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Abstract

abstr Various semi-Lagrangian methods are tested with respect to advection in air pollution
modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch
and Williamson (1990) and Machenhauer et al. (2008) as possible. The focus in this study is on
accuracy and local mass conservation.

The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran
(1999), second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002), third, semi-
Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserv-
ing Semi-Lagrangian (LMCSL), by Kaas (2008), and last, semi-Lagrangian cubic interpolation
with a locally mass conserving monotonic filter by Kaas and Nielsen (2010).

Semi-Lagrangian (SL) interpolation is a classical method for atmospheric modeling, cascade
interpolation is more efficient computationally, modified interpolation weights assure mass con-
servation and the locally mass conserving monotonic filter imposes monotonicity.

All schemes are tested with advection alone or with advection and chemistry together un-
der both typical rural and urban conditions using different temporal and spatial resolution.
The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives
(ASD), see Frohn et al. (2002), presently used at the National Environmental Research Institute
(NERI) in Denmark. To enable a consistent comparison only non-divergent flow configurations
are tested.

The test cases are based either on the traditional slotted cylinder or the rotating cone, where
the schemes’ ability to model both steep gradients and slopes are challenged.

The tests showed that the locally mass conserving monotonic filter improved the results sig-
nificantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian
schemes, in almost every case, were not able to outperform the current ASD scheme used in
DEHM with respect to accuracy.
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1 Introduction

intro Semi-Lagrangian (SL) methods (Robert (1981)) do not suffer from the traditional ad-
vective CFL-condition severely limiting the maximum possible length of time step, ∆t. These
methods have been used widely in the numerical weather prediction (NWP) community, since
∆t can be defined from accuracy rather than stability considerations. For atmospheric dynam-
ics it turns out that ∆t can be chosen several times larger than the maximum Courant number
without significant loss of accuracy. A main disadvantage of traditional SL methods is that
they are not mass conservative when applied to the volume density continuity equation. The
SLICE scheme proposed by Zerroukat et al. (2002) and Zerroukat et al. (2004), and the LM-
CSL scheme by Kaas (2008) are examples of new SL schemes that are mass conserving. There
are two aspects of mass conservation: global and local. Global conservation can be imposed
by correcting the advected field after determining the global mass loss. However, this does not
ensure local conservation of mass. Local mass conservation can be achieved by making the
scheme inherently conserving. Both the SLICE and LMCSL are examples of locally mass con-
serving schemes.

In air pollution modeling, accurate methods are important to be able to model steep gradients
in the concentration fields caused by steep gradients in the emission fields and by non-linear
atmospheric chemistry. In chemical transport models it is crucial that no negative values are
generated. Not only are they ’unphysical’ but they also cause the chemical part of the model to
break down. The present advection scheme in the Danish Eulerian Hemispheric Model (DEHM)
applied to the mixing ratio version of the continuity equation is the ASD. ASD is very accurate
compared to other schemes, see Dabdub and Seinfeld (1994). The ASD scheme can, however,
create problems near sharp gradients. Spurious waves known as the Gibbs phenomenon can
occur when such features are present, and they can result in unphysical negative values.

In this work a new numerical method is proposed for solving the volume density continuity
equation. The aim of this method is to fulfill as many of the desirable properties by Rasch and
Williamson (1990) and Machenhauer et al. (2008) as possible. The new method is based on the
semi-Lagrangian cubic interpolation combined with cascade interpolation developed by Nair
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et al. (2002), the modified interpolation weights suggested by Kaas (2008) and the locally mass
conserving monotonic filter by Kaas and Nielsen (2010). An SL forecast of the prognostic vari-
able ψ at time step number n+1 and Eulerian grid point i, i.e. ψn+1

i , is obtained via Lagrangian
or spline interpolation from Eulerian points at time step n surrounding the departure point of
that trajectory ending up in grid point i after one time step. The interpolation weights depend
on the distance to the departure point. In the NWP community it has been found that third
order (cubic or cubic spline) interpolation provide a good compromise between accuracy and
numerical cost. For application in an N -dimensional problem it is possible to apply so-called
cascade interpolation, i.e. the N dimensional interpolation problem is converted into N one-
dimensional interpolation problems, which simplifies the calculations. In the cascade method
proposed here N = 2. In a non-divergent problem the sum of the N -dimensional interpolation
weights given off from a particular Eulerian point j to all surrounding departure points should
equal one, see Section 3.3.4. Generally, however, in the semi-Lagrangian approach, they do not.
Therefore the raw interpolation weights are normalised so that the sum of the weights given off
from any Eulerian point, j, at time level n equals the area/volume represented by grid cell j.
Thereby all mass, of each Eulerian point of the domain is ”used” once and only once. This en-
sures that mass is neither created nor lost during interpolation. Which ensures local and global
mass conservation. It still remains to be seen whether these modified interpolation weights also
will perform better when used in real applications.

The overall purpose of this work is to develop, implement, and test selected numerical advec-
tion algorithms based on the semi-Lagrangian approach. This has been done by developing a
Fortran code for all methods in order to ensure the exact same conditions for comparison. This
leads to the following scientific hypothesis which will be tested in the present study.

Hypothesis

The classical cubic semi-Lagrangian approach, including different combinations of cascade in-
terpolation, the mass conserving modified interpolation weights and a locally mass conserving
monotonic filter, performs better than the present advection scheme used in DEHM based on
Accurate Space Derivatives when tested on a non-divergent modified rotation test including

4



chemistry.

In order to test this hypothesis an advection algorithm has been developed with the possibil-
ity to include and exclude the different features of the different schemes. In this way the effect
of the different methods can be tested separately or in combination. The algorithm is tested on
”solid body rotation” of a slotted cylinder as described by Zerroukat et al. (2002) and Sun and
Yeh (1997) and of a rotating cone by Molenkamp (1968) and Crowley (1968).

The present article is composed as follows. In the following section, Section 2, the back-
ground for this project is described along with the processes considered in air pollution mod-
elling. In Section 3 the theory used, for building the different advection schemes tested in this
work, is described. The various advection schemes tested in the present study are described in
detail in Section 4. In Section 5, the obtained results are shown. Lastly, a discussion of the
results, the conclusion and future aspects are given in Section 6.

2 Background

In air pollution models the equations describe the atmospheric transport and chemistry as well
as diffusion and dry and wet deposition. If the purpose is to model the chemical development
and transport of e.g. O3 and NO2, one would not obtain good results unless other compounds
which interact with these species are included. However, a model usually contains a limited
number of species (typically 30 to 80) rather than every chemical constituent that exists in the
atmosphere. Many of the left out species would not be relevant, in this case for O3 and NO2,
but would just complicate the calculations.

In order to decide which processes are relevant, one must consider the time scale of the inte-
gration. In addition to chemical reactions and transport, including diffusion, in the atmosphere,
it is also important to consider sources and sinks, e.g., emissions into the atmosphere and dry
and wet deposition of species in the atmosphere to the surface.
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2.1 Air pollution models

As stated above, different equations are needed to solve different problems. In the case of
air pollution models, the mixing ratio continuity equation can be used to model the relevant
processes in the atmosphere. To solve this equation numerically it can be advantageous to
split it into submodels. These submodels are solved individually and they describe, in DEHM,
first, 3D advection, second, diffusion in three directions and last chemistry, wet deposition and
emissions. The submodels can be solved using the same or different numerical algorithms.
Furthermore, the advection might be split into a two dimensional horisontal advection and a
one dimensional vertical advection, since the horisontal and vertical advection are different in
their characteristics, e.g. the wind components u, v and w. For a more detailed discussion the
reader is referred to Frohn et al. (2002).

2.2 Mixing ratio versus volume density

The chemistry component of air pollution models requires as input (and output) the various
mixing ratios ci of the individual chemical species, i = 1, 2, ..., q, where q is the number of
chemical constituents included in the model. Therefore the mixing ratio continuity equation,
which is identical to the advection equation with source and sink terms, is used directly as
prognostic equation for transporting the individual species in most air pollution models such
as DEHM. Only considering the processes of atmospheric transport and diffusion the Eulerian
formulation of this equation reads:
∂ci

∂t
= −U · ∇ci + diffusion/mixing (1)

where U represents the velocity vector. In the present study we are, however, comparing the
performance of numerical algorithms directly solving Equation 1 (i.e. DEHM) with other meth-
ods where the full continuity equation, i.e. the volume density continuity equation, is solved for
both dry air and for each individual chemical species. For such methods the mixing ratio at any
instant must be obtained as ci = ρi/ρ, where ρi and ρ are the volume densities of the individual
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species and of the dry air, respectively. The Eulerian volume density continuity equation for
chemical species no. i reads:

∂ρi

∂t
= −U · ∇ρi − ρi∇ · U + diffusion/mixing. (2)

The Lagrangian version of this equation reads:

dρi

dt
= −ρi∇ · U + diffusion/mixing (3)

In air pollution models employing Equation 2 or Equation 3 it is necessary at each time to con-
vert ρi to ci, i.e. ci = ρi/ρ, before calling the modelling components dealing with chemistry,
and to convert back again to obtain the updated values of ρi. In the abcense of divergence, it is
noted that the prognostic equations for ci and ρi are identical.

Diagnosing ci from ρi and ρ can be problematic and lead to the so-called wind-mass incon-
sistency, Jöckel et al. (2001), unless the same numerical scheme is used to forecast both ρi and
ρ. In the present study we have a non-divergent flow, implying that this problem is not at play.

2.3 Numerical treatment of the advection in DEHM

There exist many different numerical methods to solve the advection equation, each with their
own advantages and disadvantages. The challenge is to find the most suitable scheme for the
problem considered, see e.g. Brandt (1998). For example, in Brandt et al. (1996a), four differ-
ent Eulerian methods have been tested, namely, the up-wind method, finite elements, the Bott
scheme and Holm’s algorithm. The algorithms were tested for their ability to model advection
when combined with chemistry.

The upwind method is computationally very cheap, but it produces a lot of artificial numeri-
cal diffusion, which makes it unsuitable for use in air pollution models.

The finite element scheme is relatively fast and it can work on irregular grids. However,
this scheme has a higher sensitivity than others when considering sharp gradients, see Brandt
(1998).

7



The Bott scheme, by Bott (1989), is a flux based method. It was developed to make a conser-
vative and positive definite advection scheme with a limited amount of numerical diffusion. The
Bott scheme is used in many regional models within Europe, e.g. the Danish Meteorological
Institute uses this scheme in Enviro-HIRLAM.

The method is considered computationally very efficient, see Bott (1989), because it is ex-
plicit and forward-in-time. In most applications it is, however, only first order accurate in time
and space. Small time steps are used in order to prevent violation of the CFL criterion. To
reduce the numerical diffusion, up to tenth order polynomials are used. High order polynomials
might introduce negative values, however, this is limited by normalising the fluxes and suppres-
sion of negative values. This implies considerable numerical diffusion near sharp gradients.

The Bott and Holm schemes produce smooth concentration fields with no negative concen-
trations, but they are in general more expensive than the upwind or finite element schemes. The
Holm’s scheme is the best one among these methods. However, it is also the most the most
time-consuming Brandt et al. (1996a).

In DEHM, the ASD scheme combined with a Forester filter was chosen, because it was
proven to be the best performing scheme amongst the Smolarkiewicz method, the Galerkin fi-
nite element method, the numerical method of lines, the accurate space derivative method, the
Bott method and the Emde method, see Dabdub and Seinfeld (1994).

2.4 General description of DEHM

The Danish Eulerian Hemispheric Model (DEHM) is an Eulerian atmospheric chemistry trans-
port (ACT) model in three dimensions. The model was originally developed for the study of
long-range transport of SO2 and SO2−

4 into the Arctic, see Christensen (1995) and Christensen
(1997). The present version of the model contains 58 photo-chemical species, 9 primary emit-
ted particles, 14 persistent organic pollutants, and 7 mercury species.

DEHM is an ’off-line’ atmospheric chemical transport model. This means that simulations of
the driving winds, precipitation etc. are not part of DEHM. These fields are imported from other
data sources and interpolated in time and space to the grid used in DEHM. The meteorological
data used as input to DEHM is produced by the MM5v3 model run at NERI, the model uses the
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same grid definition as DEHM and writes output every hour. This means that there is no spatial
interpolation of the data and errors from temporal interpolation of the data are minimized.

2.4.1 The mixing ratio equation of continuity

The mixing ratio continuity equation describes the change in mixing ratio of a certain chemi-
cal species over time. Expressed using the Eulerian approach, it contains terms describing the
spatial gradients in concentration as well as diffusion, both horizontally and vertically. Further-
more, terms accounting for sources and sinks including chemistry, wet deposition and emissions
are included. In DEHM, the following equation is used:

∂ci

∂t
= −

�
u

∂ci

∂x
+ v

∂ci

∂y
+ σ̇

∂ci

∂σ

�

+ Kx
∂2ci

∂x2
+ Ky

∂2ci

∂y2
+

∂

∂σ

�
Kσ

∂ci

∂σ

�

+ Ei(x, y, σ, t)− Λici

+ Qi(c1, c2, ..., cq) (i = 1, 2, ..., q). (4)

Here, ci is the mixing ratio of chemical species i. The σ coordinate is a terrain following
coordinate, where the pressure is normalized by the surface pressure. σ̇ is the vertical wind
speed in this coordinate system. u, v, and σ̇ represent the x-, y-, and σ-component of the
wind, respectively. Likewise Kx, Ky, and Kσ are the x-, y-, and σ-components of the diffusion
coefficients. The horisontal diffusion coefficients, Kx and Ky, are assumed to be constant, the
vertical diffusion coefficient is both temporal and spatial dependent. Ei is the emission of a
given species, Λi is the wet deposition scavenging coefficient and Qi represents the chemistry.
Dry deposition is applied as the lower boundary condition for the vertical dispersion. i counts
the q different chemical species.

Using first order splitting various methods can be used to solve the different components of
the equation.
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2.4.2 Chemistry

In this work the photo-chemical part of DEHM, which only includes 58 photochamical species,
excluding primary emitted particles, POPs, and mercury, is used. Some of the species included
are SOx, NOx, NHx, O3, VOCs and secondary inorganic particulates (Frohn et al. (2003)). The
chemical scheme was based on a scheme with 51 species presented in Flatøy and Hov (1996),
which was an ozone chemistry scheme with most of the important inorganic species as well as
the most abundant hydrocarbons (explicit treatment of alkanes with up to four carbon atoms,
longer alkanes lumped, explicit treatment alkenes with up to three atoms, again, longer alkenes
lumped, xylene, toluene and isoprene). There has been added reactions to extend the chemistry
to be used for eutrophication issues by using ammonium chemistry based on the old EMEP acid-
ification model and adding reactions in order to extend to acidification issues by using aqueous
chemistry based on Jonson et al. (2000). The scheme contains 120 chemical reactions where
17 are photolysis reactions calculated by the Phodis routine (Kylling et al. (1998)) depending
on sun-angle, altitude, Dobson unit and 3-D cloud cover. The used chemical scheme is quite
similar to the EMEP scheme described in Simpson et al. (2003).

In this work the sun angle is prescribed to correspond to the diurnal variation of a summer
day. The chemistry can simulate either urban or rural conditions, by changing the initial con-
centrations of NO and NO2.

The chemistry is very stiff and uses a time step much smaller than the time step of the ad-
vection. The chemistry is calculated using the Euler Backward Iterative method to calculate the
first time step of the chemistry. Afterwards, the two-step method is used for the rest of the time
steps, see Frohn (2004). This procedure is used because the two-step method needs two initial
time steps to be able to perform the time integrations.

3 Theory

In this work the semi-Lagrangian cubic interpolation (Durran (1999)), cascade interpolation
(Nair et al. (2002)), modified interpolation weights (Kaas (2008)) and the locally mass con-
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serving monotonic filter (Kaas and Nielsen (2010)) are tested individually and combined. The
focus is on fulfilling as many of the desirable properties (Rasch and Williamson (1990) and
Machenhauer et al. (2008)) as possible, and test the method on a slotted cylinder (Zerroukat
et al. (2002)) and the rotating cone (Molenkamp (1968) and Crowley (1968)).

In this section the theory behind the various equations and methods used is described. First,
in Section 3.1 the form of the continuity equation used here is described. In Section 3.2 the
desirable properties for advection schemes are described.

The advection algorithm used in DEHM is described in Section 3.4, including ASD and the
Bartnicki Filter in Section 3.4.1 and the Forester filter in Section 3.4.2. A description of the test
cases is given in Section 3.5.

3.1 The continuity equations

In the present work, only horisontal advection and chemistry is considered. Then the equations
for mixing ratio take the form:

∂ci

∂t
= −

�
u

∂ci

∂x
+ v

∂ci

∂y

�
+ Qi(c1, c2, ..., cq)

(i = 1, 2, ..., q). (5)

Here, ci is the concentration of the chemical species i. u and v represent the x- and y-component
of the wind, respectively. Note that we have omitted source, deposition and horizontal diffusion
terms since, in the present study, we are only considering an idealised case and we only look at
solid body rotation where the true horizontal diffusion - by definition - is zero

Equation 5 is split into a submodel for transport (the first tendency term on the right hand
side) and a submodel dealing with chemical reactions (the last tendency term, Qi, on the right
hand side).

As explained in section 2.2 the dynamical prognostic equations to be solved in the submodel
for transport, in case of the new numerical schemes, are the volume density continuity equa-
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tions:
dρi

dt
= −ρi

�∂u

∂x
+

∂v

∂y

�

(i = 1, 2, ..., q). (6)

We also need to solve the continuity equation for the density of dry air
dρ

dt
= −ρ

�∂u

∂x
+

∂v

∂y

�
. (7)

For the new schemes we can then calculate ci = ρi/ρ. Once ci is estimated from Equations
6 and 7 we can apply the chemical submodel just as in the case of the DEHM model, i.e. the
effect of tendencies due to the last term in Equation 5. The test cases presented in section 3.5 are
non-divergent. In this special case the atmospheric transport Equations 6 and 5 excluding the
chemical part, are identical. For the new schemes we have therefore not performed the division
by ρ, i.e. we have simply assumed ρ = 1 and, thus, formally that ρi = ci.

3.2 Desirable properties

When modelling the continuity equation, there are certain desirable properties the results should
fulfill. Rasch and Williamson (1990) defined seven desirable properties: accuracy, stabil-
ity, computational efficiency, transportivity and locality, shape-preservation, conservation, and
preservation of linear correlation between constituents. According to Machenhauer et al. (2008)
three additional properties are desirable. These are consistency of the discretization, compati-
bility, and preservation of constancy. The ultimate goal of numerical methods is to fulfill all of
these properties simultanously, but so far this has not been possible. Therefore one should try
to satisfy as many of these properties as possible. Below it will be described what is meant by
each of these desirable properties. The formulation of Machenhauer et al. (2008) is used.

In any numerical programming, high accuracy is the primary goal, and often includes most
of the properties listed above. However, when modelling flow with steep gradients or shocks,
the order of accuracy found from Taylor series expansions, see Durran (1999), might have noth-
ing to do with the accuracy of the particular problem. Instead the standard error measures l1,
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l2, and l∞ are widely used by the meteorological community for idealised test cases, see e.g.,
Machenhauer et al.:

l1 = I(|φ− ψ|)/I(|ψ|) , (8)
l2 =

�
I(φ− ψ)2/

�
I(ψ)2 , (9)

l∞ = max[|φ− ψ|]/ max[|ψ|] . (10)

Here φ is the numerical solution, ψ is the exact solution if one such exists, otherwise a reference
of high-resolution is used. I(·) denotes the integral over the entire domain. The first two error
measures are measures of the global ”distance” between the numerical and the true solution.
The l∞ error measure gives the normalised maximum deviation between φ and ψ over the entire
domain. In relation to undershooting and overshooting, normalised minimum and maximum
values of the numerical solutions are also used to indicate errors.

Stability ensures that the numerical solution does not blow up with time. It can be achieved
by adding filters to the numerical method; in Lagrangian models, this is usually not a severe
problem. In global Eulerian models, the stability problem is most severe near the poles. As a
measure for stability in Eulerian models, the CFL condition and the Courant number are used.

For the one-dimensional case, the Courant-Friedrich-Lewy (CFL) condition is given by:

u · ∆t

∆x
< γ (11)

Where u is the velocity, ∆t the time step, ∆x the grid resolution, and γ is a constant depending
on the specific advection algorithm. The number

C =
u · ∆t

∆x
(12)

is called the Courant number.
Computational efficiency refers to the fact that the program should be fast when run. When

considering parallel computing it is important to note whether the parameterisation is local, as
SL, or global, like ASD. Too much communication between the nodes tend to slow down the
calculations.
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Locality refers to the domain of dependence. The true solution’s domain of dependence
should lie within the domain of dependence of the numerical solution. This is also referred to
as the CFL condition, see Figure 2.1 from Durran (1999). Transportivity is of special interest in
transport models. Rasch and Williamson (1990) writes ”an algorithm possesses the transportive
property if a perturbation in the field is advected only down wind.”

In pure advection, no alteration should be made to a scalar field, that is, no new extrema must
be generated during the numerical approximation, only the physical extrema should be repro-
duced. This is referred to as shape preservation. Such new unphysical extrema might generate
negative mixing ratios or too high values. A positive definite scheme prevents negative values
in the solution. Schemes preventing generation of new extrema are referred to as monotonic.

When modelling the continuity equation, it is very important that mass is conserved. Changes
in the global mass budget by non-conserving methods over long time integrations reduce the
accuracy of the model. To avoid such problems finite-volume methods can be used, see e.g.
Machenhauer et al. (2008). Numerically ASD is a mass conserving method, using the surface
pressure from a meteorological model to correct the horizontal wind components which ensures
mass conservation.

The consistency of the discretization property concerns the coupling between the volume
density continuity equation for air as a whole and that for the individual tracer constituents.
If different numerical techniques, different time stepping and/or different spatial resolution is
used for the air as a whole and for the tracer components, one may introduce mixing ratios
(ci = ρi/ρ) which are inconsistent. By this is meant that if one of the tracers initially and de-
liberately is chosen to be identical to the volume density of the whole air then the mixing ration
for this special tracer will not continue to have mixing ratio equal to 1.

The compatibility property states that in models based on the volume density continuity equa-
tion the mixing ratio, which is recovered as ci = ρi/ρ, should be limited by the mixing ratios
in grid cells which are neighbours to the upstream departure point. In Eulerian finite volume
models the Courant number is always less than one and therefore the limits are defined from the
grid cells neighboring the cell to be forecasted.

In non-divergent flow, it is desirable for the scheme to be able to preserve a constant tracer
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field. This is trivial for traditional semi-Lagrangian methods based on the mixing ratio version
of the continuity equation since the prognostic equation does not explicitly contain the diver-
gence of the velocity field. For models based on the volume density version of the continuity
equation this is, however, not always the case

In chemical atmospheric models it is crucial that tracer correlations are conserved, since these
have great influence on speed and balances of chemical reactions. In this work the focus is on
accuracy and mass conservation.

3.3 Methods

This section describes the methods considered in the present work. In Section 3.3.1 the tradi-
tional semi-Lagrangian method is described along with the properties of the method. Section
3.3.3 describes cascade interpolation, followed by the modified interpolation weights in Section
3.3.4. The locally mass conserving monotonic filter and calculation of trajectories are described
in Section 3.3.5 and Section 3.3.6, respectively.

3.3.1 The semi-Lagrangian method

To count steps in the spatial dimensions and time, various letters in subscript and superscript
are used. In the x-direction i, k, and p are used. In the y-direction j, l, and q are used and to
count time n and n + 1 are used.

When indexing the weights, e.g. αi,j , the first subscript refers to the point of which α is the
value, and the second subscript refers to the point which is being calculated.

In the Lagrangian approach, the equations describe the flow following the motion of a parti-
cle or air parcel. At the initial time step, a uniform grid is chosen and the particles are followed
while integrating forward in time. This might be cumbersome, because the particles in practi-
cal problems seldom stay evenly distributed. To avoid this, the semi-Lagrangian method was
introduced. In this method, a completely new grid is chosen at every time step. This new grid
consists of the particles arriving at the end of the time step. The departure point of each particle
is then found integrating the equations backward in time one step.
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Here, to start with, the scalar advection equation is derived in one dimension for constant
velocity using linear interpolation, and hereafter it is extended to cubic interpolation. Following
the notation of Durran, considering a passive tracer, the advection equation can be written as
(Equation 6.4, Durran (1999)):

φ(xi, tn+1)− φ(x̃n
i , tn)

∆t
= 0 , (13)

here, x̃n
i refers to the departure point of the particle and (xi, tn+1) is the arrival point of the

particle. Using U to denote the constant velocity the backward calculation of the trajectory may
be written as:

x̃n
i = xi − U∆t . (14)

If U is positive and p is defined as the integer part of U∆t/∆x, x̃n
i will be in the interval

between xi−p−1 and xi−p, see Figure 6.1 of Durran (1999).
The non-integer part of U∆t/∆x is called α, and defined as:

α ≡ xi−p − x̃n
i

∆x
. (15)

Writing φ(xi, tn) as φn
i , the scalar advection equation for constant velocity, using linear inter-

polation to approximate the departure point, is, (Equation 6.5 of Durran):

φn+1
i = (1− α)φn

i−p + αφn
i−p−1 . (16)

This is stable for arbitrarily large time steps, because the true domain of dependence is included
in the numerical domain of dependence caused by the backward calculation of trajectories,
which ensures that the CFL condition is not violated.

In spite of the fact that semi-Lagrangian schemes are stable for arbitrarily large time steps,
large time stepping is not always advantageous. In case of air pollution modeling or when
considering, e.g., accidental releases, time steps over several grid points can introduce errors
in emissions and deposition. The species which would have been emitted into the atmosphere
continuously will instead appear discontinuous with mass of the emitted species only in some
grid points. The same happens when considering deposition.
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3.3.2 Cubic Interpolation

The linear interpolation of the scalar advection equation is too diffusive to be useful (Dur-
ran (1999) p. 308), so to approximate equations with smooth solutions higher-order semi-
Lagrangian interpolation are used, with the same conditions for U , q, and α as above, a cu-
bic interpolation can be made by using the four closest grid-points, (Equation 6.12 of Durran
(1999)):

φ(x̃n
i , tn) = −α(1− α2)

6
φn

i−p−2

+
α(1 + α)(2− α)

2
φn

i−p−1

+
(1− α2)(2− α)

2
φn

i−p

− α(1− α)(2− α)
6

φn
i−p+1 . (17)

In two spatial dimensions, this is called bi-cubic interpolation, β is the non-integer part of the
displacement in the y-direction. α and β are now defined as (U∆t−p)/∆x and (V ∆t−q)/∆y,
respectively, where U is the velocity in the x-direction, V is the velocity in the y-direction.
p = int(U∆t/∆x) and q = int(V ∆t/∆y), where int() denotes the integer part.

Using von Neumann stability analysis, this scheme can be shown to be unconditionally stable,
see e.g. Kaas (1987).

3.3.3 Cascade interpolation

In cascade interpolation, the two-dimensional advection is split into two one dimensional in-
terpolations. This method is more efficient than traditional semi-Lagrangian interpolation. In
cubic cascade interpolation 2× 4 departure points are used instead of the 4×4, or 16 departure
points, used in traditional semi-Lagrangian bi-cubic interpolation.

After the Lagrangian true departure points are found, the interpolation is split into three steps.
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First, using linear interpolation in the y-direction the displacements in the x-direction are deter-
mined. Second, the new x-displacements are used to perform the advection in the x-direction;
this result is termed φ intermediate. Last, φ intermediate is used to calculate the advection in
the y-direction. Both in the second and third step one dimensional cubic interpolation is used,
this corresponds to the 2× 4 departure points. However, the two sets of departure points are not
the same. The first four points are the values from the previous time step, but the last four are
the values from the intermediate time step, when the interpolation has been performed only in
one direction. Nair et al. (2002) have proposed a scheme combining conservative finite-volume
methods with semi-Lagrangian cascade interpolation. Cascade interpolation can be used to re-
duce a two dimensional problem to two one dimensional remappings.

Cascade interpolation can be explained by considering a rigid uniform grid (Eulerian or
Cartesian), see Figure 1 of Nair et al. (2002). In the λ and µ directions, the distance between
two neighbouring grid points is ∆λ and ∆µ, respectively. This is the arrival grid. For each
intersection of an Eulerian longitude and an Eulerian latitude, each Eulerian grid point (λi, µj),
there is a corresponding upstream Lagrangian point (λij , µij), the departure point. As shown
in the figure, four neighbouring grid points, whether Eulerian or Lagrangian, bounding a rect-
angular region define the respective cells of the grid system.

The Lagrangian system of grid cells corresponds to the arrival grid at the previous time step.
The intersection of a Lagrangian latitude and an Eulerian longitude, is defined as an intermedi-
ate grid point.

In the cascade interpolation the intermediate grid is generated first. This can be calculated us-
ing one dimensional cubic semi-Lagrangian interpolation. For the calculation the four nearest
points along the Lagrangian latitude, {λi−1,j , λi,j , λi+1,j , λi+2,j}, are used. The entire com-
putational domain is spanned exactly by the intermediate cells, however, for efficiency in the
computation, horizontal lines within each Eulerian grid cell approximate the Lagrangian lati-
tudes. These approximated Lagrangian latitudes are defined as µ̃ĵ = (µ̃i,j + µ̃i+1,j)/2 and the
distance between two adjacent grid points µ̃ĵ+1 and µ̃ĵ is given by ∆µ̃ĵ = µ̃ĵ+1 − µ̃ĵ . The
approximated Lagrangian longitude is calculated in a similar way. The cells made up by the
approximated Lagrangian latitudes and longitudes are called the computational cells. Please,
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note again that the cells cover the entire domain, but do not overlap.
The remapping is now performed, one dimension at a time. First mass is transferred in the

µ direction from Eulerian to intermediate cells. This is done by calculating the average den-
sity h̄j . Looking at one column at a time, the dependence on i is omitted. The initial mass in
the Eulerian grid is given by Mij = ρ̄n

ij∆µj∆λi with ρ̄n
ij as the cell-averaged density at the

nth time step, and the area of the cell ∆µj∆λi. h̄j is given by the initial mass divided by the
cell width of the jth cell, h̄j = Mij/∆µj . This average density is used to construct piecewise
parabolic profiles of the vertical columns. The mass calculated above is used to find the average
density per ∆λi in the intermediate cells. This is used to fit piecewise parabolic profiles, so that
the mass is represented by the area under the curve. The average density of the arrival cells at
the next time step (n + 1) is determined using the newly calculated mass. For a more detailed
description, see Nair et al. (2002).

3.3.4 Modified interpolation weights

When used for solving the volume density version of the continuity equation traditional up-
stream interpolated semi-Lagrangian schemes do not conserve mass, but Kaas (2008) suggested
a new method inspired by CISL (Cell Integrated Semi-Lagrangian) schemes, mentioned above,
introducing modified upstream SL-weights. This scheme is locally mass conserving and there-
fore called the LMCSL (Locally Mass Conserving Semi-Lagrangian) scheme. In addition to
calculating the traditional semi-Lagrangian interpolation weights, these are also used to calcu-
late modified upstream SL-weights. The idea is based on the concept of partition of unity, since
the traditional interpolation weights, which should sum to one in the case of no divergence and
homogenous resolution, are weighted to ensure mass conservation.

Using the notation of Kaas (2008), the continuity equation for volume density can be written
as:

ρn+1
k =

K�

l=1

ŵk,lρ
n
l , (18)
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with

ŵk,l =
Al

Ak

wk,l�K
m=1 wm,l

. (19)

Here wk,l corresponds to the semi-Lagrangian weight and Ak represents the area, in two dimen-
sions, or volume, in three dimensions, of the k-th Eulerian grid point. The modified interpola-
tion weights include the divergence. This formulation can be used for any order of interpolation.
It can be shown that the total mass at time step n + 1 equals that at time step n for a periodic
domain:
K�

k=1

Akρ
n+1
k =

K�

k=1

K�

l=1

Akŵk,lρ
n
l

=
K�

k=1

K�

l=1

Alwk,l�K
m=1 wm,l

ρn
l

=
K�

l=1

Al

�K
k=1 wk,l�K

m=1 wm,l

ρn
l

=
K�

l=1

Alρ
n
l , (20)

at the first equality sign Equation 18 has been used to go one time step back, at the next,
Equation 19 has been used to substitute ŵk,l, at the third the terms are rearranged and at the last
equality sign it is used that

�K
k=1 wk,l = 1. Hence it is shown that the scheme has formal mass

conservation.

3.3.5 Locally mass conserving monotonic filter

The filter used here is the locally mass conserving and anti-diffusive monotonic filter for use in
semi-Lagrangian models by Kaas and Nielsen (2010). Plainly speaking, the filter redistributes
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mass in all points bringing the forecast as close as possible to a monotonic anti-diffused but
non-mass-conserving forecast. First the ”real” forecast of high accuracy, ρ, in this case cubic
interpolation, and a low resolution linear forecast, ρL, are calculated. In addition to the two
forecasts the filter also requires a condition to achieve monotonicity: the new value in any given
point must not exceed the maximum or minimum values, ρmin and ρmax, of the grid points
surrounding the departure points. Here for two dimensions, four points are considered when
evaluating ρmin and ρmax.

The filter works by first applying an anti-diffusive filter on the non-filtered forecast and con-
straining these values to be monotone and mass conserving. The result is termed a target value
forecast.

The mathematical description of the filter is given by the following Equations 21 - 30. ρmin

and ρmax are given by Equation 21 under the assumption of a non-divergent flow. The mini-
mum and maximum values are found from the surrounding grid points of the departure points,
denoted by l.

ρn+1
min k = minl(ρn) (21)

ρn+1
max k = maxl(ρn)

, k as above represents a general grid point index, i.e. k = 1, ,K, where K is the total number
of grid points. The linear anti-diffusioned forecast is calculated using the following equation.

ρA = ρk + αk(ρk − ρLk) (22)

αk determines the amount of anti-diffusion - or diffusion in the case where αk < 0. In this
study αk is determined from:

αk = max[0.09,−0.246 + 6.64σk − 12.29σ2
k] (23)

In (23) σ is a parameter determining the local scale of ρ with small scales corresponding to
high values of σ. The coefficients in (24) have been obtained empirically, see details in Kaas
and Nielsen (2010). Where the values are determined empirically and the scale parameter, σ, is
given by

σk = 0.5((σk)x + (σk)y) (24)
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For the x- and y-direction, σ is given by

(σk)x =
abs(D4(ρ)k)

rg + rk
(25)

With D4 being the curvature of the curvature. In one dimension this quantity is defined as

D4(ρ)k = D2
k+1 + D2

k−1 − 2D2
k (26)

and the curvature D2 is given by

D2
k(ρ) = ρk+1 + ρk−1 − 2ρk (27)

In the two dimensional case D is determined as the average scale in each of the two directions.
The local range of ρ defines the normalization, called rk, given by

rk = max[ρl, l = k − 4, k + 4]
− min[ρl, l = k − 4, k + 4] (28)

Ignoring truncation errors rg is proportional to the value D4 would take for a wave with wave
number 1. The value of rg is defined globally and used to avoid division by zero.

rg =
max(ρl, l = 1, K)−min(ρl, l = 1, K)

K4
(29)

The target values, used for the filtering, are calculated from

ρT = max(min(ρA, ρmax), ρmin) (30)

Details of the re-organisation of mass can be found in Kaas and Nielsen (2010). In brief, it con-
sists of a small series of local mass-redistributions which gradually brings the mass conserved
forecast closer to the target values. It can be thought of as a type of nudging under the strong
constraint of local mass conservation.
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3.3.6 Trajectories

Calculated trajectories need information about the wind in the current and the past time steps
and use this information to extrapolate the wind velocity to the next time step. First, the ”first
guess” departure point is calculated. Using this point, the half time step forward trajectory
is calculated. This is added to the half time step backward trajectory from the Eulerian arrival
point. Going backwards along the resulting trajectory gives a new point, which is called the first
iterated departure point. From this new point, a new half time step trajectory can be calculated,
and so on. This iteration process can be repeated any number of times, but due to limitations in
computer time and the fast convergence towards the ”true” solution in the test cases considered
here, the iteration is performed only twice in the present work.

The description of the calculation of trajectories follows that of Kaas (2008), boldface indi-
cate vectors. The trajectory from the departure point, rn

� , to the midpoint, rn+1/2
�/2 , is calculated

using Taylor series expansion:

rn+1/2
�/2 = rn

� + C1 (31)

where

C1 =
∆t

2
vn

� +
M−1�

m=1

1
(m + 1)!

�∆t

2

�m+1�dmv
dtm

�n

�
(32)

In this work, M = 2 is used; this includes acceleration. The term in the last parenthesis dmv
dtm

is approximated by dv
dt ≈ v∇v. This is done by not considering the Eulerian velocity change

during the time step. For treatment of higher order derivatives the reader is referred to Kaas
(2008).

The other piece of the trajectory is calculated in a similar way, now using extrapolated wind
velocities rather than the velocity from the previous time step, ṽn+1 = 2 · vn − vn−1. The last
contribution to the trajectory is given as

rn+1/2
�/2 = rn+1

� + C2 (33)
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with

C2 =
∆t

2
ṽn+1

−
M−1�

m=1

1
(m + 1)!

�
− ∆t

2

�m+1 dm

dtm
(ṽn+1) (34)

Combining the above gives

rn
� = rn+1 − (C1 + C2) (35)

To achieve a higher accuracy C1 is iterated as mentioned above.

3.4 Advection algorithm in DEHM

The advection scheme used in DEHM to solve the two dimensional advection equation is the
Accurate Space Derivatives (ASD) and, in addition, the Forester and Bartnicky filters are used
to prevent the numerical oscillations and negative values that can occur when using a high order
scheme. ASD is a pseudo-spectral method. The vertical advection is solved using a faster,
less accurate finite-element method, Frohn et al. (2002). The temporal integration is performed
using a third-order Taylor series method.

3.4.1 Accurate space derivatives

Accurate Space Derivatives use Fourier transforms to solve the two dimensional advection. The
change of the mixing ratio in one dimension can be expressed as:

c(x) = P (x) + F (x), x ∈ (0, ..., (N − 1) · ∆x) (36)

with

P (x) =
�c(x1)− c(xN )

2

�
cos(κ · x)

+
�c(x1)− c(xN )

2

�
(37)
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The term P (x) imposes boundary conditions on the system. For periodic boundary conditions
P (x) can be omitted, also, it is seen that for c(x1) = c(xN )⇒ P (x) = 0 for all x. The second
term, F (x), is the Fourier components given as

F (x) =
�

n

(an cos(2 · n · κ · x) + bn sin(2 · n · κ · x)) (38)

where an and bn are the Fourier coefficients. κ is

κ =
π

N · ∆x
(39)

Taylor series expansion is used to perform the integration in time of the three dimensional
advection. In DEHM the Taylor series is expanded to third order:

c(t + ∆t) �
3�

n=0

1
n!

∂nc

∂tn
· (∆t)n (40)

= c(t) + c�(t)∆t +
1
2
c��(t)(∆t)2 +

1
6
c���(t)(∆t)3

The calculation of the derivatives, c�(t), c��(t) and c���(t), is performed using spacial derivatives:

c�(t) = −u
∂c

∂x
− v

∂c

∂y
(41)

= V̄ · ∇̄c

c��(t) = V̄ · ∇̄c�

c���(t) = V̄ · ∇̄c��

The analytical solution to c�(t), in one dimension, is given by:

c�(x) = P �(x) + F �(x) (42)

c�(x) = −κ
�c(x1)− c(xN )

2

�
sin(κ · x)
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+
�

n

(−2 · n · κ · an sin(2 · n · κ · x)

+ 2 · n · κ · bn cos(2 · n · κ · x))

Using an advection scheme with this high order of accuracy introduces a significant amount
of numerical noise when considering steep gradients. Also overshoots and unphysical negative
values might occur. To solve these problems, filters are introduced, in DEHM the Forester filter,
see Forester (1977), and the Bartnicki filter, see Bartnicki (1989), are used. In a test performed
by Dabdub and Seinfeld (1994), ASD and the Forester filter combined showed to be the best
performing of the tested advection schemes. The Bartnicki filter removes negative values by
redistribution of mass.

3.4.2 The Forester filter

The Forester filter works by adding dispersion to smooth the field where the peak values are
present. On an iterative scheme the filter can be expressed as follows:

ck+1
i = ck

i +
µ

2
[(ci+1 − ci)(δi + δi+1)

− (ci − ci−1)(δi + δi−1)]k , (43)

where k is the number of times the filter has been iterated. The four parameters n, m, k, and
µ are specific for every implementation of the filter and must be determined empirically, δ is
calculated using n and m and is either 0 or 1 depending of whether the filter is active or not. k is
the number of iterations the filter performs, µ is the diffusion coefficient which is dimensionless
and dependent on, C, the Courant number. The noise wavelength is determined by n and m.
Local extrema are separated by 2n using the local diffusion. The filter diffuses overshoots but
does not prevent negative values, but reduces them. The filter is locally mass conserving.
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3.5 Test cases

To test the different methods presented here the two classical tests, the slotted cylinder, see e.g.
Zerroukat et al. (2002), and rotating cone by Molenkamp (1968) and Crowley (1968) are used.
The rotation tests are applied both with and without chemistry. The tests have been modified to
better test relevant properties of the schemes. For both test cases the object is rotated only one
rotation, which for the chemistry corresponds to one day in this setup. This is chosen in order
for significant features from the advection not to be hidden by the chemistry. Also the tests are
run with some different number of time steps per rotation and different number of grid points;
this is described in Section 4.

When testing advection schemes combined with chemistry it is not certain that the results
will be the same as when advection and chemistry are tested individually, Brandt et al. (1996b).
For pure advection tests, the solution is well known. Also, for chemistry, the ”real” solution
can be found using the box model method, see Hov et al. (1989). Due to the non-linearity in
the chemistry, the combined solution does not always perform as well as the individual results.
Because of the above, in addition to showing the combined results including both advection
and chemistry, figures showing the initial condition and the individual results for chemistry and
pure advection are included for comparison.

The mathematical description of the tests can be found in e.g. Zerroukat et al. (2002) and
Molenkamp (1968) or Crowley (1968).

4 Algorithms

In this section the different combinations of methods tested in this study are described along
with the different resolutions used.

4.1 Schemes

In this work ten different methods are tested and compared. Two are based on the ASD method
and the remaining eight methods are semi-Lagrangian schemes. Below is a list with description

27



of every method. Section 3 describes the basic methods more thoroughly.

ASD. Accurate Space Derivatives including the Bartnicki filter. This method is described in Section
3.4.1. This method is globally mass conserving and has no negative values.

ASD w. filter. Accurate Space Derivatives with filter is the method described above combined with the
Forester filter (see Section 3.4.2). This method is globally mass conserving and has no negative values.

SL. semi-Lagrangian bi-cubic interpolation described in Section 3.3.2

LMCSL. The Locally Mass Conserving semi-Lagrangian advection scheme is a combination of the clas-
sical semi-Lagrangian bi-cubic interpolation (SL) and the modified interpolation weights by Kaas (2008),
this method is described in Section 3.3.4. This scheme is locally mass conserving but not monotonic.

SL w. filter. Classical bi-cubic semi-Lagrangian interpolation with the monotonic and mass conserving
filter by Kaas and Nielsen (2010), see description in Section 3.3.5. This scheme is not mass conserving
but monotonic.

LMCSL w. filter. This scheme combines the two methods above (LMCSL and SL w. filter). The base
is the classical bi-cubic semi-Lagrangian interpolation, to this the modified interpolation weights which
imposes mass conservation and the locally mass conserving monotonic filter are added. This scheme is
both locally mass conserving and monotonic.

cascade. semi-Lagrangian cubic cascade interpolation, see Section 3.3.3. This method is faster than the
traditional SL scheme but requires more memory.

LMC cascade. Locally Mass Conserving cascade interpolation. Here the modified interpolation weights
are added to the cascade interpolation. This scheme is locally mass conserving but not monotonic.

cascade w. filter. Cascade interpolation with the locally mass conserving monotonic filter. This scheme
is not mass conserving but monotonic.

LMC cascade w. filter. As the LMCSL with filter but using cascade interpolation. This scheme is both
locally mass conserving and monotonic.
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4.2 Resolution

The five different resolutions, which will be presented in the results in Section 5 are as follows.
The first figure in the abbreviations below refers to the time step, i.e. 10 1, means that the time
step is ten times larger than that of the reference time step used in ASD. The second figure refers
to the spatial resolution, where ’1’ means standard resolution of the reference and ’05’ means
that the resolution is half the standard resolution, i.e. twice as many grid cells in each direction.

10 1. This is the standard setup for the semi-Lagrangian approach, see Section 3.5. In this setup the
maximal Courant number is C = 3.27, the time step is ∆t = 900 s and the number of grid cells are
nx = ny = 100.

1 1. This is the resolution ASD use as standard. The maximal Courant number is C = 0.327, the time
step is ∆t = 90 s and the number of grid cells are nx = ny = 100.

3 1. This resolution is used to test the semi-Lagrangian schemes with a Courant number close to but not
equal one, C = 0.981, the time step is ∆t = 270 s and the number of grid cells are nx = ny = 100.

1 05. The fourth resolution used has a maximal Courant number of 0.654 in each direction, the time
step is ∆t = 90 s and has twice as many grid points in each direction as the three first resolutions,
nx = ny = 200.

05 05. In the last setup the maximal Courant number is the same as in the second resolution, C = 0.327,
however the time step is only half of that from the second method ∆t = 45 s and the number of grid
points is the same as that of the fourth method, nx = ny = 200.

The ASD scheme is run only with maximal Courant number C = 0.327, which corresponds to
resolution 1 1 and 05 05.

All eight semi-Lagrangian methods are run with all five resolutions and the two test cases de-
scribed in Section 3.5. They are run with both analytical and calculated trajectories as described
in Section 3.3.6.

The chemistry contains reactions for 58 species as described in Section 2.4.2. Since it would
be beyond the scope of this work to go into detail with all chemical species, O3 and NO2 have
been chosen for thorough investigation. O3 and NO2 describe both the evolution of species with
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an initial concentration different from the background concentration (NO2) and a concentration
changing from pure background to a higher and lower concentration (O3).

5 Results

A systematic comparison of all the methods for two selected species (NO2 and O3) using urban
chemistry conditions is presented in Section 5.1. Only the rotating cone described in Section
3.5 has been used since the slope of the cone reflects what typically could occur in the real
atmosphere. Each figure showing NO2 contains four plots, from top left to bottom right, the
initial condition, pure advection, only chemistry, and last, advection and chemistry combined.
For O3, the initial condition is pure background concentration which makes pure advection
and initial condition unimportant, therefore, for O3 just two plots, chemistry and advection and
chemistry combined, are shown.

In the ranking, see Section 5.3, of the different methods the ASD scheme without the Forester
filter has been included, however, in the figures below no plots of ASD without filter occur and
ASD refers to the ASD scheme with both the Forester filter and the Bartnicki filter.

In Section 5.2 the slotted cylinder is used to test the methods on a very steep gradient. It
is very difficult for numerical methods to model this steep slope without generating numerical
noise known as the Gibbs phenomenon. In Section 5.2.1 the results for the two best performing
semi-Lagrangian schemes are compared to ASD.

Error measures and ranking are shown and explained in Section 5.3. Finally a discussion of
the computational efficiency of the various methods is found in Section 5.4.

5.1 Comparison of results for NO2 and O3 using the rotating cone

For an ideal scheme, the results from the rotation test after a full rotation using pure advection
should be impossible to tell apart from the initial condition. Similarly, for pure chemistry com-
pared to combined chemistry and advection. However, when including non-linear chemistry
this constraint is even more severe than when considering a passive tracer.
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5.1.1 Results for NO2 using the rotating cone

In the following plots the results obtained using no advection and pure chemistry, are considered
the ’reference’ solutions to the results including advection alone, and advection together with
chemistry, respectively. This section considers results for the chemical component NO2. NO2

is present from the beginning of the test and therefore shows both advection and change in
concentration due to chemistry.

The top left plot in the Figures 1 - 3 shows the initial condition, that is the concentration of
NO2 shaped as a cone, before both advection or chemistry, at time t = 0. This is to be compared
to the top right plot showing the performance of the considered advection scheme, still without
active chemistry, this corresponds to passive tracer advection. In the figures the vertical axes on
the top plots are in the interval 0 - 5 and the bottom plots, in the interval 0 - 15.

The bottom row includes active chemistry. The bottom left plot shows the concentration
of the field when only chemistry is active, this is the ideal solution for an advection scheme
with active chemistry. The bottom right figure shows the performance of the advection scheme
including active chemistry. The ranking of the schemes can be found in Table 5.3.3.

When considering only the two left plots, initial condition and pure chemistry, the effect of
active chemistry after 24 hours is seen. The concentration increases from a maximum of 4.729
to 11.22 and the background concentration changes from 0.2406 to 0.1317. It would be beyond
the scope of this work to go into detail with the chemical reactions causing this evolution. It is
noted that the shape of the rotating cone is somewhat rounded by the chemical reactions alone.

5.1.2 Results for NO2 using the ASD Approach

In Figure 1 the advection scheme from DEHM, ASD, is tested. The results considering only
pure advection show a very well preserved cone, the extreme values are slightly lower than
those of the initial condition, 0.2221 and 4.683 compared to 0.2406 and 4.729.

When including active chemistry the result is similar to the above, again the extrema are a
little different from those of the pure chemistry, 0.106 and 10.44 compared to 0.1317 and 11.22.
This is an acceptable change.
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The ASD preserves the shape of the cone very well, when only considering advection even the
top of the cone stays ’pointy’ as in the initial condition. When active chemistry and advection
is combined the top of the cone is slightly rounded as compared to that of both advection alone
and pure chemistry. The non-linearities of the chemistry cause this change.

5.1.3 Results for NO2 using the semi-Lagrangian Cascade Approach

The result of combining the semi-Lagrangian cascade scheme with modified interpolation weights,
LMC cascade, is shown in Figure 2. When comparing the top plots it is easily seen that the
scheme smoothes the solution, in particular the top of the cone is rounded somewhat. The ex-
treme values also show this, the maximum of the advected cone is 4.2 compared to 4.729 for
the initial condition. When the chemistry is included, the extreme values are 0.0397 and 10.31
compared to 0.1317 and 11.22 and as before the top of the cone is smoothed. The modified
interpolation weights make the scheme mass conserving, but do not alter the extrema.

5.1.4 Results for NO2 using the classical semi-Lagrangian Approach

The last figure with this resolution, Figure 3, combines the three of the schemes considered,
semi-Lagrangian interpolation, the modified interpolation weights, and the locally mass con-
serving monotonic filter to one, namely LMCSL with filter. This combined scheme is both
monotonic and mass conserving. The minimum value of the result of the pure advection is the
same as the initial concentration, namely 0.2406, the maximum value is 4.221 against 4.729
from the initial concentration. As for the scheme with chemistry the lowest and highest val-
ues are 0.0295 and 10.33 respectively. The corresponding values for the reference solution are
0.1317 and 11.22. However, the shape of the cone seems broader than the reference. The most
significant feature is a ’bulk’ on the cone one third of the cone height from the top, resulting
from the filter and the non linear chemistry.
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5.1.5 Results for NO2 using the semi-Lagrangian Cascade Approach with resolution 3 1

Figure 4 shows the same chemical species as discussed above, namely NO2, and the same test,
the rotating cone, however, using resolution 3 1. By comparison the previous three figures, the
bottom right plot, it can be seen that the top of the cone is slightly rounded, like the other semi-
Lagrangian schemes, however, the maximum value is higher than even the result produced by
the ASD scheme. The bulk occurring on the plots from the filtered semi-Lagragian schemes us-
ing resolution 1 1 is no longer there on this figure. The minimum value of the bottom right plot
is closer to the value for pure chemistry than the other semi-Lagrangian schemes but still wrose
than for the result from the ASD scheme. When considering pure advection, the minimum val-
ues are the same for all semi-Lagrangian schemes, namely the same as the initial condition. The
maximum value is again closer to that of the initial condition than the semi-Lagrangian schemes
using resolution 1 1, but not as close as the maximum value for the ASD scheme.

5.1.6 Comparison of Results for NO2

The results above show that the ASD scheme is very good at preserving shape when consid-
ering the rotating cone. However, when chemistry is included, the non-filtered results of the
semi-Lagrangian schemes and those with a long time step perform almost as well.

When considering pure advection the filtered solution of the semi-Lagrangian schemes per-
forms very well. The bulk occurring when the scheme is combined with the filter might result
from the non-linearities in the chemistry or the filter might be trying ’too hard’ to keep the gra-
dients steep.

When adding the modified interpolation weights to a scheme, it becomes mass conserving.
When applying the locally mass conserving monotonic filter to a scheme which is not mass
conserving, the scheme becomes monotonic, but not mass conserving, because the filter only
conserves the mass of the result from the advection scheme, which is not mass conserving.
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Fig. 1.
Rotation test for ASD using the rotating cone for NO2 with urban conditions and resolution 1 1, with
∆t = 90 s, ∆x = 1.0, and C = 0.327. The results are given for the initial condition (top left) and
model runs with pure advection (top right), pure chemistry (bottom left), and combined chemistry and
advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.729. Top right: min = 0.2221, max = 4.683.
Bottom left: min = 0.1317, max = 11.22. Bottom right: min = 0.106, max = 10.44.
figure

5.1.7 Results for O3 using the rotating cone

The initial O3 concentration is prescribed as a constant background concentration. It is chal-
lenging for advection schemes to model the changing concentration correctly when it occurs
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Fig. 2.
Rotation test for LMC cascade using the rotating cone for NO2 with urban conditions and resolution
1 1, with ∆t = 90 s, ∆x = 1.0, and C = 0.327. The results are given for the initial condition and
model runs with pure advection (top right), pure chemistry (bottom left), and combined chemistry and
advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min=0.2406, max=4.729. Top right: min=0.1929, max=4.2.
Bottom left: min=0.1317, max=11.22. Bottom right: min=0.0397, max=10.31.

due to pure chemical reactions.
In Figures 5 - 7 the vertical axis is in the interval 40 - 80. Each figure shows a plot of pure

chemistry and a plot of advection and chemistry. The reason that neither the initial condition
nor pure advection are shown is that the concentration of the two is constant throughout the
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Fig. 3.
Rotation test for LMCSL with filter using the rotating cone for NO2 with urban conditions and resolution
1 1, with ∆t = 90 s, ∆x = 1.0, and C = 0.327. The results are given for the initial condition (top left)
and model runs with pure advection (top right), pure chemistry (bottom left), and combined chemistry
and advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min=0.2406, max=4.729. Top right: min=0.2406, max=4.221.
Bottom left: min=0.1317, max=11.22. Bottom right: min=0.0295, max=10.33.

grid.
The pure chemistry plot is considered the reference solution, it has a minimum concentration

of 48.55 and a maximum concentration of 64.58, the shape of the concentration looks like a
cone where the center bulks downward.
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Fig. 4.
Rotation test for filtered LMC cascade using the rotating cone for NO2 with urban conditions and reso-
lution 3 1, with ∆t = 270 s, ∆x = 1.0, and C = 0.981. The results are given for the initial condition
(top left) and model runs with pure advection (top right), pure chemistry (bottom left), and combined
chemistry and advection (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min = 0.2406, max = 4.729. Top right: min = 0.2406, max = 4.263.
Bottom left: min = 0.1328, max = 11.31. Bottom right: min = 0.0838, max = 10.56.

5.1.8 Results for O3 using the ASD Approach

Figure 5 shows the result obtained using ASD. The shape of the cone is comparatively well
preserved, with only a small undershoot, minimum value = 48.18 compared to 48.55. The top
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of the concentration, however, generates a peak on one side of the cone with a maximum value
of 71.23 compared to 64.58.

5.1.9 Results for O3 using the semi-Lagrangian Cascade Approach

When considering Figure 6, the scheme using the locally mass conserving cascade interpolation,
it is seen that the scheme smoothes the solution. Also, a clear undershoot occurs, the minimum
value of 44.41 compared to 48.55 confirms this. The overshoot generated is smaller than that for
the ASD scheme, 69.15 compared to the reference solution with 64.58; this is still significant.

5.1.10 Results for O3 using the semi-Lagrangian Approach

When adding the filter to the mass conservative semi-Lagrangian scheme, the gradient is steep-
ened and the amplitude of the concentration increases. For Figure 7, the extreme values are
43.03 and 70.89, compared to 48.55 and 64.58.

5.1.11 Results for O3 using the semi-Lagrangian Approach using resolution 3 1

Figure 8 shows the combination of semi-Lagrangian cascade interpolation with modified in-
terpolation weights and the locally mass conserving and monotonic filter using resolution 3 1.
From the extreme values, it can be seen that some under and over shooting still occurs, however,
the undershooting is significantly smaller than for the semi-Lagrangian schemes using resolu-
tion 1 1. The overshoot is comparable to that of the ASD scheme and therefore greater than
those of the semi-Lagragian schemes. The peak in the concentration seems to be more evenly
distributed than what other schemes present.

5.1.12 Comparison of Results for O3

The ASD scheme generates a clear overshoot on one side of the cone. The semi-Lagrangian
schemes also generate overshoots, however, significantly smaller. The semi-Lagrangian schemes
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Fig. 5.
Rotation test for ASD using the rotating cone for O3 with urban conditions and resolution 1 1, with
∆t = 90 s, ∆x = 1.0, and C = 0.327. The results are given for pure chemistry (left) and combined
chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.55, maximum = 64.58.
Right: minimum = 48.18, maximum = 71.23.

generate severe undershoots and smooth the shape of the cone significantly. When a filter is
added the shape is better preserved but both the undershoots and overshoots are enlarged.

39



Fig. 6.
Rotation test for LMC cascade using the rotating cone for O3 with urban conditions and resolution 1 1,
with ∆t = 90 s, ∆x = 1.0, and C = 0.327. The results are given for pure chemistry (left) and combined
chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.55, maximum = 64.58.
Right: minimum = 44.41, maximum = 69.15.

5.2 Selected results using the slotted cylinder

In this section, selected results using the slotted cylinder test case are shown. For most of the
plots the LMCSL scheme with the locally mass conserving monotonic filter has been chosen.
The reason for choosing this scheme is that it gives the best scores for all tests when not consid-
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Fig. 7.
Rotation test for LMCSL with filter using the rotating cone for O3 with urban conditions and resolution
1 1, with ∆t = 90 s, ∆x = 1.0, and C = 0.327. The results are given for pure chemistry (left) and
combined chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.55, maximum = 64.58.
Right: minimum = 43.03, maximum = 70.89.

ering ASD; this will be shown in Section 5.3. Results for the two best performing SL schemes
when considering urban chemistry and tested on the slotted cylinder with urban chemistry are
chosen, see Table 5.3.4. Since the classical SL scheme combined with the filter is the best in
three of the six tests it was decided that it should also be included when showing results in this
section.
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Fig. 8.
Rotation test for LMC cascade with filter using the rotating cone for O3 with urban conditions and
resolution 3 1, with ∆t = 270 s, ∆x = 1.0, and C = 0.981. The results are given for pure chemistry
(left) and combined chemistry and advection (right).
The minimum and maximum values for the respective plots are:
Left: minimum = 48.53, maximum = 74.14.
Right: minimum = 46, maximum = 71.26.

5.2.1 Slotted cylinder using selected schemes

The plots in this subsection show (from upper left to lower right) pure chemistry, which is the
reference solution, ASD, SL with filter, and LMCSL with filter.

Figure 9 shows the results obtained for NO2. The scales on the four plots vary, for the initial
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condition the minimum value is 0.1317 and the maximum value is 11.36. The ASD scheme
generates very high peaks, and the lowest minimum value of the shown plots as well, minimum
value = 0.0016 and maximum value = 89.15. Also, the semi-Lagrangian schemes give results
different from the not advected solution, the minimum and maximum values for the classical
scheme with filter are 0.0056 and 48.21, respectively. For the mass conserving LMCSL scheme
with filter, the values are only slightly different from those of the classical SL scheme with fil-
ter: the minimum is 0.005 and the maximum is 48.31.

When considering O3, see Figure 10, the same results as above can be seen. The ASD scheme
is not performing as well as the semi-Lagrangian schemes; however, for O3 all schemes gener-
ate large undershoots. The reference solution has a minimum value of 48.55 and a maximum
value of 60.05. The ASD schemes extreme values are 1.618 and 53.76, but as opposed to the
reference solution, the peak of the concentration is ”negative” relative to the background con-
centration. The semi-Lagrangian schemes again perform very similar. The minimum value is
15.41 for the non-mass conserving scheme and 15.32 for the LMCSL scheme, both with filter.
The maximum value for both schemes is 75.91. The shape of the cylinder is altered signifi-
cantly compared to the reference solution, but also very different from the solution obtained
using ASD. The cylinder peaks both above and below the background concentration and the
slot is somewhat preserved.

In Figure 11 pure advection is considered. Table 5.3.6 shows the ranking for this test. Com-
pared to the reference solution, the ASD scheme generates spurious waves around the top edges
of the slotted cylinder, resulting in extreme values slightly different from the reference solution,
namely 0.0572 and 5.022, compared to 0.2406 and 4.811. The semi-Lagrangian schemes are
not possible to tell apart. The extreme values are exactly the same as those of the reference
solution. All three schemes smooth the solution slightly, however, the shape of the cylinder is
very well preserved.

5.3 Error measures

The following sections present the results obtained from ranking. Ranking is done by calculat-
ing error measures for each tracer and giving the methods points relative to their results.
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Fig. 9.
Rotation test with the slotted cylinder for NO2 using urban chemistry and resolution 1 1, with ∆t = 90 s,
∆x = 1.0, and C = 0.327. The results are given for pure chemistry (top left) and chemistry and
advection using ASD (top right), using semi-Lagrangian interpolation with filter (bottom left), and using
LMCSL with filter (bottom right). Note, the vertical axis on the top left plot is the interval 0 - 15, whereas
the top right is in the interval 0 - 100, and the two bottom plots are in the interval 0 - 50.
The minimum and maximum values for the respective plots are:
Top left: min=0.1317, max=11.36. Top right: min=0.0016, max=89.15.
Bottom left: min=0.0056, max=48.21. Bottom right: min=0.005, max=48.31 .

In the tables below, the 44 tested methods have been ranked based on the error calculation
described in Equations 8 - 10. To achieve the ranks given in the tables, the three error measures
were calculated for each of the 58 chemical species and every method. For every error measure
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Fig. 10.
Rotation test with the slotted cylinder for O3 using urban chemistry and resolution 1 1, with ∆t = 90 s,
∆x = 1.0, and C = 0.327. The results are given for pure chemistry (top left) and chemistry and
advection using ASD (top right), using semi-Lagrangian interpolation with filter (bottom left), and using
LMCSL with filter (bottom right). Note, the vertical axis on the top left plot is the interval 40 - 65,
whereas the other are in the interval 0 - 65.
The minimum and maximum values for the respective plots are:
Top left: min=48.55, max=60.05. Top right: min=1.618, max=53.76.
Bottom left: min=15.41, max=75.91. Bottom right: min=15.32, max=75.91.

and for every species, the best performing method was given the value 1, the second best, the
value 2 and so on up to the worst performing method, which was given the value 44. For every
method and for every error measure the mean value was calculated and given in the tables. Fur-
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Fig. 11.
Rotation test with the slotted cylinder for pure advection and resolution 1 1, with ∆t = 90 s, ∆x = 1.0,
and C = 0.327. The results are given for initial concentration (top left) and pure advection for ASD (top
right), semi-Lagrangian interpolation with filter (bottom left), and LMCSL with filter (bottom right).
The minimum and maximum values for the respective plots are:
Top left: min=0.2406, max=4.811. Top right: min=0.0572, max=5.022.
Bottom left: min=0.2406, max=4.811. Bottom right: min=0.2406, max=4.811 .

thermore, a mean rank, based on the different ranks obtained for each of the different methods
was found, rank(all). The best performing method is the method with the lowest value of
rank(all).
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5.3.1 Rotating Cone with Rural Chemistry

In Table 5.3.1 the error measures for the rotating cone with rural chemistry are ranked. It is
seen in the table that the ASD scheme performs best, also, the finer the resolution the better
the performance. The non-filtered solutions of both ASD and SL perform better on an overall
consideration. When considering the individual errors, it is seen that the l1 error is smaller for
the filtered solution than for the non-filtered ASD.

The semi-Lagrangian schemes perform better with filter and a fine spacial resolution with
big time step. Among the semi-Lagrangian schemes, the LMCSL scheme with filter performs
best for the two finest resolutions in space and time. The highest Courant number, 3.27, and
resolution 3 1, ∆x = 0.5 and ∆t = 90. perform equally well. The worst results for the semi-
Lagrangian schemes are obtained using the highest courant number less than 1, resolution 3 1,
or the traditional DEHM resolution, ∆x = 1.0 and ∆t = 90. For the finest resolution, the
four unfiltered semi-Lagrangian schemes perform equally well, the same is the case for the fine
resolution with a coarser time step and for the resolution traditionally used in DEHM.

5.3.2 Slotted Cylinder with Rural Chemistry

The results obtained for the slotted cylinder with rural chemistry, Table 5.3.2, are quite different
from the previous. All non-filtered semi-Lagrangian solutions are in the bottom of the table,
sorted only by resolution, resolution 1 05 performs best, followed by the two filtered cascade
schemes using resolution 1 1. The second best performing resolution is 10 1, third is resolution
05 05, fourth is 3 1 and last is resolution 1 1, the resolution used in DEHM.

Considering the ASD scheme, it can be seen that the filtered solution now performs better
than the unfiltered solution. This is due to the very sharp gradients in the slotted cylinder and
the wiggles the scheme creates when performing the advection.

Of the semi-Lagrangian schemes the filtered classical semi-Lagrangian solution and the fil-
tered LMCSL scheme, both with resolution 10 1, perform best and, on an overall basis, better
than the ASD schemes with resolution 1 1.
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Table 1. Ranking results for the rotating cone with rural chemistry. Showing rank of the ranked error
measures, rank of error measure l1, l2, and l∞ followed by method, maximum Courant number, grid
resolution, and time step.
table

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

1.46 2.12 1.04 1.22 ASD 0.327 0.5 45
1.67 1.25 1.96 1.79 ASD w. filter 0.327 0.5 45
3.53 4.44 3.17 2.99 ASD 0.327 1.0 90
3.85 3.25 4.18 4.13 ASD w. filter 0.327 1.0 90
7.65 7.68 7.37 7.92 LMCSL w. filter 0.654 0.5 90
7.77 7.61 7.56 8.13 SL w. filter 0.654 0.5 90
8.73 8.61 8.70 8.88 cascade w. filter 0.654 0.5 90
9.12 8.56 8.97 9.84 LMCcascade w. filter 0.654 0.5 90

13.79 11.93 12.26 17.19 LMCSL w. filter 0.327 0.5 45
14.69 12.10 13.11 18.84 SL w. filter 3.27 1.0 900
15.44 13.42 14.18 18.73 LMCcascade w. filter 0.327 0.5 45
15.72 14.24 13.49 19.43 LMCSL w. filter 3.27 1.0 900
16.00 18.04 16.88 13.08 SL 0.654 0.5 90
16.01 18.04 16.88 13.12 LMCSL 0.654 0.5 90
16.02 18.04 16.93 13.08 cascade 0.654 0.5 90
16.02 18.04 16.93 13.08 LMCcascade 0.654 0.5 90
16.06 12.33 13.84 22.00 cascade w. filter 0.327 0.5 45
16.43 13.48 15.18 20.62 SL w. filter 0.327 0.5 45
18.10 17.24 20.69 16.37 cascade w. filter 3.27 1.0 900
20.74 23.07 21.24 17.91 cascade 0.327 0.5 45
20.74 23.07 21.24 17.91 LMCcascade 0.327 0.5 45
20.74 23.07 21.24 17.91 SL 0.327 0.5 45
20.74 23.07 21.24 17.91 LMCSL 0.327 0.5 45
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rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

21.94 19.40 20.09 26.32 LMCcascade w. filter 3.27 1.0 900
25.89 23.26 25.81 28.61 SL w. filter 0.981 1.0 270
26.31 24.11 26.03 28.80 LMCSL w. filter 0.981 1.0 270
26.66 28.80 27.81 23.37 SL 3.27 1.0 900
26.74 24.61 27.02 28.60 cascade w. filter 0.981 1.0 270
26.99 29.03 28.12 23.83 cascade 3.27 1.0 900
28.70 25.69 28.94 31.48 LMCcascade w. filter 0.981 1.0 270
29.36 32.72 29.21 26.16 LMCSL 3.27 1.0 900
29.53 32.74 29.40 26.46 LMCcascade 3.27 1.0 900
34.23 33.11 33.20 36.37 LMCSL w. filter 0.327 1.0 90
34.24 32.31 34.36 36.05 SL w. filter 0.327 1.0 90
34.62 32.81 34.17 36.88 cascade w. filter 0.327 1.0 90
35.01 33.74 33.06 38.23 LMCcascade w. filter 0.327 1.0 90
35.96 37.19 37.13 33.55 SL 0.981 1.0 270
36.09 37.23 37.35 33.69 cascade 0.981 1.0 270
36.25 37.60 37.41 33.74 LMCSL 0.981 1.0 270
36.32 37.60 37.48 33.88 LMCcascade 0.981 1.0 270
41.01 41.31 41.29 40.44 SL 0.327 1.0 90
41.02 41.31 41.29 40.47 cascade 0.327 1.0 90
41.04 41.35 41.29 40.47 LMCcascade 0.327 1.0 90
41.05 41.35 41.29 40.51 LMCSL 0.327 1.0 90

The second group of filtered semi-Lagrangian schemes are the schemes using resolutions 3 1
and 1 05 followed by the two filtered cascade schemes using the coarsest resolution and the
filtered resolution 05 05. The results achieved using the resolution used in DEHM gives the
lowest score, even worse than the non-filtered resolution 1 05 for most cases. Almost exactly
as is the case for the distribution of the non-filtered schemes.

When considering the l1, error it is seen that the best performing scheme is the classical
semi-Lagrangian scheme with filter, resolution 1 05. The second best considering this error is
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the overall best ranked scheme for this test, namely the ASD with filter resolution 05 05, the
third best scheme is the filtered LMCSL scheme using resolution 1 05.

The best solution with regard to the l2 error is the non-filtered ASD scheme with fine resolu-
tion. As above, the second best performing scheme is the filtered ASD the with same resolution.
The third best is the filtered LMCSL with resolution 1 05.

The overall worst performing of the ASD schemes, the non-filtered ASD with resolution 1 1,
performs best with regard to the l∞ error. The fine resolution non-filtered ASD scheme scores
the second best rank, and the third best is the ASD with filter using the traditional resolution.

5.3.3 Rotating Cone with Urban Chemistry

Table 5.3.3 shows the ranking results from testing the rotating cone with urban chemistry.
For this test, the high resolution filtered ASD scheme performs best followed by the semi-
Lagrangian schemes using resolution 1 05 and the filtered semi-Lagrangian schemes with reso-
lution 10 1. After these, the non-filtered high resolution ASD and the semi-Lagrangian schemes
with resolution 05 05 follow, along with the remaining semi-Lagrangian schemes using resolu-
tion 10 1.

Considering the individual errors, the result is different. According to the l1 error the best
ranked scheme is the filtered LMC cascade scheme using resolution 1 05, second is the semi-
Lagrangian interpolation with filter and third is the LMCSL scheme with filter, both using the
same resolution as the first.

Also for the l2 error, the filtered LMC cascade scheme with resolution 1 05 gives the best
rank, the second best according to this rank is the second best according to the l1 error, as well,
namely the filtered classical semi-Lagrangian interpolation with resolution 1 05. The filtered
ASD with resolution 05 05, third according to the l2 error, is the best scheme according to the
overall rank.

The only error for which the overall best scheme actually scores best is the ranking of the
l∞ error. After the filtered high resolution ASD, LMC cascade scores second and pure cascade
comes third, both of the latter with resolution 1 05.

As with the previous rankings, the non-filtered semi-Lagrangian schemes are in the bottom
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Table 2. Ranking results for the slotted cylinder with rural chemistry. Showing rank of the ranked error
measures, rank of error measure l1, l2, and l∞ followed by method, maximum Courant number, grid
resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

4.56 2.83 3.16 7.69 ASD w. filter 0.327 0.5 45
6.32 13.82 2.33 2.81 ASD 0.327 0.5 45
9.69 10.31 13.25 5.49 SL w. filter 3.27 1.0 900

10.07 11.47 13.25 5.49 LMCSL w. filter 3.27 1.0 900
10.32 14.99 12.14 3.84 ASD w. filter 0.327 1.0 90
12.40 26.91 7.81 2.48 ASD 0.327 1.0 90
12.67 13.51 14.95 9.55 SL w. filter 0.981 1.0 270
12.87 13.60 15.10 9.90 LMCSL w. filter 0.981 1.0 270
14.07 2.01 4.85 35.35 SL w. filter 0.654 0.5 90
14.07 15.27 16.69 10.27 cascade w. filter 0.981 1.0 270
14.24 3.08 4.43 35.22 LMCSL w. filter 0.654 0.5 90
14.97 17.00 18.17 9.75 LMCcascade w. filter 0.981 1.0 270
15.02 4.41 5.43 35.24 cascade w. filter 0.654 0.5 90
15.06 4.18 5.94 35.06 LMCcascade w. filter 0.654 0.5 90
17.22 17.11 18.65 15.91 cascade w. filter 3.27 1.0 900
19.19 6.82 9.63 41.13 LMCSL w. filter 0.327 0.5 45
19.83 7.90 10.61 40.99 cascade w. filter 0.327 0.5 45
19.93 8.41 10.00 41.37 LMCcascade w. filter 0.327 0.5 45
20.12 21.95 21.14 17.27 LMCcascade w. filter 3.27 1.0 900
20.15 8.81 9.90 41.76 SL w. filter 0.327 0.5 45
25.50 26.29 26.92 23.30 cascade 0.654 0.5 90
25.51 26.29 26.95 23.30 LMCcascade 0.654 0.5 90
25.62 20.94 21.47 34.44 SL w. filter 0.327 1.0 90

of the table, however, for this test the two filtered classical semi-Lagrangian schemes using res-
olution 1 1 are the worst performing schemes.
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rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

25.65 26.36 26.84 23.74 SL 0.654 0.5 90
25.65 26.36 26.84 23.74 LMCSL 0.654 0.5 90
25.75 20.95 21.96 34.33 LMCSL w. filter 0.327 1.0 90
25.99 19.99 22.04 35.94 cascade w. filter 0.327 1.0 90
26.10 20.16 22.32 35.81 LMCcascade w. filter 0.327 1.0 90
26.82 33.21 33.53 13.71 LMCSL 3.27 1.0 900
26.84 33.48 34.74 12.31 LMCcascade 3.27 1.0 900
27.10 34.34 33.28 13.68 SL 3.27 1.0 900
27.11 34.63 34.45 12.26 cascade 3.27 1.0 900
30.09 30.15 30.85 29.28 LMCcascade 0.327 0.5 45
30.11 30.20 30.85 29.28 cascade 0.327 0.5 45
30.21 30.16 30.81 29.65 SL 0.327 0.5 45
30.21 30.16 30.81 29.65 LMCSL 0.327 0.5 45
32.43 38.34 37.77 21.18 cascade 0.981 1.0 270
32.44 38.42 37.81 21.10 LMCcascade 0.981 1.0 270
32.52 38.34 38.03 21.18 SL 0.981 1.0 270
32.53 38.38 38.03 21.18 LMCSL 0.981 1.0 270
35.65 41.85 41.53 23.56 cascade 0.327 1.0 90
35.65 41.85 41.53 23.56 LMCcascade 0.327 1.0 90
35.87 42.37 41.60 23.64 SL 0.327 1.0 90
35.88 42.37 41.60 23.68 LMCSL 0.327 1.0 90

The two ASD schemes using the traditional resolution, 1 1, are also placed rather low in the
table, both according to the overall rank and the individual ranking of the error measures.

5.3.4 Slotted Cylinder with Urban Chemistry

Table 5.3.4 shows the results of the most severe test with the most difficult chemistry, namely
the slotted cylinder with urban chemistry. The semi-Lagrangian schemes with the coarsest
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Table 3. Raking results for the rotating cone with urban chemistry. Showing rank of the ranked error
measures, rank of error measure l1, l2, and l∞ followed by method, maximum Courant number, grid
resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

7.77 9.16 8.59 5.55 ASD w. filter 0.327 0.5 45
9.04 7.36 8.15 11.61 LMCcascade w. filter 0.654 0.5 90
9.31 7.39 8.49 12.05 SL w. filter 0.654 0.5 90
9.39 7.71 8.77 11.69 LMCSL w. filter 0.654 0.5 90
9.47 8.00 8.63 11.77 cascade w. filter 0.654 0.5 90

11.84 13.27 11.86 10.38 LMCcascade 0.654 0.5 90
11.84 13.27 11.86 10.40 cascade 0.654 0.5 90
11.92 13.23 11.86 10.66 SL 0.654 0.5 90
11.98 9.67 11.07 15.19 SL w. filter 3.27 1.0 900
12.02 13.27 11.90 10.90 LMCSL 0.654 0.5 90
12.68 11.37 10.98 15.69 LMCSL w. filter 3.27 1.0 900
12.84 14.72 12.93 10.86 ASD 0.327 0.5 45
16.09 14.02 16.56 17.69 cascade w. filter 3.27 1.0 900
17.05 18.18 16.95 16.02 cascade 0.327 0.5 45
17.12 18.25 17.03 16.09 LMCcascade 0.327 0.5 45
17.13 18.18 16.99 16.22 LMCSL 0.327 0.5 45
17.15 18.21 16.99 16.26 SL 0.327 0.5 45
17.30 14.87 14.86 22.18 LMCcascade w. filter 3.27 1.0 900
17.48 14.62 16.97 20.86 LMCSL w. filter 0.327 0.5 45
17.70 14.72 17.10 21.29 cascade w. filter 0.327 0.5 45
17.86 14.81 17.18 21.61 LMCcascade w. filter 0.327 0.5 45
18.05 14.89 17.30 21.97 SL w. filter 0.327 0.5 45
20.94 22.62 22.92 17.27 ASD w. filter 0.327 1.0 90

resolution give the best performance, with the filtered schemes first, followed by the unfiltered,
and the filtered resolution 3 1. The next ”group” is the non-filtered semi-Lagrangian schemes
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rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

21.41 22.25 22.17 19.81 SL 3.27 1.0 900
21.84 22.49 23.01 20.01 cascade 3.27 1.0 900
22.96 24.47 23.30 21.11 LMCSL 3.27 1.0 900
23.33 24.83 23.85 21.30 LMCcascade 3.27 1.0 900
27.23 31.90 27.86 21.93 ASD 0.327 1.0 90
27.23 27.61 27.20 26.87 SL w. filter 0.981 1.0 270
27.54 27.91 27.63 27.08 LMCSL w. filter 0.981 1.0 270
28.35 29.07 28.85 27.13 cascade w. filter 0.981 1.0 270
28.76 28.34 28.88 29.06 LMCcascade w. filter 0.981 1.0 270
32.63 33.22 33.44 31.22 LMCSL 0.981 1.0 270
32.64 33.19 33.48 31.24 SL 0.981 1.0 270
32.81 33.73 33.48 31.21 cascade 0.981 1.0 270
32.86 33.69 33.60 31.29 LMCcascade 0.981 1.0 270
37.56 36.31 37.54 38.85 cascade w. filter 0.327 1.0 90
37.57 36.44 37.45 38.83 LMCcascade w. filter 0.327 1.0 90
38.32 39.32 38.41 37.22 cascade 0.327 1.0 90
38.32 39.32 38.41 37.24 LMCcascade 0.327 1.0 90
38.48 39.36 38.44 37.64 SL 0.327 1.0 90
38.49 39.36 38.44 37.68 LMCSL 0.327 1.0 90
38.84 37.88 39.33 39.31 SL w. filter 0.327 1.0 90
38.86 37.53 39.28 39.77 LMCSL w. filter 0.327 1.0 90

using resolution 1 05 followed by the same schemes with resolution 05 05. The filtered semi-
Lagrangian schemes using resolution 1 05 and non-filtered resolution 3 1 precede the filtered
ASD scheme with the finest resolution. The schemes using resolution 1 1 including the filtered
ASD are next, followed only by the filtered semi-Lagrangian schemes using resolution 05 05
and the two non-filtered ASD schemes.

When considering the individual error ranks, the three best methods are exactly the same for
the overall rank and for the rank of the l1 and l2 errors. For the rank of the l∞ error, the two best
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schemes are again the same, but the third best according to this error measure is a bit further
down the list; but with the same resolution as the others. The two best performing schemes,
regardless of which rank is considered, are the filtered semi-Lagrangian scheme and the filtered
LMCSL scheme, both with resolution 10 1. The third best scheme according to the overall error
rank and the l1 and l2 error ranks is the filtered cascade interpolation. Pure cascade interpolation
scores best with regard to the rank of the l∞ error.

5.3.5 Pure Advection of the Rotating Cone

The ranks of the schemes when tested on pure advection of the rotating cone are shown in Table
5.3.5. It is seen that for this test the ASD scheme is the ultimate scheme. The four ASD schemes
give the best scores for both the overall and the individual ranks.

The following schemes are, grouped by resolution, the filtered semi-Lagrangian schemes with
resolution 1 05, followed by the same schemes with resolution 05 05, and the filtered classi-
cal semi-Lagrangian scheme with the coarsest resolution, i.e. 10 1. Then follow the filtered
LMCSL scheme and the unfiltered solutions of resolution 1 05, the filtered coarse resolution
cascade schemes, the non-filtered schemes with resolution 05 05, the filtered resolution 3 1,
and resolution 10 1. Last are the filtered schemes using resolution 1 1, the non-filtered resolu-
tion 3 1, and the remaining resolution 1 1.

The individually ranked errors place the four ASD schemes as the top schemes as well as
the overall rank. For the rank of the l1 error, the four best performing schemes are, in order of
best to worst, ASD with filter using the finest resolution, the non-filtered solution of the ASD
scheme using the finest resolution, the filtered coarse resolution ASD and the non-filtered.

Considering the rank of the l2 error, the first two schemes switch position, the non-filtered
fine resolution now is the best followed by the filtered fine resolution and the same order for the
coarse resolution.

The last error measure, the l∞, ranks the schemes in the same order as the overall rank: first
the filtered fine resolution, then the non-filtered, third the non-filtered coarse resolution and
finally the filtered coarse resolution ASD.
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Table 4. Ranking results for the slotted cylinder with urban chemistry. Showing rank of the ranked error
measures, rank of error measure l1, l2, and l∞ followed by method, maximum Courant number, grid
resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

3.64 2.79 3.24 4.90 SL w. filter 3.27 1.0 900
3.97 3.42 3.48 5.01 LMCSL w. filter 3.27 1.0 900
7.23 4.31 5.83 11.54 cascade w. filter 3.27 1.0 900
7.56 5.39 6.49 10.81 LMCcascade w. filter 3.27 1.0 900

14.85 19.91 16.01 8.63 LMCSL 3.27 1.0 900
14.91 20.77 15.55 8.42 SL 3.27 1.0 900
15.26 20.90 17.54 7.34 LMCcascade 3.27 1.0 900
15.41 13.88 15.63 16.72 LMCcascade w. filter 0.981 1.0 270
15.42 21.83 17.22 7.19 cascade 3.27 1.0 900
15.90 14.18 16.24 17.29 cascade w. filter 0.981 1.0 270
16.07 14.40 16.23 17.58 SL w. filter 0.981 1.0 270
16.19 14.68 16.69 17.21 LMCSL w. filter 0.981 1.0 270
17.33 17.78 14.49 19.72 SL 0.654 0.5 90
17.33 17.78 14.49 19.72 LMCSL 0.654 0.5 90
17.59 18.14 15.11 19.52 LMCcascade 0.654 0.5 90
17.60 18.14 15.13 19.52 cascade 0.654 0.5 90
20.52 21.82 18.21 21.52 SL 0.327 0.5 45
20.53 21.82 18.29 21.48 LMCSL 0.327 0.5 45
20.61 21.86 18.69 21.28 LMCcascade 0.327 0.5 45
20.62 21.90 18.66 21.31 cascade 0.327 0.5 45
22.92 13.66 20.79 34.31 LMCSL w. filter 0.654 0.5 90

5.3.6 Pure Advection of the Slotted Cylinder

The last test, Table 5.3.6 shows pure advection of the slotted cylinder. Again the two fine reso-
lution ASD schemes give the best overall rank, however, not as unanimously as above.
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rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

23.29 14.43 21.55 33.90 SL w. filter 0.654 0.5 90
23.52 14.73 21.55 34.30 LMCcascade w. filter 0.654 0.5 90
24.32 15.51 22.31 35.15 cascade w. filter 0.654 0.5 90
24.69 31.39 27.03 15.64 LMCSL 0.981 1.0 270
24.73 31.41 27.10 15.68 SL 0.981 1.0 270
25.47 32.18 27.89 16.35 cascade 0.981 1.0 270
25.49 32.16 27.91 16.41 LMCcascade 0.981 1.0 270
27.47 25.26 26.40 30.75 ASD w. filter 0.327 0.5 45
28.94 37.16 31.67 17.99 SL 0.327 1.0 90
28.94 37.18 31.67 17.99 LMCSL 0.327 1.0 90
29.00 37.03 31.73 18.25 LMCcascade 0.327 1.0 90
29.03 37.10 31.75 18.25 cascade 0.327 1.0 90
30.02 33.52 31.56 24.98 ASD w. filter 0.327 1.0 90
30.22 26.88 30.32 33.45 LMCcascade w. filter 0.327 1.0 90
30.27 26.89 31.19 32.72 SL w. filter 0.327 1.0 90
30.84 27.71 31.30 33.51 cascade w. filter 0.327 1.0 90
30.94 27.61 31.70 33.50 LMCSL w. filter 0.327 1.0 90
30.95 22.50 30.41 39.94 cascade w. filter 0.327 0.5 45
30.96 22.51 30.63 39.74 SL w. filter 0.327 0.5 45
31.10 22.71 30.64 39.94 LMCcascade w. filter 0.327 0.5 45
31.77 23.29 31.38 40.63 LMCSL w. filter 0.327 0.5 45
37.91 39.81 38.46 35.44 ASD 0.327 0.5 45
38.67 41.70 39.85 34.46 ASD 0.327 1.0 90

The ASD schemes using the fine resolution and the non-filtered coarse resolution are fol-
lowed by the coarse resolution filtered SL and LMCSL schemes and the remaining ASD. Then,
the filtered 3 1 and 1 05 resolution semi-Lagrangian schemes follow, these are followed by the
filtered coarse resolution cascade and LMC cascade scheme and the filtered resolution 05 05.
The next group consists of the filtered resolution 1 1, non-filtered resolution 1 05, and 10 1
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Table 5. Ranking results for the rotating cone with pure advection. Showing rank of the ranked error
measures, rank of error measure l1, l2, and l∞ followed by method, maximum Courant number, grid
resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

1.46 1.00 2.00 1.38 ASD w. filter 0.327 0.5 45
1.54 2.00 1.00 1.63 ASD 0.327 0.5 45
3.33 4.00 3.00 3.00 ASD 0.327 1.0 90
3.67 3.00 4.00 4.00 ASD w. filter 0.327 1.0 90
5.89 6.04 5.83 5.79 LMCSL w. filter 0.654 0.5 90
5.94 6.38 5.67 5.79 SL w. filter 0.654 0.5 90
6.79 6.88 6.96 6.54 cascade w. filter 0.654 0.5 90
7.38 6.71 7.54 7.88 LMCcascade w. filter 0.654 0.5 90

10.96 9.96 11.29 11.63 SL w. filter 0.327 0.5 45
14.49 12.75 9.63 21.08 SL w. filter 3.27 1.0 900
14.49 11.25 13.50 18.71 cascade w. filter 0.327 0.5 45
14.83 10.92 14.38 19.21 LMCcascade w. filter 0.327 0.5 45
14.88 12.88 16.54 15.21 LMCSL w. filter 0.327 0.5 45
15.39 13.75 10.33 22.08 LMCSL w. filter 3.27 1.0 900
15.93 18.25 17.29 12.25 cascade 0.654 0.5 90
15.93 18.25 17.29 12.25 LMCcascade 0.654 0.5 90
15.93 18.25 17.29 12.25 SL 0.654 0.5 90
15.93 18.25 17.29 12.25 LMCSL 0.654 0.5 90
16.83 15.67 19.17 15.67 cascade w. filter 3.27 1.0 900
19.36 15.67 14.67 27.75 LMCcascade w. filter 3.27 1.0 900
22.25 26.29 22.25 18.21 cascade 0.327 0.5 45
22.25 26.29 22.25 18.21 LMCcascade 0.327 0.5 45
22.25 26.29 22.25 18.21 SL 0.327 0.5 45

semi-Lagrangian schemes. The last schemes are the non-filtered semi-Lagrangian schemes
with resolution 10 1, 05 05, 3 1, and 1 1.
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rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

22.25 26.29 22.25 18.21 LMCSL 0.327 0.5 45
25.57 21.63 25.33 29.75 SL w. filter 0.981 1.0 270
25.97 22.46 25.71 29.75 LMCSL w. filter 0.981 1.0 270
26.21 22.38 26.50 29.75 cascade w. filter 0.981 1.0 270
27.25 22.54 27.46 31.75 LMCcascade w. filter 0.981 1.0 270
27.64 29.50 29.71 23.71 SL 3.27 1.0 900
27.79 29.50 29.71 24.17 cascade 3.27 1.0 900
29.86 33.83 29.88 25.88 LMCSL 3.27 1.0 900
30.65 33.83 31.71 26.42 LMCcascade 3.27 1.0 900
34.32 32.08 33.50 37.38 LMCSL w. filter 0.327 1.0 90
35.38 34.04 34.54 37.54 SL w. filter 0.327 1.0 90
35.74 33.29 34.08 39.83 LMCcascade w. filter 0.327 1.0 90
35.79 33.92 34.88 38.58 cascade w. filter 0.327 1.0 90
36.83 38.29 38.21 34.00 SL 0.981 1.0 270
37.00 38.46 38.38 34.17 cascade 0.981 1.0 270
37.06 38.63 38.38 34.17 LMCSL 0.981 1.0 270
37.22 38.63 38.38 34.67 LMCcascade 0.981 1.0 270
42.44 42.50 42.50 42.33 cascade 0.327 1.0 90
42.44 42.50 42.50 42.33 LMCcascade 0.327 1.0 90
42.44 42.50 42.50 42.33 SL 0.327 1.0 90
42.44 42.50 42.50 42.33 LMCSL 0.327 1.0 90

When considering the ranking of the individual errors the result is quite different. For the rank
of the l1 error the four best performing schemes are the LMCSL, the classical semi-Lagrangian,
the LMC cascade and the cascade, all filtered and with resolution 1 05.

The second error norm, the rank of the l2 error, gives the best correlation with the over-
all rank for the first schemes. The best performing schemes are the high resolution ASD, the
coarse resolution ASD, the filtered fine resolution ASD, and the fourth is the filtered classical
semi-Lagrangian scheme using resolution 1 05.
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With regard to the rank of the l∞ error, the best performing schemes are the coarse resolu-
tion ASD, the fine resolution ASD, the filtered coarse resolution ASD, and fourth is the filtered
classical semi-Lagrangian scheme using resolution 10 1.

5.3.7 Total Rank of all Test Cases

The last table, Table 5.3.7, shows the sum of the total rank of all six test cases. It is seen
that the filtered ASD scheme with the finest resolution gets the best score. The second best
scheme is SL with filter using resolution 10 1, third is ASD with resolution 05 05, followed
by the LMCSL scheme using resolution 10 1, and the two filtered semi-Lagrangian schemes
with resolution 1 05. This is followed by the remaining ASD and the last two filtered semi-
Lagrangian schemes using resolution 1 05. Generally, the filtered semi-Lagrangian schemes
are seen to perform better than the non-filtered solutions, and the order of the five resolutions
are 1 05 and 10 1 filtered, 1 05 non-filtered, 05 05 and 3 1 filtered, 05 05 and 10 1 non-filtered,
1 1 filtered, and 3 1 and 1 1 non-filtered.

5.3.8 Comparison of the Ranking Table Results

In an overall view, the ASD schemes perform very well when considering the tables above.
However, from Table 5.3.7 it is seen that the filtered semi-Lagrangian schemes with high time
step relative to grid size perform best of the semi-Lagrangian schemes. Some of these schemes
are even better than the ASD schemes run with coarse resolution. One expects that the coarse
resolution semi-Lagrangian schemes often perform better than the other resolutions because
these schemes introduce interpolation errors when calculating concentrations in the departure
points. In the coarse resolution results given here, only half as many or fewer interpolations are
carried out, and thereby less overall error is introduced.

5.4 Timing and optimization

The code of the methods presented in this work has not been optimized. Therefore, the time a
model run uses does not tell whether the method is faster than DEHM, which has already been
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Table 6. Ranking results for the slotted cylinder with pure advection. Showing rank of the ranked error
measures, rank of error measure l1, l2, and l∞ followed by method, maximum Courant number, grid
resolution, and time step.

rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

4.33 10.00 1.00 2.00 ASD 0.327 0.5 45
7.25 8.75 3.00 10.00 ASD w. filter 0.327 0.5 45
9.00 24.00 2.00 1.00 ASD 0.327 1.0 90
9.56 11.00 13.50 4.17 SL w. filter 3.27 1.0 900

10.11 12.00 13.50 4.83 LMCSL w. filter 3.27 1.0 900
10.67 17.00 12.00 3.00 ASD w. filter 0.327 1.0 90
12.25 13.29 15.21 8.25 LMCSL w. filter 0.981 1.0 270
12.75 13.71 15.79 8.75 SL w. filter 0.981 1.0 270
13.00 15.00 17.00 7.00 cascade w. filter 0.981 1.0 270
13.33 16.00 18.00 6.00 LMCcascade w. filter 0.981 1.0 270
14.46 1.38 4.58 37.42 LMCSL w. filter 0.654 0.5 90
14.93 1.63 4.42 38.75 SL w. filter 0.654 0.5 90
15.46 3.33 6.50 36.54 LMCcascade w. filter 0.654 0.5 90
15.83 3.67 6.50 37.33 cascade w. filter 0.654 0.5 90
17.74 19.21 19.00 15.00 cascade w. filter 3.27 1.0 900
19.14 5.92 9.00 42.50 SL w. filter 0.327 0.5 45
19.25 6.42 8.83 42.50 LMCSL w. filter 0.327 0.5 45
19.67 23.00 20.00 16.00 LMCcascade w. filter 3.27 1.0 900
19.67 6.54 9.96 42.50 LMCcascade w. filter 0.327 0.5 45
20.03 7.38 10.21 42.50 cascade w. filter 0.327 0.5 45
24.69 19.17 21.83 33.08 SL w. filter 0.327 1.0 90
25.69 20.67 22.50 33.92 LMCSL w. filter 0.327 1.0 90
26.17 26.50 26.50 25.50 cascade 0.654 0.5 90

optimized to run on parallel computers.
It should be noted that the modified interpolation weights in practice only should be calcu-
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rank(all) rank(l1) rank(l2) rank(l∞) Method CFLmax ∆x ∆t

26.17 26.50 26.50 25.50 LMCcascade 0.654 0.5 90
26.22 20.38 22.38 35.92 LMCcascade w. filter 0.327 1.0 90
26.47 33.00 33.42 13.00 SL 3.27 1.0 900
26.71 34.00 35.13 11.00 cascade 3.27 1.0 900
26.83 26.50 26.50 27.50 SL 0.654 0.5 90
26.83 26.50 26.50 27.50 LMCSL 0.654 0.5 90
27.54 35.00 33.63 14.00 LMCSL 3.27 1.0 900
27.64 20.58 23.29 39.04 cascade w. filter 0.327 1.0 90
27.94 36.00 35.83 12.00 LMCcascade 3.27 1.0 900
30.25 30.50 30.33 29.92 cascade 0.327 0.5 45
30.25 30.50 30.33 29.92 LMCcascade 0.327 0.5 45
30.75 30.50 30.67 31.08 SL 0.327 0.5 45
30.75 30.50 30.67 31.08 LMCSL 0.327 0.5 45
31.38 38.38 38.25 17.50 LMCcascade 0.981 1.0 270
31.43 38.54 38.25 17.50 cascade 0.981 1.0 270
32.26 38.54 38.75 19.50 SL 0.981 1.0 270
32.26 38.54 38.75 19.50 LMCSL 0.981 1.0 270
35.31 41.75 42.42 21.75 cascade 0.327 1.0 90
35.31 41.75 42.42 21.75 LMCcascade 0.327 1.0 90
36.36 43.25 42.58 23.25 SL 0.327 1.0 90
36.36 43.25 42.58 23.25 LMCSL 0.327 1.0 90

lated once every time step rather than for every single tracer. The semi-Lagrangian schemes
perform well for larger time steps (i.e. C > 1), when not considering tests including deposi-
tion. Also, since the semi-Lagrangian schemes are local, as opposed to the global ASD, the
benefit from optimisation of the code for parallel computation with distributed memory is very
likely to be significant.

62



Table 7. Ranking results for the sum of rank(all) from all six ranking tables. Showing the sum of the
total rank, rank(all(all)), method, maximum courant number, grid size, and time step.

rank(all(all)) Method CFLmax ∆x ∆t

50.18 ASD w. filter 0.327 0.5 45
64.05 SL w. filter 3.27 1.0 900
64.40 ASD 0.327 0.5 45
67.94 LMCSL w. filter 3.27 1.0 900
74.55 LMCSL w. filter 0.654 0.5 90
75.31 SL w. filter 0.654 0.5 90
79.47 ASD w. filter 0.327 1.0 90
79.58 LMCcascade w. filter 0.654 0.5 90
80.16 cascade w. filter 0.654 0.5 90
93.21 cascade w. filter 3.27 1.0 900
94.16 ASD 0.327 1.0 90

105.95 LMCcascade w. filter 3.27 1.0 900
112.52 cascade 0.654 0.5 90
112.56 LMCcascade 0.654 0.5 90
113.13 SL 0.654 0.5 90
113.24 LMCSL 0.654 0.5 90
115.69 SL w. filter 0.327 0.5 45
116.36 LMCSL w. filter 0.327 0.5 45
118.83 LMCcascade w. filter 0.327 0.5 45
119.00 cascade w. filter 0.327 0.5 45
120.18 SL w. filter 0.981 1.0 270
121.13 LMCSL w. filter 0.981 1.0 270
125.31 cascade w. filter 0.981 1.0 270

6 Discussion, Conclusion and Future Aspects

conclusions
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rank(all(all)) Method CFLmax ∆x ∆t

127.38 LMCcasc w filter 0.981 1.0 270
141.02 cascade 0.327 0.5 45
141.06 LMCcascade 0.327 0.5 45
141.61 LMCSL 0.327 0.5 45
141.62 SL 0.327 0.5 45
144.19 SL 3.27 1.0 900
145.86 cascade 3.27 1.0 900
151.39 LMCSL 3.27 1.0 900
153.55 LMCcascade 3.27 1.0 900
189.04 SL w. filter 0.327 1.0 90
189.79 LMCSL w. filter 0.327 1.0 90
190.86 LMCcascade w. filter 0.327 1.0 90
192.44 cascade w. filter 0.327 1.0 90
194.42 LMCSL 0.981 1.0 270
194.94 SL 0.981 1.0 270
195.23 cascade 0.981 1.0 270
195.71 LMCcasc 0.981 1.0 270
221.76 LMCcasc 0.327 1.0 90
221.77 cascade 0.327 1.0 90
223.10 SL 0.327 1.0 90
223.16 LMCSL 0.327 1.0 90

6.1 Discussion

In Section 3.2, the ten desirable properties were introduced. Below is a list of the same proper-
ties, with boldface indicating which properties this work fulfills:

– Accuracy

– Stability
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– Computational Efficiency

– Transportivity and Locality

– Shape preservation

– Conservation

– Consistency of the discretization

– Compatibility

– Preservation of Constancy

– Preservation of linear correlations between constituents

The properties fulfilled by the schemes considered in this work are accuracy, stability, trans-
portivity and locality, shape preservation, (mass) conservation, and consistency of the dis-
cretization. The differences between a traditional semi-Lagrangian scheme and the other LMC
semi-Lagrangian and cascade methods proposed here are conservation and consistency og the
discretization. The stability can be seen from the plots of the slotted cylinder with various
time steps. The method is not dependent on the size of the time steps, but on the number of
time steps. The applied filter imposes shape preservation when pure advection is considered,
however, it is not computationally efficient. When chemistry and advection are combined the
filter can no longer ensure shape preservation due to the non-linearities in the chemistry. The
semi-Lagrangian method is optimal when considering advection using large Courant numbers,
because less interpolation noise would be introduced. Besides, in air pollution modelling, using
a large time step relative to wind speed (meaning greater than the CFL condition) may cause
problems related to the emission and deposition processes. In case of emissions, a large semi-
Lagrangian time step would cause the advection to jump over some grid cells and, therefore, to
miss the contribution from specific emissions to the concentration field unless the emissions are
taken into account in another way. Something similar happens when considering deposition.
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The semi-Lagrangian schemes using the modified interpolation weights are considered effi-
cient, see Kaas (2008), however, when adding the locally mass conserving and monotonic filter,
twice the computational power is needed to perform the calculations. Therefore, the filter is
not considered to be computationally efficient, see Kaas and Nielsen (2010). It still remains
to be seen whether the LMCSL and LMC cascade methods combined with the filter are more
computationally efficient than ASD.

With regard to interpolation method in the semi-Lagrangian scheme, classical bi-cubic in-
terpolation versus cubic cascade interpolation, it can be seen from the plots and error measure
tables that the difference between the results is insignificant if any. The advantage of choosing
cascade interpolation over classical semi-Lagrangian is that the interpolation would be slightly
faster due to the dependence on fewer departure points. On the other hand, this method demands
slightly more memory for calculation of the intermediate time step.

It would be interesting to see how the timings of the semi-Lagrangian schemes are relative to
ASD, which is already optimized for parallel computing. This will be tested in future work.

6.2 Conclusion

The aim of the present work has been to test new semi-Lagrangian models against the method
used in the Danish Eulerian Hemispheric Model (DEHM) currently run at the National Envi-
ronmental Research Institute (NERI) in Denmark. The semi-Lagrangian (SL) methods combine
the classical cubic interpolation with cascade interpolation, see Nair et al. (2002), the modified
interpolation weights by Kaas (2008) and the locally mass conserving monotonic filter by Kaas
and Nielsen (2010). The methods were tested on conditions representing both rural and urban
chemistry. The urban chemistry introduces steeper gradients than the rural chemistry and is
therefore a harder test for the advection schemes. Ranking of calculated error measures com-
pares the general performance of the schemes.

It was seen that the Accurate Space Derivative (ASD) method used in DEHM performs very
well when considering the cosine hill. For the semi-Lagrangian methods it was seen that the fil-
ter improves the results, however, when combining chemistry and advection the resulting shape
of the cone, in case of NO2, was a little altered. For O3, the differences between ASD and the

66



SL schemes are significant. The overshoots generated by ASD for urban chemistry are only
exceeded by the filtered solutions of the SL methods, whereas only the SL schemes generate
undershoots.

Various tests using the slotted cylinder were also performed to test the ability of the schemes
to model steep gradients. It was seen that only for the toughest case, urban chemistry, did the SL
schemes outperform the ASD. Visualisations of the rotation tests, show that the error introduced
when calculating trajectories in the semi-Lagrangian schemes was insignificant compared to the
analytical trajectories. It was also tested at which resolution the filtered LMCSL scheme per-
formed best on the slotted cylinder. As expected, the semi-Lagrangian schemes perform best
when using a fine resolution with a large time step. This is due to the errors introduced by the
interpolation. The ranking showed that the filtered solutions of the SL schemes perform better
than the non-filtered solutions and in some cases even better than the ASD scheme (e.g. resolu-
tion 10 1 and 1 05 when considering the slotted cylinder with urban chemistry).

The sum of the rank(all) shows that some of the filtered semi-Lagrangian schemes using
resolution 1 05 and 10 1 performed better than ASD with resolution 1 1. The best performing
scheme is ASD with resolution 05 05. However, comparing results with different spatial reso-
lution is not straight forward, because a finer spatial resolution in air pollution models will give
steeper gradients for the method to model given the sharper gradients in the emissions. It might
not be advantageous to increase the grid resolution in DEHM when compared to the expense in
computational efficiency. Increasing the number of grid cells to twice as many in both x- and
y- directions would make the model eight times as computational expensive to run.

Overall, the ASD is the best performing scheme in most of the cases. The semi-Lagrangian
filtered solutions were good, especially for sharp gradients and the non-filtered solutions were
good, or the best performing SL schemes, when considering the rotating cone and O3. The
difference between classical semi-Lagrangian and cascade interpolation and using the modi-
fied interpolation weights or not is insignificant when considering the ranking tables, however,
the properties of mass conservation and computational efficiency are important in air pollution
models. Active chemistry enhances the errors in the advection due to non-linearities.

Adding the locally mass conserving monotonic filter to the semi-Lagrangian methods im-
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proves the results. It would be interesting to see how other filters would influence the results.
It is, however, important to keep in mind that the semi-Lagrangian methods with or without the
filter are local, one of the desirable properties for advection schemes. On the other hand, the
filter might not computationally efficient, see Kaas and Nielsen (2010).

In conclusion, the semi-Lagrangian schemes using resolution 1 1 and 3 1 are not able to out-
perform the ASD using resolution 1 1, based on the studies presented in this work, therefore the
hypothesis is rejected. However, using other resolutions or e.g. higher order interpolation tech-
niques it might be possible for the semi-Lagrangian schemes to outperform the ASD scheme.
Also, there are advantages with the semi-Lagrangian methods, namely, they are local (an ad-
vantage in parallellisation), locally mass conserving, stable for longer time steps, and finally
the semi-Lagrangian methods are generally better at handling sharp gradients in time and space
than traditional Eulerian methods.

6.3 Future aspects

A current problem for the stable very long time stepping in semi-Lagrangian methods is treat-
ment of deposition and emissions. A possible solution would be to consider emissions and
depositions along the trajectories. A future aim would be to investigate how much more calcu-
lation time this would require.

Generally, optimisation of the semi-Lagrangian schemes for parallel computing with dis-
tributed memory should be relatively straightforward because the semi-Lagrangian schemes are
local as opposed to ASD which is a global method. This should also make the parallelisation
more efficient. With regard to filters, the future optimisation should focus on mass conservation,
monotonicity and computational efficiency. Furthermore, it is important that the filters are not
too efficient.

An algorithm for calculation of emissions and deposition along trajectories has not been de-
veloped yet, but the time spent on the development might easily be earned back from gain in
computational efficiency from possible increase in size of time step. Since dry deposition is
taken as the lower boundary and emissions are only in the lowest levels of the atmosphere,
the most time consuming part would be wet deposition which may occur throughout the atmo-
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sphere.
It still remains to be seen how the new proposed method performs when implemented in a

real air pollution model. It is important to have a high accuracy advection scheme, which at the
same time is very efficient computationally.
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