Supplement to "Towards an online-coupled chemistry-climate model: evaluation of COSMO-ART"

Knote, C., Brunner, D., Vogel, H., Allan, J., Asmi, A., Äjällä, M., Carbone, S., Denier van der Gon, H., Jimenez, J. L., Kiendler-Scharr, A., Mohr, C., Poulain, L., Prevot, A., Swietlicki, E., and Vogel, B.

July 9, 2011

Figure 12: Overview of mean afternoon (hours 12 -18) NO_x , O_3 and SO_2 concentrations like in Figure 4 but for the spring 2009 period.

Figure 13: Overview of mean afternoon (hours 12 -18) NO_x , O_3 and SO_2 concentrations like in Figure 4 but for the autumn 2008 period.

Figure 14: Overview of mean afternoon (hours 12 -18) NO_x , O_3 and SO_2 concentrations like in Figure 4 but for the winter 2006 period.

Figure 15: Statistics of mean diurnal cycles of several compounds for model and AIRBASE data. Like Figure 5 but for the spring 2009 period.

Figure 16: Statistics of mean diurnal cycles of several compounds for model and AIRBASE data. Like Figure 5 but for the autumn 2008 period.

Figure 17: Statistics of mean diurnal cycles of several compounds for model and AIRBASE data. Like Figure 5 but for the winter 2006 period.

Figure 18: Timelines of aerosol optical depth (AOD) at several AERONET stations in Europe. Like Figure 8 but for the spring 2009 period.

Figure 19: Timelines of aerosol optical depth (AOD) at several AERONET stations in Europe. Like Figure 8 but for the autumn 2008 period.

Figure 20: Timelines of aerosol optical depth (AOD) at several AERONET stations in Europe. Like Figure 8 but for the winter 2006 period.

Figure 21: Timeline of aerosol chemical composition. Like Figures 9 and 10 a,b, but for the summer 2006 period.

Table 6: Number concentration comparisons, like in Table 3, but for the spring 2009 simulation.

station name	category	N _{30to50}		N ₅₀		N ₁₀₀		N ₂₅₀	
		meas.	mod.	meas.	mod.	meas.	mod.	meas.	mod.
Aspvreten (SE)	rural/coastal	201	1084	645	1932	302	808	63	152
Cabauw (NL)	$\operatorname{suburban}$	1466	2780	1894	3399	433	1248	20	187
Harwell (UK)	rural	746	2517	1453	2285	634	762	103	125
Ispra (IT)	$\operatorname{suburban}$	904	2341	2921	2136	1451	776	157	116
K-Puszta (HU)	rural	855	2133	3104	3890	1673	1670	203	267
Mace Head (IE)	rural/remote	324	542	779	1199	418	569	108	127
Melpitz (DE)	rural	508	1380	1343	2868	762	1279	219	242
Kosetice (CZ)	rural/remote	467	1342	2032	3748	1282	1751	210	319
Vavihill (SE)	rural	402	1272	1496	2850	607	1266	171	236
Waldhof (DE)	rural/remote	652	1209	1744	2678	935	1241	227	248

Figure 22: Comparison of modelled and measured aerosol size distributions at EUSAAR stations. Like Figure 11 but for the spring 2009 period.