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Abstract

Accurate modelling of the carbon cycle strongly depends on the parametrization of its
underlying processes. The Carbon Cycle Data Assimilation System (CCDAS) can be
used as an estimator algorithm to derive posterior parameter values and uncertainties
for the Biosphere Energy Transfer and Hydrology scheme (BETHY). However, the si-5

multaneous optimization of all process parameters can be quite challenging, due to
the complexity and non-linearity of the BETHY model. Therefore, we propose a new
overall concept, which uses ensemble runs and the adjoint optimization approach of
CCDAS to derive the full probability density function (PDF) for posterior soil carbon
parameters and the net carbon flux at the global scale. In this way, we only optimize10

those parameters, which can be constrained best by atmospheric carbon dioxide (CO2)
data. The prior uncertainties of the remaining parameters are included in a consistent
way through ensemble runs, but are not constrained by data. The final PDF for the
optimized parameters and the net carbon flux are then derived by superimposing the
individual PDFs for each ensemble member. We find that the optimization with CCDAS15

converges much faster, due to the smaller number of processes involved. Moreover, it
is more likely that we find the global minimum in the reduced parameter space.

1 Introduction

The terrestrial biosphere plays an important role in the global carbon cycle and has
a great impact on the accumulation of carbon dioxide (CO2) in the atmosphere. Feed-20

backs between the carbon cycle and climate change, generally known as carbon-
climate feedbacks, have the potential to accelerate the rise in atmospheric CO2 which
causes further global warming (Matthews et al., 2007). The quantification of the carbon
cycle-climate feedback is therefore important with respect to determining the magni-
tude of future climate change. However, large uncertainties exists in the natural sinks25

of the terrestrial carbon cycle which in turn have a major effect on the uncertainty in
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climate predictions (Zaehle et al., 2005; Denman et al., 2007). The large variations in
the prediction of the future atmospheric CO2 load result from differences in the mod-
els (Cramer et al., 1999; Friedlingstein et al., 2006) but also from uncertainties of the
process parameters of the terrestrial ecosystem models (TEMs) (Knorr and Heimann,
2001).5

The increase in the complexity of TEMs over the recent years has also led to an
increase in the number of their parameters. Prior parameter values are usually based
on “expert knowledge”, which in some cases is little more than an informed guess.
In addition the abstraction of the model means, that even those parameters that have
system analogues are not directly analogous to the values derived from laboratory10

experiments or site-scale experiments. Parameter optimization methods are very use-
ful in this context, because they provide a way of constraining the model parameters
against observations and in this way are able to reduce the parameter uncertainties.

The Bayesian approach has been proven to provide an powerful and convenient
framework for combining prior knowledge about parameters with additional information15

such as observations (Rayner et al., 2005). The resulting inverse problem expressed
by Bayes’ theorem can be solved in different ways, for example through Monte Carlo
inversion (Sambridge and Mosegaard, 2002) or variational data assimilation. Monte
Carlo inversion methods such as the Markov Chain Monte Carlo (MCMC) method are
able to find an optimal solution by sampling the posterior probability density function20

(PDF) of the parameters directly. They are easy to implement and require no assump-
tions about the model (i.e. continuity), however they may require a very large sample
size which is not always feasible to simulate due to computational limitations (i.e. long
computing time of TEMs). Variational data assimilation such as the four dimensional
variational scheme (4-D-Var) is the most advanced approach to accumulate observed25

information into a model. It uses derivative code (i.e. the adjoint of the model) for the
optimization of the parameters and therefore requires the model to be differentiable
with respect to all parameters. Although, the 4-D-Var approach is very efficient in most
cases, the optimization might not always converge in time or might only identify a local
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minimum. These issues arise due to the complexity and non-linearity of state-of-the-art
TEMs and the potentially high-dimensional parameter space.

In this contribution we address the convergence issue of the optimization scheme
in the 4-D-Var approach as used in the Carbon Cycle Data Assimilation System
(CCDAS) (Rayner et al., 2005) and propose a new concept for deriving the poste-5

rior PDF for parameters and target quantities in a global TEM. Although, we focus only
on one TEM, the Biosphere Energy Transfer and Hydrology scheme (BETHY) (Knorr,
2000), the approach is universal and could potentially be applied to any other model.
The main idea is, that we only optimize parameters controlling the heterotrophic res-
piration (in the follwing called soil carbon parameters) in BETHY, because they are10

best constrained by atmospheric CO2 concentration observations as demonstrated by
Rayner et al. (2005) and Scholze et al. (2007). The prior uncertainties of the remain-
ing parameters, parameters related to photosynthesis and autotrophic respiration, i.e.
related to the net primary productivity (NPP), are included through ensemble runs and
are therefore not constrained by the observations. The new concept allows to treat all15

parameter uncertainties in a consistent way.

2 Materials and methods

The 4-D-Var data assimilation scheme is the most advanced method in the field of
parameter optimization and has been successfully applied within CCDAS to constrain
process parameters in a TEM. CCDAS can be used in various modes. For example,20

in calibration mode it serves as an estimator algorithm for a set of photosynthesis,
autotrophic and heterotrophic respiration process parameters by using automatically
generated adjoint code (first derivative) for parameter optimization. In Hessian mode,
the Hessian model code (second order derivative) is used for estimating posterior pa-
rameter uncertainties. As its ecosystem model, CCDAS uses the BETHY model, which25

simulates carbon assimilation and soil respiration within a full energy and water balance
and phenology scheme. Calculated fluxes are then mapped to atmospheric concentra-
tions using the atmospheric transport model TM2 (Heimann, 1995).
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The CCDAS framework has been previously described in detail by Scholze (2003)
and Rayner et al. (2005). Therefore, we provide only a brief summary. The data as-
similation in CCDAS is performed in two steps: In the first step, the full BETHY model
is used to assimilate global monthly fields of the fraction of Absorbed Photosyntheti-
cally Active Radiation (fAPAR) for optimizing parameters controlling soil moisture and5

phenology (Knorr and Schulz, 2001). In the second step, soil moisture and leaf area
index (LAI) fields are provided as inputs for a reduced version of BETHY, in the follow-
ing referred to as CarbonBETHY. This version is used to assimilate atmospheric CO2
concentration observations from a large number of observation stations for optimizing
photosynthesis and soil carbon parameters and to derive their posterior uncertainties10

(Rayner et al., 2005; Scholze et al., 2007).

2.1 Data assimilation

The Bayesian approach (Tarantola, 1987, 2005) provides a consistent framework for
constraining model parameters x against observations c. This framework enables us
to combine the prior probability distribution of the parameters P (x) with the probabil-15

ity distribution of the observations given the parameters P (c|x) in order to determine
the inverse (posterior) probability distribution of the parameters given the observations
P (x|c):

P (x|c)=
1
A
P (c|x)P (x). (1)

The factor 1/A is a normalisation constant and independent of the parameters x. In20

many cases a normal distribution is assumed for the prior parameter values and the
observations. This Gaussian assumption has the advantage that only the mean and
covariance have to be provided in order to describe the prior probability distribution
of each variable. Applying a normal distribution to Eq. (1) leads to the following
expression:25
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P (x|c)=
1
A

exp
(
−1

2
(cM−c)TC−1

c (cM−c)
)

exp
(
−1

2
(x−x0)TCx0

−1(x−x0)
)
, (2)

where cM =M(x) are the modelled observations. The covariance matrices Cc and Cx0

express the uncertainty for the observations c and for the model parameter priors x0,
respectively. We would like to find the peak in P (x|c), which will give us the most likely5

parameter value. This can be achieved in two ways: firstly, we can maximise Eq. (2)
using Monte Carlo inversion or secondly, we can minimise the negative exponent of
Eq. (2) using variational data assimilation. The cost function J(x)

P (x|c)=
1
A

exp(−J(x)) (3)

J(x)=
1
2

(
(cM−c)TCc

−1(cM−c)+ (x−x0)TCx0

−1(x−x0)
)

(4)10

describes the mismatch between the observations and their modelled equivalents and
the mismatch between the parameters and their priors.

The data assimilation in CCDAS is based on the 4-D-Var scheme. In our case the
observations c are the atmospheric CO2 concentrations measured at 41 remote moni-
toring stations (GLOBALVIEW-CO2, 2004). CarbonBETHY is used to calculate surface15

fluxes which are then mapped via the atmospheric transport model TM2 to atmospheric
concentrations cM. Since BETHY calculates only the natural land-atmosphere fluxes,
we have to add land use change as an external flux as described in Rayner et al.
(2005). Background fluxes for fossil fuel emissions are based on the flux magnitudes
from Boden et al. (2009) as described in Scholze et al. (2007). The flux pattern and20

magnitude of ocean CO2 exchange is taken from Takahashi et al. (1999) with estimates
of inter annual variability taken from Le Quéré et al. (2007).

The parameter vector x contains the photosynthesis and soil carbon parameters
in CarbonBETHY with their prior values represented by x0 (see Tables S1 and S2).
A quasi-Newton method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant of the25

1518

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/4/1513/2011/gmdd-4-1513-2011-print.pdf
http://www.geosci-model-dev-discuss.net/4/1513/2011/gmdd-4-1513-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
4, 1513–1531, 2011

Ensemble-adjoint
optimization

T. Ziehn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Davidon-Fletcher-Powell (DFP) formula (Fletcher and Powell, 1963; Press et al., 1996),
is used for the minimization of the cost function, which requires the calculation of the
gradient of J with respect to the control parameters x in each iteration. All deriva-
tive code is generated from the model’s source code using the tool Transformation of
Algorithms in Fortran (TAF) (Giering and Kaminski, 1998; Kaminski et al., 2003).5

2.2 Challenges

The simultaneous optimization of the photosynthesis and soil carbon parameters in
CCDAS as described in the previous section can be challenging due to slow conver-
gence or failure of convergence. Even if a convergence requirement is fulfilled (i.e. test
for convergence on ∆x), the gradient of the cost function may not be sufficiently close10

to zero at the final convergence point in parameter space. As a consequence the Hes-
sian is not positive definite (i.e. contains negative eigen-values), which indicates that
an exact minimum has not been found. This has been noted by Rayner et al. (2005)
where, in order to derive the posterior parameter uncertainties, the Hessian had to be
modified manually. Another concern is that due to the large input space dimension15

and the fact that the BETHY model is highly non-linear, it is likely that we only identify
a local minimum with CCDAS.

The study by Ziehn et al. (2011a) has revealed that the performance of the opti-
mization in CCDAS can be significantly improved if only the soil carbon parameters
are constrained with atmospheric CO2 concentration data, while all parameters con-20

trolling net primary productivity (NPP) were kept fixed. Earlier studies with CCDAS
(Rayner et al., 2005; Scholze et al., 2007) confirmed that NPP-related parameters (i.e.
photosynthesis parameters) are constrained relatively little by the assimilation of CO2
concentration observations. Most importantly it could be shown in the study by Ziehn
et al. (2011a) that an ensemble run of optimizations, starting each of them in a differ-25

ent point, identified only one minimum in the physical parameter space, which makes
it more likely that a global minimum has been found. Additionally, the gradient in the
cost function minimum was almost zero and the Hessian was also positive definite, so
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that no manual modification was required. Although the overall performance of the op-
timization has improved significantly, there is one drawback of the technique presented
in their work: the uncertainties in the NPP-related parameters have not been included,
which means that estimated uncertainties of the soil carbon parameters and diagnos-
tics were only a lower bound. Therefore, we propose a new concept, that treats the5

uncertainties in the photosynthesis parameters via ensemble runs and optimizes the
soil carbon parameters using the adjoint optimization approach within CCDAS.

2.3 New concept and test case

A flow chart of the concept developed in this contribution is presented in Fig. 1. In a first
stage, ensemble runs are performed using CarbonBETHY by varying the NPP-related10

parameters randomly according to a normal distribution defined by their prior mean and
standard deviation (see Table S1). All other parameters (i.e. soil carbon parameters)
are kept fixed. Here, we use a sample size of N =200. We also perform one additional
forward run, referred to as base case, where all NPP controlling parameters are set to
their prior mean.15

CarbonBETHY is driven by observed climate data over 25 yr for the period 1979
to 2003. Global vegetation is mapped onto 13 different PFTs and each grid cell can
contain sub-areas (sub-grid cells) with up to three different PFTs with their amount
specified by each PFT’s fractional cover. CarbonBETHY is run on a 2◦×2◦ grid with
3462 land grid cells (excl. Antarctica).20

Each ensemble run (including the base case) provides a monthly field of NPP, which
is used as an input field in the second stage. Here, we apply CCDAS to optimize only
the soil carbon parameters using atmospheric CO2 concentration observations. Most
of the soil carbon parameters are globally valid (i.e. they have the same value in each
of the grid cells), only the carbon balance parameter β is differentiated by PFT and25

region (Ziehn et al., 2011a). In addition to the 13 PFTs (Fig. S1 and Table S3) we
also consider 6 different regions (Fig. S2 and Table S4), which results in a set of 73
parameters (67βs+5 global parameters+1 offset). For each NPP input field we obtain
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a different set of optimal soil carbon parameters including their uncertainties. We can
then propagate the posterior uncertainties for those parameters to any output target
quantity of interest, for example the net ecosystem productivity (NEP) calculated as

NEP=NPP−RS =NPP− (RS,s+RS,f), (5)

where RS,s and RS,f are the respiration fluxes from the slowly and rapidly decomposing5

soil carbon pools, respectively.
In a third stage, we superimpose the posterior PDFs for the soil carbon parameters

and the output target quantity in order to obtain their final PDF, which then also ac-
counts for the prior uncertainties in the NPP-related parameters. The calculation of the
final PDF p(y) for the output target quantity y is given by the following equations:10

p(y)=
p′(y)

N
(6)

p′(y)=
N∑
i=1

1

2πσ2
i

exp

(
−

(yi −µi )
2

2σ2
i

)
, (7)

where N is the ensemble size and µi and σi are the mean and standard deviation
for each individual output yi . The calculation of the final (superimposed) soil carbon
parameter PDFs is performed in a similar way.15

3 Results and discussion

The optimization within CCDAS (data assimilation in stage 2, see Fig. 1) reached con-
vergence for 198 out of the 200 ensemble members and required about 1700 iterations
on average. However, from the 198 successful optimization runs we had to exclude fur-
ther 28 runs, where either the gradient in the cost function minimum was not sufficiently20

small enough or the optimal (posterior) parameter set contained non-physical parame-
ter values. This leaves us with 170 sets of optimal soil carbon parameters.
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A list of the posterior parameter values for the five global parameters including their
uncertainties is presented in Table 1, the values for the parameter β for each PFT and
region and the offset (global atmospheric CO2 concentration at the beginning of the
optimization period) are presented in Table S2. In the following, we focus only on the
five global parameters.5

The optimal values for the temperature sensitivity of the fast and slow carbon pool
respiration (Q10,f and Q10,s) for the base case are close to their prior values and within
the prior uncertainty range. The soil moisture dependence parameter κ is reduced from
its initial value, but is also within its prior uncertainty range. The optimized parameter
values for the fast pool turnover time, τf, and the fraction fs of the decomposition flux10

going from the fast to the long-lived soil carbon pool are much larger than their priors
and both outside the prior uncertainty range. All five global parameters are well con-
strained by the CO2 data, shown by the small posterior uncertainty in the base case.
The posterior mean values for all soil carbon parameters are very similar in both cases
(base case and superimposed case), showing that the mean values are not heavily15

effected by changes in the NPP-related parameters.
Our target quantities are global mean NEP for the 1980s and 1990s. The PDFs for

those quantities are presented in Fig. 2. We obtain the final PDF by superimposing
the 170 individual PDFs (Eq. 7) from each optimization run. In this way the final PDF
accounts for both, the posterior soil carbon parameter uncertainties and the prior un-20

certainties in the NPP-related parameters. The superimposed PDF is non-Gaussian.
For the 1990s the PDF can be approximated very well by a normal distribution, as in-
dicated by skewness and kurtosis (Fig. 2b). The mean values for our target quantities
are nearly identical for the base case and the superimposed case, showing again that
the mean values are not heavily effected by changes in the NPP-related parameters.25

The uncertainties for the target quantities however increase by more than 50 % for the
1980s and by more than 100 % for the 1990s using the ensemble-adjoint method.

According to Denman et al. (2007) the terrestrial carbon sink removed −1.7 Pg C yr−1

(range: −3.4 to +0.2 Pg C yr−1) during the 1980s and −2.6 Pg C yr−1 (range: −4.3 to

1522
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−0.9 Pg C yr−1) during the 1990s from the atmosphere. The results from our study
match the mean values well, with a carbon flux of −1.83 Pg C yr−1 (range: −1.84 to
−1.82 Pg C yr−1) for the decade of the 1980s and −2.55 Pg C yr−1 (range: −2.57 to
−2.54 Pg C yr−1) for the decade of the 1990s. However, the uncertainties of our results
are small in comparison to those from Denman et al. (2007). One reason for this is the5

large number of negative entries in the error covariance matrix of global mean NEP for
the 1980s and 1990s. The covariance between the flux uncertainties can be expressed
via the uncertainty correlation matrix of diagnostics, Rd, which is defined as follows:

Rd
i ,j =

Cd
i ,j

σiσj
, (8)

where Ci ,j
d is element i ,j of the uncertainty covariance matrix of the diagnostics (global10

NEP per year), and σi the posterior uncertainty of parameter i derived from the diag-
onal elements Ci ,i

d of the matrix Cd. Figure 3 shows the correlation matrix for global
mean NEP for the 1980s and the 1990s. Due to the large number of negative corre-
lations the overall uncertainty for global mean NEP over the 10 yr period (1980s and
1990s) is rather small. However, the uncertainty for global mean NEP for a single year,15

for example the year 1990, is by at least a factor of two larger then global mean NEP
for the 1990s in the base case and increases by the ensemble-adjoint method by more
than a factor of four.

4 Conclusions

The developed ensemble-adjoint optimization approach allows us to treat all param-20

eter uncertainties in a TEM in a consistent way. Some parameters are constrained
against data using the 4-D-Var data assimilation scheme, whereas the uncertainties
of the remaining parameters are included via ensemble runs. In this way we optimize
only those parameters which are constrained best by the kind of observations used in
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the 4-D-Var step. This has the advantage, that fewer parameters and processes are
involved within the optimization process, which, in turn, speeds up the convergence of
the optimization. We are also more likely to identify the global minimum in the reduced
parameter space.

In this study we have illustrated the usefulness of the ensemble-adjoint optimiza-5

tion approach by including prior uncertainties of unconstrained model process param-
eters (here the NPP-related parameters, which have not been constrained by the at-
mospheric CO2 data) to derive a full probability density function on the model’s target
output quantities. For future applications the proposed concept also allows the inclu-
sion of posterior uncertainties for the remaining, yet unconstrained parameters. Ziehn10

et al. (2011b) have demonstrated how to constrain the parameters of the Farquhar
et al. (1980) photosynthesis model using an extensive set of plant traits and therefore
provide a way on how to derive the posterior PDF for the NPP-related parameters.
Those results could potentially been used within the same ensemble-adjoint optimiza-
tion framework, but in this case all parameters would be constrained by observational15

data.

Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/4/1513/2011/
gmdd-4-1513-2011-supplement.pdf.
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Table 1. Prior and posterior parameter values including their uncertainties for five global pa-
rameters. Upper and lower percentiles equivalent to one standard deviation are given. Prior
and posterior parameter values for the β parameters are provided in Table S2. Units: τf, years;
all others unitless.

Prior Posterior

Base case Superimposed

Parameter µ µ−σ µ+σ µ µ−σ µ+σ µ µ−σ µ+σ

Q10,f 1.50 1.00 2.25 1.24 1.20 1.27 1.22 1.10 1.33
Q10,s 1.50 1.00 2.25 1.65 1.63 1.67 1.65 1.53 1.73
τf 1.50 0.50 4.50 4.55 4.27 4.85 4.46 3.50 5.47
κ 1.00 0.10 10.00 0.60 0.59 0.61 0.60 0.55 0.71
fs 0.20 0.10 0.40 0.80 0.79 0.80 0.79 0.75 0.82
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Figures370
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Figure 1: Flow chart of the ensemble-adjoint optimization approach.

21

Fig. 1. Flow chart of the ensemble-adjoint optimization approach.
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Fig. 2. PDFs for global NEP for (a) the 1980s and (b) the 1990s. Blue: 170 individual PDFs,
red: base case PDF (prior photosynthesis parameters, not part of the ensemle), green: super-
imposed PDF from the 170 individual PDFs.
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Fig. 3. Uncertainty correlation matrix of global mean NEP for (a) the 1980s and (b) the 1990s.
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