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Abstract

Chemical data assimilation attempts to optimally use noisy observations along with
imperfect model predictions to produce a better estimate of the chemical state of
the atmosphere. It is widely accepted that a key ingredient for successful data
assimilation is a realistic estimation of the background error distribution. Particularly5

important is the specification of the background error covariance matrix, which contains
information about the magnitude of the background errors and about their correlations.
Most models currently use diagonal background covariance matrices. As models
evolve toward finer resolutions, the diagonal background covariance matrices become
increasingly inaccurate, since they captures less of the spatial error correlations. This10

paper discusses an efficient computational procedure for constructing non-diagonal
background error covariance matrices which account for the spatial correlations of
errors. The benefits of using the non-diagonal covariance matrices for variational data
assimilation with chemical transport models are illustrated.

1 Introduction15

Chemical data assimilation attempts to optimally use noisy observations of reality
along with imperfect model predictions to produce a better estimate (in some optimal
sense) of the chemical state of the atmosphere. This improved estimate state better
defines the spatial and temporal fields of key chemical components in relation to their
sources and sinks. This information is critical for improved studies of the atmospheric20

composition. Chemical data assimilation could also, in principle, improve estimates of
emission inventories, of model boundary conditions, or of important model parameters
like wet deposition velocities or photolysis rates.

The close integration of observational data is recognized as essential in
weather/climate analysis and forecast activities. Consequently, considerable25

experience with data assimilation have been accumulated in the field of numerical
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weather prediction (Daley, 1991; Courtier et al., 1998; Rabier et al., 2000; Kalnay,
2002; Navon, 2009). In this work we focus on chemical data assimilation, i.e., on
assimilation of observations of pollutant levels in the atmosphere. Chemical data
assimilation poses specific challenges related to the multiphysics nature of the system,
the stiffness of chemical kinetic equations, the sparseness of chemical observations,5

and the uncertainty in the levels of anthropogenic and natural pollutants emitted into
the atmosphere.

Previous studies have employed various approaches to assimilating observations of
trace gases for improved tropospheric chemistry representations. The base concepts
of the variational approach to chemical data assimilation, and the construction of10

adjoint chemical transport models are discussed in detail in Sandu et al. (2005);
Carmichael et al. (2008). Early work in chemical data assimilation using variational
techniques has been reported in Khattatov et al. (2000); Elbern and Schmidt (2001).
Since then there is a growing body of literature with applications of 4D-Var chemical
data assimilation. Adjustment of gas phase chemical tracer initial conditions has been15

studied in Chai et al. (2007); Zhang et al. (2008). Adjustment of pollutant emissions
through 4D-Var chemical data assimilation has been discussed in (Chai et al., 2009).
Data assimilation studies involving particle measurements to improve aerosol fields
have been performed in Hakami et al. (2005); Henze et al. (2009).

Suboptimal Kalman filters have been employed successfully for chemical data20

assimilation (Menard et al., 2000; Lamarque et al., 2002; Segers et al., 2005; Clark et
al., 2006; Pierce et al., 2007; Parrington et al., 2009). The use of the ensemble Kalman
filter (EnKF) in chemical data assimilation has been studied in Constantinescu et al.
(2007b,c,d). Data assimilation has been used to improve initial conditions, emissions,
and boundary values. Besides the initial conditions, improvements in boundary values25

lead to improved air quality forecasts. Comparisons of the the performance of different
techniques for chemical data assimilation have been performed (Lahoz et al., 2007;
Wu et al., 2008).
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It is widely accepted that a key ingredient of successful data assimilation is a
realistic estimation of the background error distribution. Particularly important is the
specification of the background error covariance matrix, which contains information
about the magnitude of the background errors and about their correlations. Background
covariance matrices impact how the information from observations is spread both5

spatially and among the different types of analysis variables.
The construction of background covariance matrices is challenging due to poorly

characterized background errors, and to the very large dimension of the state space of
realistic atmospheric models. As a consequence, many chemical data assimilation
studies to date have used diagonal background covariance matrices. A popular10

approach to approximate the background covariance matrix is the NMC method
(Parrish and Derber, 1992), in which the differences between several forecasts verifying
at the same time are used to approximate the background error. This method has been
successfully applied to chemical data assimilation (Chai et al., 2006). An alternative
approach constructs autoregressive models of background errors based on the short-15

term linearized model dynamics (Constantinescu et al., 2007a).
A popular ansatz is that the background error correlations decay exponentially in

space. This ansatz allows the construction of simple error correlation models, and
is the basis of the covariance localization technique used in ensemble Kalman filtering
(Gaspari and Cohn, 1999; Ott et al., 2004; Constantinescu et al., 2007b). Experimental20

studies with chemical transport models support this assumption; for example, in Chai et
al. (2006) it has been shown that ozone error correlations decrease follow, on average,
an exponential decay curve. Sub-optimal Kalman filters based on covariance models
that impose an exponential decay of correlations with distances have been used in the
assimilation of chemical constituents (Khattatov et al., 1999; Pierce et al., 2007).25

In the troposphere, ozone is an important greenhouse gas and a major pollutant,
which adversely impacts air quality. Its distribution is highly heterogeneous, reflecting
the combined influence of atmospheric transport and local chemical sources and
sinks. Until recently, observations of the three-dimensional structure of tropospheric
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ozone have been limited. The Tropospheric Emission Spectrometer (TES) satellite
instrument, launched in 2004, produced the first continuous, global profile retrievals
of tropospheric ozone. Similar observations are now available from other satellite
instruments, such as the Infrared Atmospheric Sounding Interferometer (IASI).
Assimilating these data into atmospheric models provides a powerful means to5

obtain an improved understanding of the processes controlling tropospheric ozone.
Parrington et al. (2008) was the first to assimilate the TES ozone profile retrievals, but
they did not account for horizontal correlations in the background error.

We propose here a computationally efficient approach for constructing (background)
error covariances that account for spatial correlations in both horizontal and vertical10

directions, and assess its impact on the assimilation of tropospheric ozone profiles
from TES. The construction is based but not restricted to the ansatz of exponential
decay of error correlations. The correlation lengths in the latitudinal, longitudinal, and
vertical directions can be specified according to the application requirements. Due
to the large number of state variables an explicit representation of the full background15

covariance matrix is impractical. The proposed strategy constructs a multi-dimensional
correlation matrix from tensor products of one-dimensional correlation matrices. This
avoids the explicit construction and storage of full covariance matrices, and allows the
needed linear algebra operations to be performed very efficiently.

The paper is organized as follows. Section 2 reviews variational data assimilation20

techniques, and Sect. 3 presents the GEOS-Chem global chemical transport model.
The algorithm for constructing multidimensional covariance matrices is discussed in
Sect. 4. Section 5 presents assimilation results of TES ozone profiles with the global
chemical transport model GEOS-Chem, and illustrates the benefits of nondiagonal
covariances in both three and four dimensional variational data assimilation settings.25
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2 Variational data assimilation

Variational methods solve the data assimilation problem in an optimal control
framework (Sasaki, 1958; Le Dimet and Talagrand, 1986; Courtier and Talagrand,
1987; Lions, 1971). Specifically, they attempt to find the control variable values (e.g.,
initial conditions) which minimize the discrepancy between the model forecast and5

observations; the minimization is constrained by the governing dynamic equations.
In this discussion, for simplicity of presentation, we focus on discrete models (in time
and space) where the initial conditions are the control variables.

Data assimilation combines the following three sources of information.

1. The apriori, or background state xb represents the best estimate of the true state
xt available before any measurements are taken. This estimate is assumed
unbiased, and the random background (estimation) errors εb are typically
assumed to have a normal probability density with a background error covariance
matrix B

εb =xb−xt ∈N (0,B). (1)

2. The model encapsulates our knowledge about physical and chemical laws that
govern the evolution of the system. The model evolves an initial state x0 ∈Rn at
the initial time t0 to future state values xi ∈Rn at future times ti ,

xi =Mt0→ti (x0) . (2)

The size of the state space in realistic chemical transport models is very large.10

For example, a global chemical transport model with 2◦×2.5◦ horizontal resolution
has n∼108 variables.

3. Observations xobs
i ∈Rm of the state are taken at times ti , 1=1,...,N

xobs
i =H(xi )+εobs

i . (3)
1788
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The observation operator H maps the state space onto the observation space.
In many practical situations H is a highly nonlinear mapping (e.g., with satellite
observation operators). Many times the observations are sparsely distributed,
and the number of observations is small compared to the dimension of the state
space, m�n.5

The observations are corrupted by measurement and representativeness errors
εobs
i . The observation errors at each time are assumed to be independent of

background errors, and independent of the observation errors at other times.
They are typically assumed to have a normal distribution with mean zero and
covariance Ri ,

εobs
i ∈N (0,Ri ). (4)

Based on these three sources of information data assimilation computes the posterior
estimate xa of the true state; xa is called the “analysis”.

2.1 Three dimensional variational (3D-Var) data assimilation

In the 3D-Var data assimilation the observations (3) are considered successively at
times t1,...,tN . The background state (i.e., the best state estimate at time ti ) is given
by the model forecast, starting from the previous analysis (i.e., best estimate at time
ti−1):

xb
i =Mti−1→ti

(
xa
i−1

)
.

The discrepancy between the model state xi and observations at time ti , together with
the departure of the state from the model forecast xb

i , are measured by the 3D-Var cost
function:

J (xi )=
1
2

(
xi −xb

i

)T
B−1

(
xi −xb

i

)
+

1
2

(
H(xi )−xobs

i

)T
R−1

i

(
H(xi )−xobs

i

)
(5)
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While in principle a different background covariance matrix should be used at each
time (as the structure of the error correlations evolve with model dynamics and
with assimilation), in practice the same matrix is re-used throughout the assimilation
window. The 3D-Var analysis is computed as the state which minimizes (5)

xa
i =argmin J (xi ). (6)

Typically a gradient-based numerical optimization procedure is employed to solve (6).
The gradient ∇J of the cost function (5) is

∇J (xi )=B−1
(

xi −xb
i

)
+ (H′(xi ))

T R−1
i

(
H(xi )−xobs

i

)
(7)

Note that the gradient requires to computation of the linearized observation operator
H′ about the current state.

Preconditioning can be used to improve convergence of the numerical optimization
problem (6). A change of variables is performed, for example, by shifting the state and
scaling it with the square root of covariance:

x̂i =B1/2
(

xi −xb
i

)
, (8)

The optimization is then carried out on the new variables x̂i .

2.2 Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (3) at all times5

t1,...,tN are simultaneously considered. The control parameters are the initial
conditions x0; they uniquely determine the state of the system at all future times via the
model equation (2).

The discrepancy between model predictions and observations at all future times
t1,...,tN , together with the departure of the initial state from the background state, are

1790

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
3, 1783–1827, 2010

Non-diagonal
background error

covariance matrices
for data assimilation

K. Singh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

measured by the 4D-var cost function:

J (x0)=
1
2

(
x0−xb

0

)T
B−1

(
x0−xb

0

)
+

1
2

N∑
i=1

(
H(xi )−xobs

i

)T
R−1

i

(
H(xi )−xobs

i

)
(9)

Note that the departure of the initial conditions from the background is weighted by the
inverse background covariance matrix, B−1, while the differences between the model
predictions H(xi ) and observations xobs

i are weighted by the inverse observation error
covariances, R−1

i .
The 4D-Var analysis is computed as the initial condition which minimizes (9) subject

to the model equation constraints (2)

xa
0 =argmin J (x0) subject to (2). (10)

The model (2) propagates the optimal initial condition (9) forward in time to provide the5

analysis at future times, xa
i =Mt0→ti

(
xa

0

)
.

The optimization problem (10) is solved numerically using a gradient-based
technique. The gradient of (9) reads

∇J (x0)=B−1
(

x0−xb
0

)
+

N∑
i=1

(
∂xi

∂x0

)T

(H′(xi ))
T R−1

i

(
H(xi )−xobs

i

)
(11)

The 4D-Var gradient requires not only the linearized observation operator H′ =dH/dx,
but also the transposed derivative of future states with respect to the initial conditions.
The 4D-Var gradient can be obtained effectively by forcing the adjoint model with
observation increments, and running it backwards in time. The construction of an10

adjoint model requires considerable effort, time, and know-how.
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3 GEOS-Chem

In this paper we specifically consider GEOS-Chem (http://acmg.seas.harvard.edu/
geos), a global three-dimensional chemical transport model (CTM) driven by
assimilated meteorological fields from Goddard Earth Observing System(GEOS-4)
at the NASA Global Modeling and Assimilation Ofice (GMAO). The model was first5

described in (Bey et al., 2001). GEOS-Chem accounts in detail for emissions from both
natural and anthropogenic sources, for gas phase chemistry, aerosol processes, long
range transport of pollutants, troposphere-stratosphere exchanges, etc. GEOS-Chem
is being widely used by research groups world-wide for performing global atmospheric
chemistry studies.10

The GEOS-Chem Adjoint system (http://wiki.seas.harvard.edu/geos-chem/index.
php/GEOS-Chem Adjoint) has been developed through a joint effort of groups at
Virginia Tech, University of Colorado, Caltech, Jet Propulsion Laboratory, and Harvard
(Henze et al., 2007; Singh et al., 2009a,b; Eller et al., 2009). The system can perform
adjoint sensitivity analyses and 4D-Var chemical data assimilation. Inverse modeling15

studies with GEOS-Chem adjoint are presented in (Kopacz et al., 2009; Henze et al.,
2009).

4 Construction of the background error covariance matrix

A correct characterization of the background errors is necessary for obtaining a
meaningful analysis, i.e., for the success of the data assimilation procedure. Under the20

usual assumption that the background errors are normally distributed their probability
density is described by the background state xb and the background error covariance
matrix B. In variational data assimilation both xb and B enter directly into the
formulation of the cost function; errors in their specification directly impact the analysis
result (Daescu, 2008).25

1792

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://acmg.seas.harvard.edu/geos
http://acmg.seas.harvard.edu/geos
http://acmg.seas.harvard.edu/geos
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint


GMDD
3, 1783–1827, 2010

Non-diagonal
background error

covariance matrices
for data assimilation

K. Singh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

A non-diagonal background error covariance matrix allows the information from local
observations to spread out in space to contribute to corrections of state variables
in neighboring locations; similarly, it allows observations of certain components of
the state vector to contribute to corrections of other components. This spread of
information results in a smooth analysis state, and allows different sets of observations5

to complement each other.
Despite these advantages, most chemical data assimilation studies to date have

employed diagonal background covariances. Little work has been devoted to date to
modeling off-diagonal terms (Chai et al., 2006; Constantinescu et al., 2007a). This is
due to a number of practical difficulties that arise in the construction of background10

covariance matrices. The large number of state variables make the construction
and storage of full covariance matrices impractical. Ensembles can be employed to
estimate error correlations; however, the number of ensemble members is necessarily
very small and only low rank approximations of the covariance matrix can be obtained.
Localization is often employed to remove spurious correlations and to improve the rank15

of the resulting matrix (Gaspari and Cohn, 1999).
We next discuss the proposed approach to constructing a background error

covariance matrix B that accounts for both vertical and horizontal correlations without
explicitly constructing the full covariance matrix. We explain the construction of the
matrix in the two-dimensional case, i.e., for capturing horizontal correlations; the20

extensions to correlations in three dimensions and to correlations among multiple state
variables are immediate. Our target application is global chemical data assimilation
using GEOS-Chem.

Consider a uniform latitude-longitude grid and denote by x the longitude and by y the
latitude level. A grid point (xi ,yj ) has longitude coordinate xi , i = 1,...,nx, and latitude
coordinate yj , i = 1,...,ny . The state vector contains the state values at all gridpoints
ordered latitude-first:

grid order=
{

(x1,y1),...,
(
x1,yny

)
,(x2,y1),...,

(
x2,yny

)
,
(
xnx ,y1

)
,...,

(
xnx ,yny

)}
. (12)
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4.1 Directional error correlation matrices

The one-dimensional correlation between errors at two locations (xi ,yk) and (xj ,yk)
situated at the same latitude yk is modeled as

(
C̃k

x

)
i ,j

= corr
(
(xi ,yk),

(
xj ,yk

))
=e

−
dist((xi ,yk ),(xj ,yk))2

`2
x ; i ,j =1,...,nx ; k =1,...,ny ;

(13)

where `x is the correlation distance in the longitude direction. For a uniform lat-lon
grid the distance between xi and xj depends only on min(|i − j |,nx − |i − j |). This
distance also depends on the yk ; for this reason Eq. (13) defines a different longitudinal
correlation matrix C̃k

x ∈Rnx×nx for each latitude yk . Due to the periodicity along each5

latitude circle the point x1 is strongly correlated with both x2 and xnx , etc. The
periodicity is captured by the distance function in (13).

Similarly, the one-dimensional correlation between errors at two locations (xk ,yi ) and
(xk ,yj ) situated at the same longitude xk is modeled as

(
C̃k

y

)
i ,j

= corr
(
(xk ,yi ),

(
xk ,yj

))
=e

−
dist((xk ,yi ),(xk ,yj ))2

`2
y , i ,j =1,...,ny ; k =1,...,ny ;

(14)

where `y is the correlation distance in the latitude direction. Equation (14) defines

a single latitudinal correlation matrix C̃y ∈ Rny×ny . For a uniform lat-lon grid this
correlation matrix is the same for each longitude xk ; consequently the superscript k10

is dropped. To simplify the construction the correlations due to the periodicity along
a meridional circle are ignored. Otherwise, error correlations across the poles would
lead to correlations between errors at all longitudes; such cross-correlations are not
captured by (14).
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The cost function and gradient calculations described in Eqs. (5), (7), (9), and (11)
require the inverse of the background error covariance matrix; this involves the inverses
of the correlation matrices in longitudinal and latitudinal directions. The construction of
the directional correlation matrices C̃x and C̃y does not guarantee that they are non-
singular. To avoid a possible singularity we take a convex combination between the
identity matrix and tensor product correlations as follows:

Ck
x =θx Inx×nx + (1−θx) C̃k

x , (15)

and

Ck
y =θy Iny×ny +

(
1−θy

)
C̃k

y . (16)

The above procedure brings a shift in the spectrum and ensures the positive
definiteness of Ck

x and Ck
y . In all our experiments both θx and θy are chosen to be

equal to 0.2.
The longitudinal correlation matrix between all the points on the two-dimensional grid

(12) can be constructed from the one-dimensional longitudinal correlation matrices as
follows

C
1:ny
x ⊗Iny×ny =





(
C1

x

)
1,1

0 ··· 0

0
(
C2

x

)
1,1

··· 0

...
...

. . .
...

0 0 ···
(
C

ny
x

)
1,1

 ···



(
C1

x

)
1,nx

0 ··· 0

0
(
C2

x

)
1,nx

··· 0

...
...

. . .
...

0 0 ···
(
C

ny
x

)
1,nx


...

. . .
...

(
C1

x

)
nx,1

0 ··· 0

0
(
C2

x

)
nx,1

··· 0

...
...

. . .
...

0 0 ···
(
C

ny
x

)
nx,1


···



(
C1

x

)
nx,nx

0 ··· 0

0
(
C2

x

)
nx,nx

··· 0

...
...

. . .
...

0 0 ···
(
C

ny
x

)
nx,nx




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With some abuse of notation we extend the use of the Kronecker product symbol ⊗ in
the above equation in order to highlight the structure of the two-dimensional longitudinal
correlation matrix.

Similarly, the latitudinal correlation matrix between all the points on the two-
dimensional grid (12) can be constructed from the one-dimensional latitudinal
correlation matrices as follows

Inx×nx ⊗Cy =




(
Cy

)
1,1

(
Cy

)
1,2 ···

(
Cy

)
1,ny(

Cy
)

2,1

(
Cy

)
2,2 ···

(
Cy

)
2,ny

...
...

. . .
...(

Cy
)
ny ,1

(
Cy

)
ny ,2

···
(
Cy

)
ny ,ny

 ···


0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0


...

. . .
...

0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0

 ···


(
Cy

)
1,1

(
Cy

)
1,2 ···

(
Cy

)
1,ny(

Cy
)

2,1

(
Cy

)
2,2 ···

(
Cy

)
2,ny

...
...

. . .
...(

Cy
)
ny ,1

(
Cy

)
ny ,2

···
(
Cy

)
ny ,ny




The structure of the one-dimensional correlation matrices is represented in Fig. 1.

The longitudinal correlation Ck
x is represented at latitude yk = 20◦ N; note that due to5

the periodicity along each latitude circle not only the elements near the diagonal, but
also the elements in the corners of the matrix have non-zero values. The latitudinal
correlation Cy does not account for periodicity (along each meridian the grids 1 and ny
correspond to the South and to the North pole, respectively).

Figure 2 represents contour lines of the longitudinal correlation Cx for points at10

different latitudes. The correlation length `x is short (top panel), medium (middle
panel), and large (bottom panel). Note that the same correlation length `x translates
into a larger number of correlated grid points at higher latitudes.
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4.2 Two-dimensional covariance matrices

Formally the full background error correlation matrix C∈Rnxny×nxny (which accounts for
both latitudinal and longitudinal correlations) is constructed via the following relation

C=
(
C

1:ny
x ⊗Iny×ny

)
·
(
Inx×nx ⊗Cy

)
. (17)

Note that this (huge) matrix is never explicitly formed. One needs to form and store only
ny one-dimensional longitudinal correlation matrices (13) and a single one-dimensional
latitudinal correlation matrix (14). Note that the diagonal entries of the tensor product
matrix (17) are all equal to one. The tensor product matrix (17) is not symmetric; with5

some (more) abuse of notation we will continue to call it a correlation matrix.
A symmetric version of the two-dimensional correlation matrix can be constructed as

follows. Any symmetric positive definite matrix C has a matrix square root C1/2 such
that

C=C1/2CT/2.

The matrix square root is not uniquely defined; in particular it can be symmetric or not
depending on the decomposition method used as described in Eqs. (21) and (22). Let(
Inx×nx ⊗Cy

)1/2
be a square root of the longitudinal correlation matrix. The symmetric

two-dimensional correlation matrix can be constructed as:

Csym =
(
Inx×nx ⊗Cy

)1/2
·
(
C

1:ny
x ⊗Iny ·ny

)
·
(
Inx×nx ⊗Cy

)T/2
. (18)

Let σi ,j be the standard deviation of the error at location (xi ,yj ) and

Σ=diag1≤i≤nx,1≤j≤ny σi ,j

the diagonal matrix with all standard deviations at all grid points ordered according to
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(12). The two-dimensional covariance matrix is constructed from the correlation matrix
(17) by scaling it from left and right with the diagonal matrix of standard deviations Σ

B=Σ ·C ·Σ=Σ ·
(
C

1:ny
x ⊗Iny×ny

)
·
(
Inx×nx ⊗Cy

)
·Σ. (19)

With some abuse of the nomenclature we call the non-symmetric B in (19) a covariance
matrix.

Similarly, a symmetric version of the covariance matrix can be constructed from the
symmetric correlation (18) as follows:

Bsym =Σ ·Csym ·Σ=Σ ·
(
Inx×nx ⊗Cy

)1/2(
C

1:ny
x ⊗Iny×ny

)
·
(
Inx×nx ⊗Cy

)T/2
·Σ. (20)

4.3 Efficient covariance matrix function calculations

The symmetric positive definite one-directional longitudinal correlation matrix has a

matrix square root C1/2
y . A symmetric square root, the inverse of the symmetric square

root, and the matrix inverse can be obtained via the singular value decomposition
(SVD)

Cy =UΘUT ,
(
Cy

)r =UΘrUT , for r ∈
{

1
2
,−1

2
,−1

}
. (21)

while a nonsymmetric square root can be obtained via a Cholesky decomposition

Cy =LyL
T
y , C1/2

y =Ly . (22)

By the properties of the Kronecker product we have that the square root, the inverse
square root, and the inverse of the two-dimensional longitudinal correlation matrix can
be constructed in terms of the same matrix functions applied to the one dimensional
longitudinal correlations:(
Inx×nx ⊗Cy

)r
= Inx×nx ⊗

(
Cy

)r
for r ∈

{
1
2
,−1

2
,−1

}
. (23)
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Consequently, the symmetric covariance (20) can be implemented as

Bsym =Σ ·
(
Inx×nx ⊗

(
Cy

)1/2
)
·
(
C

1:ny
x ⊗Iny×ny

)
·
(
Inx×nx ⊗

(
Cy

)T/2
)
·Σ

using either of the one-dimensional square roots.
Similarly, different powers of each one-dimensional latitudinal correlation matrix can

be obtained via a singular value decomposition:

C
1:ny
x =VΓVT ,

(
C

1:ny
x

)r
=VΓrVT , for r ∈

{
1
2
,−1

2
,−1

}
.

By the properties of the extended Kronecker product we have that the square root,
the inverse square root, and the inverse of the two-dimensional latitudinal correlation
matrix can be constructed in terms of the same matrix functions applied to the one
dimensional latitudinal correlations:(
C

1:ny
x ⊗Iny×ny

)r
=
(
C

1:ny
x

)r
⊗Iny×ny for r ∈

{
1
2
,−1

2
,−1

}
. (24)

We now use these relations to build functions of the covariance matrices. The
inverse of the background covariance is needed in the formulation of the variational
cost function. The inverse of the non-symmetric covariance (19) is

B−1 =Σ−1 ·
(
Inx×nx ⊗

(
Cy

)−1
)
·
((

C
1:ny
x

)−1
⊗Iny×ny

)
·Σ−1. (25)

The inverse of the symmetric covariance (20) matrix is

(
Bsym)−1 =Σ−1 ·

(
Inx×nx ⊗

(
Cy

)−T/2
)((

C
1:ny
x

)−1
⊗Iny×ny

)
·
(
Inx×nx ⊗

(
Cy

)−1/2
)
·Σ−1.

(26)
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Finally, the symmetric covariance (20) has a (non-symmetric) matrix square root

(
Bsym)1/2 =Σ ·

(
Inx×nx ⊗

(
Cy

)1/2
)
·
((

C
1:ny
x

)1/2
⊗Iny×ny

)
. (27)

This is built out of tensor products involving the square roots of the one-dimensional
correlation matrices. The inverse of the square root matrix (27) is

(
Bsym)−1/2 =

((
C

1:ny
x

)−1/2
⊗Iny×ny

)
.
(
Inx×nx ⊗

(
Cy

)−1/2
)
·Σ−1· (28)

4.4 Efficient linear algebra operations involving the covariance matrix

The computations associated with data assimilation involve linear algebra operations
with the covariance B. Matrix vector operations can be performed effectively by
exploiting structure of B. Consider a vector of concentrations (or concentration errors)
ui ,j - indexed by latitude and longitude, but stored as a state vector with the convention5

(12).
Consider the non-symmetric covariance matrix. The covariance matrix-vector

product v =B ·u can be computed in stages. Each stage produces a temporary result
which is a two-dimensional vector.

Expression Computation

α=Σ ·u αi ,j =σi ,jui ,j , for i =1,··· ,nx,j =1,··· ,ny .

β=
(
Inx×nx ⊗Cy

)
·α βi ,1:ny =Cy ·αi ,1:ny , for i =1,··· ,nx.

γ =
(
C

1:ny
x ⊗Iny×ny

)
·β γ1:nx,j =Cj

x ·β1:nx,j , for j =1,··· ,ny .

v =Σ ·γ vi ,j =σi ,j γi ,j , for i =1,··· ,nx,j =1,··· ,ny .

(29)

1800

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
3, 1783–1827, 2010

Non-diagonal
background error

covariance matrices
for data assimilation

K. Singh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Similarly the inverse covariance matrix-vector product v =B−1 ·u can be computed
as follows

Expression Computation
α=Σ−1 ·u αi ,j =ui ,j/σi ,j , for i =1,··· ,nx,j =1,··· ,ny .

β=
(
C

1:ny
x ⊗Iny×ny

)−1
·α SolveCj

x ·β1:nx,j =α1:nx,j , for j =1,··· ,ny .

γ =
(
Inx×nx ⊗Cy

)−1
·β SolveCy ·γi ,1:ny =βi ,1:ny , for i =1,··· ,nx.

v =Σ−1 ·γ vi ,j =γi ,j/σi ,j , for i =1,··· ,nx,j =1,··· ,ny .
(30)

Similar procedures can be developed for the symmetric covariance time vector
products.

The square root (27) times vector product v =
(
Bsym)1/2

u is computed as:

Expression Computation

α=
((

C
1:ny
x

)1/2
⊗Iny×ny

)
·u γ1:nx,j =Cj

x ·β1:nx,j , for j =1,··· ,ny

β=
(
Inx×nx ⊗

(
Cy

)1/2
)
·α βi ,1:ny =C1/2

y ·αi ,1:ny , for i =1,··· ,nx

v =Σ ·β vi ,j =σi ,j γi ,j , for i =1,··· ,nx,j =1,··· ,ny .
(31)

All the above implementations are based on repeated operations involving the
one-dimensional covariance matrices and their square roots. These operations5

are very efficient since all the linear algebra operations (matrix-vector multiplication,
SVD, Choesky factorization, the solution of linear systems) are performed on small
dimensional matrices (nx×nx or ny ×ny ).
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5 Numerical experiments

For numerical experiments, we employ GEOS-Chem v7-04-10 adjoint code (Singh
et al., 2009b), capable of performing both 3D-Var and 4D-Var data assimilations
with real data. We assimilate Tropospheric Emission Spectormeter (TES) satellite
ozone profile retrievals into the model and validate the generated analyses through5

an independent observation dataset provided by direct ozone profile measurements
from Ozonesondes. The numerical optimization method used in all experiments
is the limited memory bound-constrained BFGS (Zhu et al., 1997). This quasi-
Newton approach has become the “gold standard” in solving large scale chemical data
assimilation problems (Sandu et al., 2005).10

5.1 Experimental setting

Simulations with GEOS-Chem v7 adjoint can be carried out at 4◦×5◦ and 2◦×2.5◦

resolutions. We have used 4◦ × 5◦ resolution in all our experiments. There are
46×72 latitude-longitude grid boxes at this resolution, and 55 vertical levels; near the
equator and at ground level each grid box covers an area of about 400 km×500 km.15

The current GEOS-Chem model does not capture well the dynamics of the upper
troposphere and of the stratosphere. Therefore, we performed data assimilation for
only the first 23 model levels (for up to about 50 hPa). The model has been modified to
use the linearized ozone (linoz) scheme for a better estimation of ozone exchanges
at troposphere-stratosphere boundary. This scheme has been incorporated in the20

standard GEOS-Chem model (starting with release v8-02-03).
The 3D-Var data assimilation experiments were performed over the months of July

and August 2006, starting at 00:00(GMT) on 1 July. The TES satellite data was read
once every 4 h of simulation; the observation operator called at model time t (h) reads
in all the measurements collected within the interval t−2 (h) to t+2 (h). 3D-Var data25

assimilation treats all observations in this interval as instantaneous, and assimilates
them in the same optimization run. In all our 3D-Var experiments, we performed
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8 iterations per analysis since the cost function decreased significantly within the
first few iterations. It is important to note that 3D-Var does not involve any model
adjoint calculations; gradients require only the adjoint of the observation operator. The
optimization adjusts ozone concentrations.

The 4D-Var data assimilation experiments were performed over a 5 day assimilation5

window starting at 00:00(GMT) on 1 August 2006 and ending at 00:00(GMT) on
6 August of the same year. The background initial conditions were generated through
a free GEOS-Chem model run. There were 12 optimization iterations performed in
order to improve the ozone initial condition. Each iteration during 4D-Var assimilation
includes a forward model and a backward model adjoint run. TES satellite profile10

retrievals are read every 4 h during the model adjoint run, and the cost function and
adjoint gradients accumulate the impact of all 4 h data sets throughout the assimilation
window.

NOTE: the TES data can be biased by as much as 10% (Nassar et al., 2008). We
removed this bias as estimated by (Nassar et al., 2008) before assimilating the data.15

5.1.1 Computational costs

As described in Sect. 1, the construction of the background error covariance matrix
B impacts the result of the data assimilation. If one considers no correlation among
different model grid points, or among different chemical species, B turns out to be
diagonal. However, this approximation is inaccurate as the ozone errors are highly20

correlated spatially (Constantinescu et al., 2007a,c,d) and correlated to errors in other
chemical species; this correlation is not discussed in this paper. In Sect. 4, we have
introduced an efficient methodology to construct a non-diagonal background error
covariance matrix, B. Its inverse, B−1, needed in 3D-Var (5) and in 4D-Var (9) cost
function formulations, can be obtained either via a Cholesky decomposition or via a25

singular value decomposition. (Note that by the “computation of the inverse” we mean
the solution of a linear system).
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Table 1 illustrates the computational cost of data assimilation compared to the cost
of free running model for a 24 h simulation. All the simulations are performed on a Dell
Precision T5400 workstation with 2 quadcore Intel(R) Xeon(R) processors with clock
speed 2.33 GHz and a RAM of 16 GB shared between the two processors. Performing
3D-Var with a non-diagonal error covariance matrix whose inverse is computed by5

Cholesky decomposition is only about 1.4% more expensive than the 3D-Var with
a diagonal covariance matrix. The calculation of the inverse via the Cholesky
decomposition is considerably more efficient than the calculation via a singular value
decomposition, as expected.

3D-Var framework is built on top of GEOS-Chem v7 package which uses Sparse10

Matrix Vectorized GEAR (SMVGEAR) solver for chemistry. However, to construct the
adjoint of chemistry required by the 4D-Var, we implemented KPP solver (Damian
et al., 2002) into GEOS-Chem which not only provides a suite of high performance
chemical solvers to choose from but also generates automatically the continuous and
discrete adjoint codes (Daescu, 2000, 2003; Sandu et al., 2003). A detailed discussion15

on interfacing KPP with GEOS-Chem and comparison with native SMVGEAR solver
for accuracy and computational performance is presented in (Eller et al., 2009). As
pointed out in (Henze et al., 2007), the computational cost of Rosenbrock solver
increases significantly with the tolerance levels; higher tolerances use smaller internal
time steps requiring more computation. In our experiments, we have set RTOL=10−3

20

and ATOL=10−2 to achieve moderate to high accuracy.
The 4D-Var assimilation is considerably more expensive than the 3D-Var. The use

of the non-diagonal B (with Cholesky decomposition) in 4D-Var causes a minimal to
zero increase in the computational time when compared to the diagonal B case.

5.1.2 Tropospheric Emission Spectrometer (TES) observations25

The Tropospheric Emission Spectrometer (TES, http://tes.jpl.nasa.gov), aboard the
NASA Aura spacecraft launched in 2004, measures spectrally resolved outgoing
thermal radiation from 5 to 15 microns. These spectra are used to infer the vertical
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distribution of atmospheric trace gases through a non-linear optimal estimation
procedure Bowmann et al. (2006). In this work we assimilate the retrieved ozone
vertical profiles. Figure 3 shows the location of TES profiles for two days.

A-priori information about the vertical concentration profile of the species of interest
is needed to solve the retrieval inverse problem (the prior information does not come5

from the measurement). Let xprior be the prior vertical ozone concentration profile
(in volume mixing ratio units), and let zprior = logxprior. Let zradiance (=logxtrue) be the
atmospheric profile as resulting directly from the radiances.

The vertical ozone profile retrieval can be expressed according to the formula

ẑ= zprior+A
(

zradiance−zprior
)
+Gη, x̂=exp

(
ẑ
)
. (32)

Here A∈RP×P is the averaging kernel matrix, G is the gain matrix, and η is the spectral
measurement error (assumed to have mean zero and covariance Sη). More details can10

be found in Jones et al. (2003); Worden et al. (2004); Bowmann et al. (2006).
The corresponding TES observation operator 3 is linear with respect to the logarithm

of the concentrations, but nonlinear with respect to the concentration profile:

H(x)= zprior+A
(

log(L(x))−zprior
)

where L is an interpolation operator that transforms x from the GEOS-Chem N-level
vertical grid to the TES profile retrieval P -level grid.

For this reason several chemical data assimilation studies based on TES retrieved
profiles (Jones et al., 2003; Bowmann et al., 2006; Parrington et al., 2009) have opted
to perform the suboptimal Kalman filtering step in the logarithm of the concentrations:

logxa = logxf+K
(

ẑ−H
(

xf
))

.

For variational data assimilation the forcing calculation is carried out in
concentrations. For this reason, an adjoint of the observation operator needs to be
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derived to update the gradients as described in Eqs. (7) and (11)

(H′(x))T ·v =
(

∂
∂x

(
A log(L(x))

))T

·v =
(
∂L
∂x

)T

·


(Lx)−1

0 0 ··· 0
0 (Lx)−1

1 ··· 0
...

...
. . .

...
0 0 ··· (Lx)−1

P

 ·AT ·v

Here, (H′(x))T is a matrix and v =R−1
(
H(x)−xobs

)
. The TES averaging kernel A

is usually a non-symmetric matrix, and the result of AT · v is fed to the interpolation
operator to construct the diagonal matrix with the i -th element being 1/(Lx)i . The term(
∂L/∂x

)T
is the adjoint of the interpolation operator and brings entities from the TES

profile retrieval domain back to the GEOS-Chem model domain.5

5.1.3 Ozonesonde observations

For validation, we use the ozonesonde profiles measured by the INTEX Ozonesonde
Network Study 2006 (IONS-6) (http://croc.gsfc.nasa.gov/intexb/ions06.html Thompson
et al., 2007a,b) for the month of August, assuming that these measurements provide
values close to the true state of the atmosphere. The ozonesonde observations are10

not used in data assimilation, and therefore provide an independent data set against
which the analysis results are validated. There are 418 ozonesondes launched from
22 stations across North America as shown in the Fig. 3. A detailed description of the
number of ozonesondes launched per station with longitude and latitude information
can be found in (Parrington et al., 2008).15

5.2 Impact of non-diagonal background error covariance in 3D-Var assimilation

In order to demonstrate the benefits of including spatial correlations in the background
error covariance matrix, we first compare the tropospheric ozone concentrations
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generated through 3D-Var analysis against the ozonesonde observations. The
left panel of Fig. 4 shows the forecast, the analysis and the ozonesonde ozone
concentrations averaged over all ozonesonde launches in July and August 2006. The
model ozone fields are interpolated to the space-time location of each ozonesonde
launch for comparison. The center panel of Fig. 4 shows the mean relative5

errors in model predicted ozone concentrations (the relative differences between the
forecast/analysis profiles and the ozonesonde profiles), averaged over all ozonesonde
launches. The rightmost panel provides an estimate of the variability of ozonesonde
against the variability of ozone concentration predicted through different assimilation
techniques.10

In all our experiments, correlation lengths in latitudinal direction varied in proportion
with correlation lengths in longitudinal direction. A value of 500 for `x implicitly
indicates `y is 400, and refers to correlation between two neighboring grid boxes both
in East/West and North/South directions.

The results indicate that 3D-Var is sensitive to the correlation length used in the15

construction of the background error covariance matrix (a zero correlation length
corresponds to a diagonal matrix). Note that the assimilation results using a
non-diagonal B with higher correlation length are superior to those using a diagonal
B in the lower and mid troposphere. Above 180 hPa, however, the errors in the
assimilated ozone fields are larger for the non-diagonal case. This could be attributed20

to the fact that a uniform correlation length across all vertical levels is only a very
coarse approximation of the real error correlations. Higher correlation lengths might be
smearing off the ozone in the upper troposphere leading to an overestimate.

To further understand the effect of using non-diagonal background error covariance
matrices in 3D-Var we consider the corrections obtained with different correlation25

lengths (i.e., the differences between the assimilated ozone fields and forecast, or
the non-assimilated ozone fields). Panels (a)–(d) of Fig. 5 show the global spatial
distribution plots of these differences. The assimilation with non-diagonal covariance
matrices generate much smoother analyses; note that the point-wise values of the
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increments is smaller, and that the corrections are distributed over larger areas. Panels
(e)–(f) of Fig. 5 compare directly the 3D-Var analyses obtained using a diagonal B and
a non-diagonal B with a correlation length of 1000 km. The corrections in the non-
diagonal case are spread are less aggressive and smoother.

5.3 Impact of non-diagonal background error covariance in 4D-Var assimilation5

We now study the effects of using non-diagonal background error covariance matrix in
4D-Var data assimilation. We compare the analyses ozone concentrations generated
by 4D-Var with different background error correlation lengths against the ozonesonde
observations. The left panel of Fig. 6 shows the forecast, analysis and ozonesonde
measured ozone concentrations averaged over the two months assimilation window.10

The model ozone fields are interpolated to the space-time location of each ozonesonde
launch for comparison. The center panel shows the relative errors of model predictions
with respect to ozonesonde data, averaged over all ozonesonde launches. The right
panel provides the standard deviations of these errors.

The results indicate that 4D-Var is also sensitive to the structure of the background15

error covariance matrix. The use of non-diagonal correlations leads to improved
analyses. The best analysis is obtained with a correlation length of 500 km (about
one grid cell near the equator). Note that 4D-Var accounts for all the data available
within the assimilation window.

To better understand the impact of different background error correlation lengths20

on 4D-Var assimilation, we present in Fig. 7 the differences in ozone concentrations
generated by the free model run and by the 4D-Var assimilation using diagonal and
non-diagonal B. The use of a non-diagonal B with a properly-chosen correlation
length not only provides a better estimate but also helps generate a smoother analysis.
This is due to the fact that the non-diagonal terms control how the information from25

observations is distributed spatially. The panels (e)–(f) of Fig. 7 compare directly the
4D-Var analyses obtained using a diagonal B and a non-diagonal B with a correlation

1808

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
3, 1783–1827, 2010

Non-diagonal
background error

covariance matrices
for data assimilation

K. Singh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

length of 500 km; the large localized corrections over North America provided by the
diagonal B are smoothened out when the non-diagonal B is employed.

5.4 Determining the correlation length through experiments

The correlation length is a very important parameter that impacts the quality of the
assimilation when using non-diagonal error covariance matrix. The value of the5

correlation length depends on various factors such as the lifetime of the tracer under
consideration, the grid resolution, the pressure level, and the wind velocity. We
propose a method to determine experimentally a value of the correlation length that
is appropriate for the model and data at hand.

Recall the construction of one dimensional correlation matrices in Eqs. (13) and (14).10

Our aim is to determine the number of grid cells (in each direction) where the errors
are correlated. For this we use adjoint sensitivity analysis. Specifically, we initialize
the adjoint variable to 1 in a specific cell at the end of a given window (and to zero
everywhere else), perform a backwards adjoint simulation, and analyze the adjoint
fields at the beginning of the window. The error in the specific cell is correlated with15

errors in those grid cells where the adjoint values are above 1/e. The length of the
time window depends on the time scale of the model under consideration.

Here we consider a time window of 8 h. We run the forward GEOS-Chem model
starting on 1 July, 00:00 GMT for 20 h. The adjoint variable for ozone at 20:00 GMT are
initialized to 1 in a subset of the grid points ((i ,j ) chosen such that i mod10= 1 and20

j mod10 = 1). Adjoint variables for all other grid points and species are initialized
to zero. The gap in the initialization helps avoid the interactions between adjoint
“plumes” initialized at different locations. The ozone adjoint variable field is analyzed at
12:00 GMT to find out the number of grid cells where the value is greater than or equal
to 1/e. In the current setup the same correlation length is used for all for all pressure25

levels.
The procedure can be easily extended to estimate different correlation lengths for

different vertical levels and for different geographic areas. This is desirable since the
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ozone lifetime in the boundary layer is much shorter than it is in the upper troposphere;
and the wind velocities are weaker in the boundary layer than in the upper troposphere.
The chemical lifetime and the wind velocity both impact the correlation length. Based
on the above considerations we expect that the correlation length is shorter near
ground level and increases at higher altitudes.5

Figure 8 shows that the ozone adjoint variables have spread (on average) over one
to two grid cells in both longitudinal and latitudinal direction. For the 4◦×5◦ model
resolution each grid box is of size 400 km×500 km near the equator. The adjoint
sensitivity analysis indicates that the correlation lengths should be chosen in the ranges
of `x ∈[500 km, 1000 km] and `y ∈[400 km, 800 km], respectively. This confirms the10

best correlation lengths empirically observed in the data assimilation results reported
in Figs. 4 and 6.

6 Conclusions

This paper presents an efficient methodology to construct non-diagonal background
error covariance matrices for data assimilation. The two- or three-dimensional15

covariance matrices are not formed explicitly. Rather, multi-dimensional correlations
are represented by tensor products of one dimensional correlation matrices along
longitudinal and latitudinal directions. The technique can be easily extended to
include correlations in the vertical direction as well. Highly efficient linear algebra
operations are obtained by performing successive matrix-vector products, Cholesky20

decompositions, etc. with one-dimensional correlation matrices. The correlation
lengths are important parameters that need to be specified for each directional
correlation. We propose an adjoint sensitivity analysis approach to guide the choice
of proper correlation lengths; the approach implicitly accounts for factors such as
chemical activity, grid resolution, etc.25

The approach to construct non-diagonal covariance matrices has been tested using
the 3D-Var and 4D-Var data assimilation frameworks developed for GEOS-Chem. The
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experiments assimilate observations from TES satellite ozone profile retrievals, and
validate the results against an independent data set provided by IONS ozonesondes.
The change of the covariance matrix formulation in data assimilation from diagonal to
non-diagonal adds only a negligible computational overhead. In the same time, the
inclusion of spatial correlations leads consistently to improved analyses in both the5

3D-Var and the 4D-Var settings.
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Table 1. Timing results for GEOS-Chem free model run, 3D-Var and 4D-Var data assimilations
with diagonal and non-diagonal B for a 24 h simulation starting 1 July 2006.

Experiment Description CPU Time Scaled time

Free model run with SMVGEAR chemistry solver 2 min 50 sec 1.00
Free model run with KPP chemistry solver 3 min 18 sec 1.16
3D-Var with diagonal B 3 min 57 sec 1.39
3D-Var with non-diagonal B, Cholesky 4 min 00 sec 1.41
3D-Var with non-diagonal B, SVD 9 min 38 sec 3.40
4D-Var with diagonal B (per iteration) 16 min 51 sec 5.95
4D-Var with non-diagonal B, Cholesky (per iteration) 16 min 51 sec 5.95
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Fig. 1. Mesh representation of the one-dimensional longitudinal and latitudinal correlation
matrices. The latitude-longitude model grid resolution is 4◦×5◦ (about 400 km×500 km near
the equator) and the correlation lengths are `x =1500 km and `y =1200 km.
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Fig. 2. Contour lines of the longitudinal correlation Cx for points at different latitudes. The
correlation length `x is short (top panel), medium (middle panel), and large (bottom panel).
Note that the same correlation length `x translates into a different number of correlated grid
points depending on the latitude.
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Fig. 3. Ozonesonde sounding stations (triangles) used during IONS06 campaign and
AURA/TES satellite trajectory snapshots (dots) plotted over the global ozone distribution on
1 August 2006.
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Fig. 4. The impact of non-diagonal background error covariances in 3D-Var data assimilation.
Left panel: mean ozone concentrations at ozonesonde locations for 3D-Var analyses and free
model trajectories. Center panel: relative mean errors of predicted ozone concentrations with
respect to ozonesonde measurements. Right panel: standard deviation of absolute values of
errors with respect to ozonesonde measurements. The data is averaged over all ozonesonde
launches. These plots were generated from 2 months simulation from 00:00 GMT 1 July to
23:00 GMT August 2006 and compared against ozonesonde data available for the month of
August.
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and the free model run. and the free model run.

Fig. 5. Differences in global ozone concentrations at 23:00 GMT on 31 August 2006 averaged
over the first 10 GEOS-Chem vertical levels. Panels (a)–(d): differences between the 3D-Var
analysis fields and the model forecast (solution without data assimilation); the analyses use
different correlation lengths between 0 km and 1500 km.
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Fig. 5. Differences in global ozone concentrations at 23:00 GMT on August 31, 2006 averaged over the first

10 GEOS-Chem vertical levels. Panels (a)-(d): differences between the 3D-Var analysis fields and the model

forecast (solution without data assimilation); the analyses use different correlation lengths between 0 Km and

1,500 Km. Panels (e)-(f): absolute and relative differences between 3D-Var analyses using diagonal and non-

diagonal background covariance matrices.
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(e) Absolute difference between the 3D-Var (f) Relative difference between the 3D-Var
analyses using diagonal B and analyses using diagonal B and
non-diagonal B (`x =1000 km). non-diagonal B (`x =1000 km).

Fig. 5. Panels (e)–(f): absolute and relative differences between 3D-Var analyses using
diagonal and non-diagonal background covariance matrices.
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Free model run

Fig. 6. The impact of non-diagonal background error covariances on 4D-Var data assimilation.
The results shown are for a single 5-day assimilation window from 00:00 GMT August 1st
to 00:00 GMT August 6th, 2006. Left panel: mean ozone concentrations at ozonesonde
locations for 4D-Var analyses and free model trajectories. Center panel: relative mean errors
of predicted ozone concentrations with respect to ozonesonde measurements. Right panel:
standard deviation of absolute values of errors with respect to ozonesonde measurements.
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non-diagonal B (ℓx = 500 Km) and the free model run

(c) Absolute difference between the 4D-Var analysis using non-

diagonal B (ℓx = 1000 Km) and the free model run

(d) Absolute difference between the 4D-Var analysis using

non-diagonal B (ℓx = 1500 Km) and the free model run
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agonal B and non-diagonal B (ℓx = 500 Km)

(f) Relative difference between the 4D-Var analyses using di-

agonal B and non-diagonal B (ℓx = 500 Km)

Fig. 7. Differences in global ozone concentrations at 00:00 GMT on August 06, 2006 (end of assimilation window)

averaged over the first 10 GEOS-Chem vertical levels. Panels (a)-(d): differences between the 4D-Var analysis fields

and the model forecast (solution without data assimilation); the analyses use different correlation lengths between

0 Km and 1,500 Km. Panels (e)-(f): absolute and relative differences between 4D-Var analyses using diagonal and

non-diagonal background covariance matrices.
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(c) Absolute difference between the 4D-Var (d) Absolute difference between the 4D-Var
analysis using non-diagonal B (`x =1000 km) analysis using non-diagonal B(`x =1500 km)
and the free model run. and the free model run.

Fig. 7. Differences in global ozone concentrations at 00:00 GMT on 6 August 2006 (end of
assimilation window) averaged over the first 10 GEOS-Chem vertical levels. Panels (a)–(d):
differences between the 4D-Var analysis fields and the model forecast (solution without data
assimilation); the analyses use different correlation lengths between 0 km and 1500 km.
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(e) Absolute difference between the 4D-Var (f) Relative difference between the 4D-Var
analyses using diagonal B and analyses using diagonal B and
non-diagonal B (`x =500 km). non-diagonal B (`x =500 km).

Fig. 7. Panels (e)–(f): absolute and relative differences between 4D-Var analyses using
diagonal and non-diagonal background covariance matrices.
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(a) Adjoint ozone variables are initialized to one in selected

grid cells

(b) Adjoint ozone variables spread after 8 hours of backward

sensitivity run

Fig. 8. Ground level ozone adjoint variable values are initialized to one on July 1st 2006, 20:00 GMT, every tenth

grid point in longitudinal and latitudinal directions. An 8 hour backward adjoint integration spreads the adjoint

fields, and helps identify grid cells where ozone errors are correlated.

the interactions between adjoint “plumes” initialized at different locations. The ozone adjoint variable

field is analyzed at 12:00 GMT to find out the number of grid cells where the value is greater than or

equal to 1/e. In the current setup the same correlation length is used for all for all pressure levels.

The procedure can be easily extended to estimate different correlation lengths for different vertical

levels and for different geographic areas. This is desirable since the ozone lifetime in the boundary390

layer is much shorter than it is in the upper troposphere; and the wind velocities are weaker in the

boundary layer than in the upper troposphere. The chemical lifetime and the wind velocity both

impact the correlation length. Based on the above considerations we expect that the correlation length

is shorter near ground level and increases at higher altitudes.

Figure 8 shows that the ozone adjoint variables have spread (on average) over one to two grid cells395

in both longitudinal and latitudinal direction. For the 4◦×5◦ model resolution each grid box is of size

400Km × 500Km near the equator. The adjoint sensitivity analysis indicates that the correlation lengths

should be chosen in the ranges of ℓx ∈ [500Km,1000Km] and ℓy ∈ [400Km,800Km] respectively. This

confirms the best correlation lengths empirically observed in the data assimilation results reported in

Figures 4 and 6.400

6 Conclusions

This paper presents an efficient methodology to construct non-diagonal background error covariance

matrices for data assimilation. The two- or three- dimensional covariance matrices are not formed ex-

plicitly. Rather, multi-dimensional correlations are represented by tensor products of one dimensional

correlation matrices along longitudinal and latitudinal directions. The technique can be easily extended405
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Fig. 8. Ground level ozone adjoint variable values are initialized to one on July 1st 2006, 20:00 GMT, every tenth

grid point in longitudinal and latitudinal directions. An 8 hour backward adjoint integration spreads the adjoint

fields, and helps identify grid cells where ozone errors are correlated.

the interactions between adjoint “plumes” initialized at different locations. The ozone adjoint variable

field is analyzed at 12:00 GMT to find out the number of grid cells where the value is greater than or

equal to 1/e. In the current setup the same correlation length is used for all for all pressure levels.

The procedure can be easily extended to estimate different correlation lengths for different vertical

levels and for different geographic areas. This is desirable since the ozone lifetime in the boundary390

layer is much shorter than it is in the upper troposphere; and the wind velocities are weaker in the

boundary layer than in the upper troposphere. The chemical lifetime and the wind velocity both

impact the correlation length. Based on the above considerations we expect that the correlation length

is shorter near ground level and increases at higher altitudes.

Figure 8 shows that the ozone adjoint variables have spread (on average) over one to two grid cells395

in both longitudinal and latitudinal direction. For the 4◦×5◦ model resolution each grid box is of size

400Km × 500Km near the equator. The adjoint sensitivity analysis indicates that the correlation lengths

should be chosen in the ranges of ℓx ∈ [500Km,1000Km] and ℓy ∈ [400Km,800Km] respectively. This

confirms the best correlation lengths empirically observed in the data assimilation results reported in

Figures 4 and 6.400

6 Conclusions

This paper presents an efficient methodology to construct non-diagonal background error covariance

matrices for data assimilation. The two- or three- dimensional covariance matrices are not formed ex-

plicitly. Rather, multi-dimensional correlations are represented by tensor products of one dimensional

correlation matrices along longitudinal and latitudinal directions. The technique can be easily extended405
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(b) Adjoint ozone variables spread after 8 h of backward sensitivity run.

Fig. 8. Ground level ozone adjoint variable values are initialized to one on 1 July 2006,
20:00 GMT, every tenth grid point in longitudinal and latitudinal directions. An 8 h backward
adjoint integration spreads the adjoint fields, and helps identify grid cells where ozone errors
are correlated.
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