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Abstract

Ideally, a validation and assimilation scheme should maintain the physical principles
embodied in the model and be able to evaluate and assimilate lower dimensional fea-
tures (e.g., discontinuities) contained within a bulk simulation, even when these fea-
tures are not directly observed or represented by model variables. We present such5

a scheme and suggest its potential to resolve or alleviate some outstanding problems
that stem from making and applying required, yet often non-physical, assumptions and
procedures in common operational data assimilation. As proof of concept, we use a
sea-ice model with remotely sensed observations of leads in a one-step assimilation
cycle. Using the new scheme in a sixteen day simulation experiment introduces model10

skill (against persistence) several days earlier than in the control run, improves the
overall model skill and delays its drop off at later stages of the simulation. The potential
and requirements to extend this scheme to different applications, and to both empirical
and statistical multivariate and full cycle data assimilation schemes, are discussed.

1 Introduction15

Data assimilation deals with the optimal combination of observations and a model fore-
cast, or background field, into an analysis field that forms the basis for the next forecast
(Daley, 1992). Originating in meteorology, data assimilation is now used extensively
with all operational geophysical models to improve model predictions and performance
based on available observations. Most modern data assimilation techniques fall into20

two main categories: empirical methods, and methods based on statistical estimation
theory (Talagard, 1997). Empirical methods, like dynamic relaxation (a.k.a. nudging,
Hoke and Anthes, 1976) are most useful with new data and data sets for which er-
ror estimates and/or the error covariance structure are not known or available, as is
the case for our application. Although implemented differently, it can be shown that25

all assimilation methods based on statistical estimation theory (hereafter, statistical
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data assimilation) can be regarded as an extension of optimal interpolation (OI) and
are mathematically based on optimization algorithms, most commonly the least square
minimization principle. The equivalency of statistical data assimilation methods, includ-
ing OI, Bayesian data assimilation, Kalman Filtering (KF) and variational techniques,
is shown, for example, in Kalnay (2003). Current and future data assimilation systems5

must cope with some known issues that stem from constraints, limitations, and errors
in both the models and the observations assimilated, namely:

(i) During initialization, if the analyzed field, based on the data, does not match a
realizable model state, noise is generated when the model integrates forward in
time and this noise can severely impair forecast skill.10

(ii) Assimilation systems do not have a simple, quantitative way of representing lower
dimensional features contained within a bulk simulation as these features are not
directly defined by either observations or model variables. Assimilation methods
that ignore these features often force observed data onto models in a non-physical
way. Such features occur frequently in geophysical applications and are associ-15

ated with discontinuities and other important physical and dynamical processes
on multiple scales.

(iii) The observed data that are assimilated do not match the variables predicted by
the model, requiring parameterizations that are not consistent with the data or the
physics.20

These issues arise when the validation and assimilation schemes do not maintain the
physical principles embodied in the model and are unable to evaluate and assimi-
late lower dimensional features (e.g., discontinuities) contained within a bulk simula-
tion that are not directly observed or represented by model variables. Under these
circumstances, assimilation can lead to the violation of physical principles and the loss25

of information contained in the lower dimensional features. Conversely, models that
resolve such features and the associated physics well, yet imprecisely, are often pe-
nalized by traditional schemes, leading to (perceived or real) poor model performance
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and predictability scores. This loss of information can become deleterious in model
improvements when observations are sparse, fuzzy, or irregular.

The aforementioned issues have been reported in different applications of data as-
similation. For example, in an assimilation experiment with a sea-ice model, Lindsay
and Zhang (2006) illustrate that some fields in the model no longer strictly adhere to5

the physical principles of the model when data assimilation is accomplished through
nudging (dynamic relaxation). They also note that similar inconsistencies arise when
variables that originate from independent datasets are assimilated independently. Dai
et al. (2006), in another sea-ice model simulation using optimal interpolation, show that
the assimilated data degrade the solution at later stages because the underlying phys-10

ical assumptions in the model are compromised. An ensemble Kalman filter (EnKF)
assimilation in a wildfire model by Mandel et al. (2008) resulted in nonphysical states
especially far away from the data. When discontinuous processes are modeled the
problems of initialization can be exacerbated as shown by Vukicevic and Bao (1998)
in a meteorological variational (4DVAR) data assimilation system. In that study the15

linearization errors associated with discontinuous convective parameterizations were
non-negligible and affected the assimilation results both locally and globally.

This paper considers a new paradigm for assessing model performance and for com-
paring model results with observational data. The resultant assimilation and validation
scheme is compatible with state of the science methods and is capable of handling20

lower dimensional features in a bulk simulation. This scheme addresses issues (i), (ii),
and (iii) above. The new scheme is tested with a sea ice model (Schreyer et al., 2006;
described in Sect. 2.3 and Appendix A) and RADARSAT Geophysical Processor Sys-
tem (RGPS; Kwok, 1998) data, in a physically based nudging context for one assimila-
tion cycle. We employ a fuzzy verification metric of Levy et al. (2008) and standard skill25

scores of Murphy (1988) to evaluate model performance. We show that implementing
the new assimilation scheme introduces model skill (against persistence) several days
earlier than in the control run, improves the overall model skill, and delays its drop off
at later stages of the simulation. We conclude with some thoughts about extending
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this method to a full assimilation cycle and to statistical-estimation data assimilation
systems.

2 Physically-based assimilation and validation

2.1 Data assimilation algorithm

Standard practice in data assimilation is to subtract model estimates of state variables5

interpolated to observation locations, from observed values (the background field), to
produce innovations (or observation increments). Objective analysis of these innova-
tions onto the model grid is then used for initialization of the model. The algorithm for
validation and assimilation proposed and tested here assumes an adequate measure
for model validation and verification exists, even for lower dimensional features. In it,10

feature extraction and assessment (see Sects. 2.2 and 2.4) take the place of objective
analysis for lower dimensional features. We use the fuzzy verification metric RI of Levy
et al. (2008), Eq. (B1), as a benchmark for assessment.

An underlying principle for our assimilation algorithm is to use data to precondition
model variables or material properties that allow internal model physics to generate15

future model states that agree better with observed data. That is, the model state is
updated, as needed, through a physical innovation based on decision criteria from a
fuzzy verification (e.g., Appendix B). Similar to four-dimensional (4-D) data assimilation,
this procedure produces results that are consistent with internal model physics and
dynamics and thus avoids forcing unrealizable model states. Furthermore, in theory,20

this scheme should work equally well for resolving and assimilating lower dimensional
features without the need to transform them into model variables. Computationally,
this scheme is significantly more efficient than 4-D assimilation and could be regarded
as a simplified 4-D assimilation, especially suited for incorporating lower dimensional
information.25
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2.2 Lower-dimensional features in sea ice observational data

We choose to test the new assimilation scheme in a sea-ice environment where lower
dimensional features in the form of Linear Kinematic Features (LKFs; Kwok, 2001) are
abundant and observable. LKFs represent discontinuities in the sea-ice (e.g., leads or
ridges, Coon et al., 2007). Although not directly measured or resolved by observing5

systems or most models, LKFs can be related to model resolvable physical or mate-
rial properties. LKFs persist sufficiently to allow simplified testing of our scheme that
adjusts model variables at initialization. A general assimilation scheme would call for
the model state to be updated regularly based on the data and their agreement with
the model output, rather than just initially. The adjustments can be implemented at set10

intervals (i.e., in a continuous data assimilation), or only when agreement or skill score
falls below a certain threshold. This validation and assimilation technique is schemat-
ically depicted in Fig. 1 for both the general case and the ice model implementation
tested. The data we use come from the RADARSAT Geophysical Processor System
(RGPS), which was developed by the Polar Remote Sensing Group at the Jet Propul-15

sion Laboratory (JPL) to extract sea ice motion data from SAR imagery (Kwok et al.,
1990). At an initial time, a set of points forming a regular grid is located in the SAR data
sets. Then in the images resulting from subsequent satellite passes (approximately
every 3-days), the original points are found again using area-based and feature-based
tracking. This procedure provides displacements for each point. If the set of points in20

the original configuration is viewed as the vertices of square cells, then the motion of
the points determines the deformation of the cells. With this interpretation, grid quan-
tities such as the divergence, shear, and vorticity, can be calculated using the nodal
displacements.

The RGPS deformation products are based on the assumption that the displace-25

ments and velocities are smooth functions of the spatial coordinates. However, if the
dominant form of deformation of multiyear ice is in the opening, closing, and shearing
of linear features or leads, then the displacements and velocities can be discontinuous.

522

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/517/2010/gmdd-3-517-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/517/2010/gmdd-3-517-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
3, 517–540, 2010

Physically-based
data assimilation

G. Levy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In Coon et al. (2007) we discuss the kinematics associated with strong discontinuities
that describe possible jumps in displacement or velocity. Specifically, we determine a
jump in displacement and the orientation of this jump that account best for the observed
deformation of an RGPS cell. We use this treatment of the data for feature extraction
and subsequent assimilation of the information.5

2.3 Sea-ice model and simulations

The sea-ice simulations we perform to demonstrate our scheme use an elastic-
decohesive constitutive model for the sea ice (Schreyer et al., 2006). The model was
developed for predicting the initiation and opening of leads in the Arctic ice. Once the
existence of leads is taken into account, the remaining motion of the ice has small de-10

formations and is appropriately described as elastic. Several features were designed
into the model. First, the model was constructed to transition from observed brittle
failure under tension, to compressive brittle failure under moderate compression, and
to a plastic-like faulting under large confinement (Schulson, 2004). The various modes
of failure occur in the model, depending on the stress state in the material. Where15

the transitions occur in stress space depends on the material parameters and can be
adjusted based on empirical data. Second, the model can handle multiple cracks at a
point, and therefore can predict crack branching. Third, the numerical implementation
of the model is accomplished similarly to standard plasticity models. Thus, in principle,
modular codes that call a subroutine to implement the constitutive model can substi-20

tute the elastic-decohesion model if it proves worthwhile. A final aspect of the model is
the ability to build in pre-existing planes of weakness that may be due to pre-existing,
partially frozen leads, for example. It is this feature that we exploit in order to initialize
simulations using observed data. More information about this model can be found in
Appendix A.25

The equation of motion for the ice is the balance of momentum equation that in-
cludes, in addition to the internal forces determined by the constitutive model, drag
forces from the wind and ocean currents, and Coriolis forces. Six hour wind fields
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from NCEP reanalysis are used to determine the wind drag and the ocean currents are
updated daily using output from an ocean model (MITgcm, Marshall et al., 1997) run
independently from the ice simulation.

The momentum equation is solved using the material-point method (Sulsky et al.,
2007). With the material-point method (MPM), a set of material points is identified in5

the body of fluid or solid that is tracked throughout the deformation process. Each mate-
rial point has a mass, position, velocity and stress, as well as material parameters and
internal variables as needed for constitutive models or thermodynamics. These mate-
rial points provide a Lagrangian description of the material that is not subject to mesh
tangling because no connectivity is assumed between the points. This Lagrangian10

frame naturally models convection and transport since the trajectory and history of
each material point is followed. Each point carries material properties without error,
and history variables can be integrated along the trajectory. However, computing gradi-
ents for solution of the momentum equation is complicated in this representation since
the neighbors of a given point are not known a priori, and can change during a simula-15

tion. To keep the computational work linear in the number of material points, a second
discretization is used for solving the momentum equations. This representation of the
solution is often a regular, background mesh that covers the computational domain.

Run explicitly, the time step in MPM is governed by the CFL condition based on the
background mesh size and the elastic wave speed. This step size is comparable to the20

step size used in sub-cycling the elastic-viscous-plastic model (Hunke and Lipscomb,
2004), making MPM with the elastic-decohesive model competitive in terms of com-
putational efficiency with the best available algorithms for ice dynamics (Sulsky et al.,
2007).

2.4 Assessment25

Levy et al. (2008) define two metrics to evaluate model success in representing lower
dimensional features. They treat features through a frequency distribution at predeter-
mined spatial regions of the domain. We use one, the RMS index of agreement, in a
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general skill score (Murphy, 1988):

SS=
Af−Ar

Ap−Ar
=
Af−Ar

1−Ar
. (1)

Where A is a measure of accuracy and subscripts f, r, and p denote forecast, refer-
ence, and perfect, respectively. The reference state used here is that of persistence.
The measure of accuracy we consider – the RMS Index of Levy et al. (2008, see Ap-5

pendix B) – can take a value between 0 (no agreement) and 1 (perfect agreement,
Ap). As we deal with lower dimensional features for which no climatology (and hence
no error correlation information) exists, persistence serves as the reference. Any skill
score value greater than zero indicates prediction skill over persistence, and can be
directly converted to a percentage improvement in skill.10

3 An illustrative example

3.1 Experimental design

We conduct two simulations with the sea-ice model: a control run, and an experimental
run. The control and experimental simulations are of ice behavior in a 831.600 km2

region of the Beaufort Sea over a time interval of 16 days from day 54 (23 February,15

insert in Fig. 2) through day 70 (11 March) of 2004. The background mesh size in the
MPM calculation is 10 km, with four material points per cell initially. Model parameters
include the elastic moduli, ice density, Coriolis parameter, drag coefcients and the
parameters in the decohesive model that set the failure strength of ice in tension τnf
and shear τsf, the length scale over which decohesion occurs u0, and two parameters20

that describe the shape of the failure surface in stress space, κ and τsm (Schreyer
et al., 2006, and Appendix A). Values of the parameters used for the simulations are
given in Table 1. During this same period in 2004, RADARSAT SAR observations
processed through the RADARSAT Geophysical Processor System at 10-km resolution
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are available daily for validation (middle column in Fig. 3) and assimilation (insert in
Fig. 2).

The simulations use the elastic-decohesive constitutive model described above. Six
hour wind fields from NCEP reanalysis are used to determine the wind drag and the
ocean currents and are updated daily. Both the control and the experimental runs5

use the same boundary conditions. Boundaries are either land boundaries, in which
case the displacement of the ice is zero, or open boundaries in the Beaufort Sea. In the
latter case, displacements of boundary points are specified according to their observed
values obtained from the RGPS data.

Initial values of all model variables and parameters are also the same, except that the10

experimental simulation goes through a one-step assimilation during day 54, where in-
formation on the pattern of leads from RGPS at 10-km resolution is used to predispose
the model. Initialization includes setting the initial velocity and stress to zero, and the
initial ice thickness uniformly to 3 m. The experimental simulation is further initialized
as determined through a kinematic analysis of the RGPS data over one day (Coon et15

al., 2007; Peterson and Sulsky, 2010). Specifically, we determine a jump in displace-
ment and the orientation of this jump that account best for the observed deformation
of an RGPS cell. Material points within that cell are initialized to have this initial jump
at the observed orientation. The effect of this initialization is to reduce the strength
of the ice anisotropically, and to predispose it to continue deforming with this oriented20

opening provided the forcing is consistent with this deformation.
We run accuracy assessment daily and consider the model response and the impact

of the one-step assimilation on simulating LKFs. The assessment consists of determin-
ing the accuracies Af and Ar against the daily observations for both the experimental
and control runs using the RMS index of Levy et al. (2008, see Appendix B), and25

substituting them in the general skill score formulation, Eq. (1) above. We score the
different simulations using the RMS Index against the LKFs interpreted from the RGPS
observations of the Beaufort Sea. We consider the agreement in (1) the existence
of 100 km×100 km grid cells containing LKFs in the domain; and (2) the existence
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of 100 km×100 km grid cells containing LKFs at the observed orientation using four
cardinal orientations in the domain. We thus score M=5 features at N=1, the entire
simulated/observed domain (the Beaufort Sea), in Eq. (B1). Here we assume that all
weights, wi and ωi equal one. Frequencies are defined in terms of cell counts, and
cells with missing data are excluded from the statistics. The impact of the one-step5

assimilation on simulating LKFs is shown in terms of a skill score in Fig. 2, and visually
in Fig. 3.

3.2 Results

Figure 2 shows the evolution of the skill score with respect to persistence for both the
control and experimental simulations for the duration of the simulations from day 5510

(24 February 2004), the first day after assimilation of RGPS data (in figure insert) in
the experimental run, through day 70 (11 March 2004), the last day of the simulations.
The impact of the one step assimilation is evident throughout the entire 16-day simu-
lation, although it is most dramatic during the first week. For visual assessment of the
impact that the assimilation has on the LKF field throughout the domain, Fig. 3 provides15

snapshots of that field as simulated in the control and experimental runs, side by side
with the observed field at key time steps of the 16-day simulation.

As the lower dimensional information assimilated in our tested assimilation scheme
is used to nudge the model through preconditioning of the simulated field towards the
observed field at a future time step, a positive skill score with respect to persistence is20

achieved only on 25 February (top panel in Fig. 3; day 56 in Fig. 2). This reflects the
time it takes for the model physics to consistently respond to the preconditioning, as
well as the relatively strong persistence and slow evolution of the lead (LKF) field. The
skill score of the experimental run peaks at 0.6 (60% improvement over persistence;
100% improvement over the control run score) on day 58 (27 February), and remains25

positive for the rest of the simulation, and above 0.5 through day 66 (7 March). In
an adaptive assimilation cycle, one may consider another cycle on day 67. The true
impact of the assimilation on the model performance is measured relative to the control
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run. One day following the assimilation, on day 55 (24 February), the skill score of the
experimental simulation is over 100% higher than that of the control run skill score, even
prior to either simulation showing skill relative to persistence. At its peak on day 58,
the experimental run skill score exhibits an improvement of 100% over the control run’s
skill. The control run gains skill relative to persistence on day 59 (28 February; Fig. 3),5

when it is 80% lower than the skill of the experimental run. The control run skill relative
to persistence remains positive for the rest of the simulation, peaks at 0.35 on days 63
(4 March in Fig. 3) and 64, but never exceeds the score of 0.5, and, as the skill of both
simulations slowly decline at the end of the simulation (e.g., 10 March at the bottom
of Fig. 3), it remains consistently at least 10% lower than that of the experimental10

simulation.

4 Conclusions

An algorithm for model validation and data assimilation that maintains the physical prin-
ciples embodied in the model and can evaluate and assimilate lower dimensional fea-
tures (e.g., discontinuities) contained within a bulk simulation is introduced and demon-15

strated with a sea-ice model and with remotely sensed observations of leads in a one
step assimilation cycle. An underlying principle of the new algorithm is to use data as
a guideline for the model by preconditioning model variables or material properties in a
way that leads internal model physics to generate future model states that are in better
agreement with the observed state. Similar to four dimensional data assimilation, this20

procedure produces results that are consistent with internal model physics and dynam-
ics and thus avoids forcing unrealizable model states, largely resolving the problem of
initialization. Furthermore, as tested here, this scheme works well for resolving and as-
similating lower dimensional features, which do not match the model variables and are
not directly measured by the observing system, without the need to transform these25

features into model variables. Computationally, this scheme is significantly more ef-
ficient than four-dimensional assimilation and could be regarded as a simplified 4-D
assimilation.
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We have tested the new scheme in a sixteen day simulation experiment. In this
system, model skill (against persistence) is initiated three days earlier than the skill in
the control run with no assimilation, and is consistently higher than the later throughout
the simulation. In addition to this shortening of the model spin up time and the overall
higher model skill, the assimilation improves model skill significantly during the first5

six days. Thus, the new scheme holds the potential of comparable improvements for
the assimilation of lower dimensional features with similar persistence when infrequent
observations exist.

In the sea-ice system tested, the properties needing physical adjustments are rela-
tively clear and nudging is a natural implementation choice that is capable of a robust10

response to the adjustments. However, the same principle of physically based ad-
justments holds in the general case of other geophysical models and systems, the
variables and lower dimensional features they resolve or represent, as well as in other
modes of implementation. Meteorological examples include forecasting precipitation
and tropical cyclone trajectories (e.g., Kurihara and Ross, 1993). Thus, this scheme15

could be extended to a generalized multivariate data assimilation and object oriented
verification system that would be physically based and capable of extracting lower di-
mensional information from observations and bulk simulations at different scales and
for different geophysical (e.g., atmospheric, oceanic, coupled) models containing con-
tinuous and lower level features of significance (e.g., fronts, organized convection).20

Appendix A

For the purposes of modeling sea ice, a 2-D, plane-stress description of failure has
been formulated assuming cracks occur in the plane. The envelope of failure points in
stress space is described by a failure function, Fn (σ,n) where Fn<0 implies no failure,
Fn=0 implies evolving failure and Fn>0 is not allowed. This function is analogous to a25

plastic yield function in plasticity theories. The subscript n on Fn indicates a separate
failure function for each potential crack orientation, and Fn depends on the stress σ,
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and the unit normal n to the crack surface. To consider all possible failure directions, a
general failure function F is defined as F =maxnFn.

Many classical failure criteria, such as the Rankine, Tresca and Mohr-Coulomb cri-
teria, are expressed in terms of the traction on the failure surface (i.e., crack surface).
The elastic-decohesion model extends these classic criteria by adding two new fea-5

tures: (1) a modification of the Rankine criterion for brittle failure to allow for the possi-
bility that a compressive stress component may lower the resistance of the material to
brittle failure, and (2) a transition from brittle to ductile failure within one criterion. If a
local basis consisting of n, the unit normal to the crack, and t, a unit vector tangent to
the crack, is introduced, then the traction on the failure surface has normal component10

τn =n ·σ ·n and tangential component τt = t ·σ ·n. The remaining component of stress
in this basis (within the plane of the ice sheet) is the tangential stress, σtt = t ·σ · t. The
brittle decohesion function is defined as follows

Bn =
τn
τnf

− fn

[
〈−σtt〉
f ′2c

+1

]
, where 〈x〉 ≡

{
x x≥0
0 x <0

. (A1)

Material parameters are τnf, the tensile or normal failure stress and f ′c which denotes15

the failure stress in uniaxial compression. For the moment, take fn = 1. The new
criterion for brittle failure is Bn =0. The McCauley bracket is used to activate the normal
component of stress σtt only if it is negative. If the term involving σtt were absent then
failure would occur when the normal traction on the surface reaches the threshold τnf,
which is the Rankine criterion. With the σtt term, this criterion is analogous to the20

Rankine criterion in that failure occurs in the direction of maximum principal stress, but
the critical value of the normal traction component is potentially reduced when σtt is
compressive. The criterion allows for failure even if τn is negative, and it is this aspect
of the model that allows compressive brittle failure.
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Next, brittle and ductile aspects of failure are included by defining the failure function
as

F =max
n

Fn, Fn =
τ2
t

τ2
sm

+eκBn −1. (A2)

The additional material parameter, τsm, is the failure stress in shear when the ma-
terial is under large compression (τn →−∞). The parameter, κ, is derived from the5

condition that under pure shear (Bn =−1), the failure stress is τsf, the failure stress
under pure shear. If τnf →∞ and f ′c →∞ then the criterion F = 0 reduces to the pure
shear criterion of Tresca. Figure B shows a sketch of the decohesion failure envelope in
stress space. The solid line represents the failure envelope F =0. Along this solid line,
the blue arrows indicate the direction of maximum principal stress and the red arrows10

indicate the normal to the crack surface. Under brittle failure the normal to the crack is
in the direction of maximum principal stress. Under ductile and mixed-mode failure the
normal to the crack is at an angle to the direction of maximum principal stress, with two
orientations of the crack possible. Of the two, the orientation that preserves the sense
of local rotation is chosen. The transition from brittle to ductile failure occurs at a point15

along the failure envelope determined by the ratio of τnf to τsf, and thus is a material
property.

This failure envelope describes the model for lead initiation in the ice. Once the
beginning of a crack has been identified, the evolution of the lead is required. The term
decohesion or cohesive crack model refers to the reduction of the traction on the crack20

as the crack opens. This behavior is in contrast to a Griffiths model where the traction is
assumed to change discontinuously and instantaneously from a positive value to zero.
Decohesion is included in the model by introducing a softening parameter, analogous
to equivalent plastic strain in plasticity models, that drives the traction to zero as a crack
continues to open. A dimensionless parameter, fn in Eq. (A1), starts with a value unity25

for undamaged material and reduces to zero as un, the normal component of the jump
in displacement, increases from zero. The crack is considered completely open when
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un reaches the material-dependent value u0, at which point the traction on the crack
surface has been reduced to zero and a free surface is thus formed.

The displacement discontinuity evolves according to a normal flow rule

u̇n = ω̇
∂F
∂τn

u̇t = ω̇
∂F
∂τt

. (A3)

The displacement discontinuity is regularized into an effective decohesion strain, anal-5

ogous to plastic strain,

ėd
nn = u̇n/L ėd

nt = u̇t/2L ėd
tt =0 (A4)

where L is a measure of the cell size in numerical simulations. (The value of L is
chosen so that the physically correct energy is dissipated during fracture.) The stress
is a function of the elastic strain e−ed . Thus, as a specimen of ice is loaded, we10

typically begin with F < 0; the stress is inside the failure envelope. We assume each
loading step is elastic, giving a trial stress state. If the trial stress is outside the failure
envelope (F > 0) then a jump in displacement is introduced to bring F back to zero.
This procedure is identical to standard solution procedures for plasticity. The result is
that as a crack opens we predict the amount of both the normal and tangential opening.15

Once a free surface has formed, the jump in displacement can continue to grow if the
crack surfaces continue to separate, and the traction on the surface remains zero.

At each loading step we find the critical direction n for which F is largest. As a
crack with a particular orientation begins to open, the softening makes it likely that this
orientation will remain the critical direction. However, it is possible that a changing20

stress state will make another direction critical, in which case a second crack can form
intersecting the first. In this manner, the model accommodates multiple cracks at a
point. If weak areas are known to exist in the ice, the softening parameter fn can be
initialized with a value less than one to account for this information.
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Appendix B

The RMS index of agreement (Levy et al., 2008) we use as a measure of accuracy
in the skill score, Eq. (1), treats features through a frequency distribution at predeter-
mined spatial segments of the domain. It contains a term with the familiar format of
standard error common in routine distance or root mean square error measures used5

for continuous variables:

IR =1−

√√√√( M∑
i=1

wi

N∑
j=1

ωjDi ,j

)
/
( M∑

i=1

wi

N∑
j=1

ωj

)
(B1)

where wi and ωj are weights given to the features and the spatial segments, respec-
tively, and Di ,j is a normalized frequency difference function:

Di ,j =

(
pi ,j −oi ,j

)2(
pi ,j +oi ,j

)2
, (B2)10

where pi ,j and oi ,j are the predicted (simulated) and observed feature frequencies (cell
count) of feature i in segment j .
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Table 1. Model parameters.

Quantity Symbol Value

initial ice density ρ 917 kg m−3

initial ice thickness h0 3 m

air density ρa 1.20 kg m−3

air drag coefficient ca 0.0012

sea water density ρw 1026 kg m−3

water drag coefficient cw 0.00536

Coriolis parameter fc 1.460×10−4

ice shear modulus G 3.6765×105 N/m2

ice bulk modulus K 11.905×105 N/m2

ice tensile strength τnf 25 kPa

ice shear strength τsf 15 kPa

ice compressive strength f ′c 125 kPa

ice opening parameter u0 400 m

decohesive parameter κ 0.064538521

shear magnification τsm 4.0
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Fig. 1. Schematic of the validation and assimilation algorithm illustrated for the general case
and (in parentheses) lower dimensional features and the sea ice model and data tested. The
implementation and testing on lower dimensional features involve the assimilation of RGPS
data processed to show regions of high deformation. The model state may be updated by
changing material properties based on agreement of lower dimensional features and fuzzy
metrics scores. For example, if the data indicates the presence/absence of LKFs in a region, a
jump in displacement is determined to account for the observed RGPS deformation of the cell.
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Fig. 2. Skill score (against persistence of observed field shown in insert) evolution of the
control and experimental simulations. A 1-step DA algorithm was implemented on day 54
(23 February 2004) to the experimental run, whereby the ice model state was updated by
changing material properties based on agreement of lower dimensional features deduced from
RGPS data processed to show regions of high deformation (insert). Days are Julian days of
2004.
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Fig. 3. Comparisons of the experimental (left column) and control (right column) simulations with LKFs interpreted
from the RADARSAT Geophysical Processor System (RGPS) data (center column) on (from top to bottom) 25 February
2004 (day 56, first day of positive skill score for experimental run), 28 February (day 59, first day of positive skill score for
control run), 4 March (day 63) and 10 March (day 69). The RGPS data were processed assuming that all deformation
should be accounted for by shearing, opening and closing of a discontinuity, which passes through the cell center
(Coon et al., 2007). 539

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/517/2010/gmdd-3-517-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/517/2010/gmdd-3-517-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
3, 517–540, 2010

Physically-based
data assimilation

G. Levy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. A1. Failure envelope in principal stress space for the elastic-decohesive model.
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