent:N ratio for detritus BD 1.11

2002
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Fig. 1. Simplified schematic of the MarMOT system, showing the main system components
and data flows. Data flows shown by dotted lines are purely internal.
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Fig. 2. Illustration of 100 member mixed layer depth ensemble at (a) BATS, (b) NABE and
(c) OWS-INDIA sites, showing full ranges (light grey), inter-quartile ranges (dark grey) and
three example members (coloured).
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Fig. 4. Perturbation rate standard deviation σpert
i for transformed state variables. For the

BATS site: (a) DIN (
√
N), (b) phytoplankton (

√
P ), (c) zooplankton (

√
Z) and (d) detritus (

√
D).

(e–h) Same variables at the NABE site. (i–l) Same variables at the OWS-INDIA site.
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Fig. 5. Illustration of the 100 member initial state ensemble. For the BATS site: (a) DIN (N),
(b) phytoplankton (P ), (c) zooplankton (Z) and (d) detritus (D). (e–h) Same variables at the
NABE site. (i–l) Same variables at the OWS-INDIA site. Full ranges (light grey), inter-quartile
ranges (dark grey) and three example members (coloured) are shown.
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Fig. 6. Ensemble standard deviation of square-root transformed variables from Simulation
Group B: estimated environment error for the HadOCC model with the default parameter set.

For the BATS site: (a) DIN (
√
N), (b) PON (

√
P +Z+D), (c) Chlorophyll (

√
12.01( θP

θchl
)P ) and

(d) primary production (
√
µ̄PθPP ). (e–h) Same variables at the NABE site. (i–l) Same variables

at the OWS-INDIA site.
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Fig. 7. Ensemble standard deviation of square-root transformed variables from Simulation
Group C: estimated environment error si jkENV applicable to the HadOCC free parameter space

defined by the µGA optimizer bounds. For the BATS site: (a) DIN (
√
N), (b) PON (

√
P +Z+D),

(c) Chlorophyll (
√

12.01( θP

θchl
)P ) and (d) primary production (

√
µ̄PθPP ). (e–h) Same variables

at the NABE site. (i–l) Same variables at the OWS-INDIA site.
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Fig. 8. Parameter recovery results for (a) Experiment 1, (b) Experiment 2 and (c) Experiment 3.
Red lines represent the true values for each parameter. Crosses in each row show optimizer
output parameter values for the true environment (blue) and for each of the 10 realizations of
the optimization environment (black). One cross is shown for each distinct parameter value
obtained with 5 different optimizer initialization cases. Optimal values are circled. Crosses not
highlighted thus are values associated with higher cost function values.
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