
Geosci. Model Dev. Discuss., 2, C374–C380, 2009
www.geosci-model-dev-discuss.net/2/C374/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribute 3.0 License.

Geoscientific
Model Development

Discussions

Interactive comment on “Mapping technique of
climate fields between GCM’s and ice models” by
T. J. Reerink et al.

T. J. Reerink et al.

t.reerink@uu.nl

Received and published: 21 October 2009

Response to the comments by D. Roche and an anonymous referee:

This manuscript documents in detail the technical issues of projecting and interpolating
climate fields between geographical and equidistant based coordinate systems. Com-
bined with the OBLIMAP code, in which the equations from this manuscript are literally
used, we intend to provide the ice and climate community a software package which is
easy to understand, to implement, and to extend.

Concerning the first important remark of Referee #1:

Although we indeed independently derived the oblique stereographic projection and its
inverse, we agree Snyders work should be cited and discussed. The oblique equations
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in Snyder (1987) are obtained by taking the polar projection with an additional transla-
tion to the oblique case, while in our case we directly derive the oblique case by finding
the points of intersection of several surface equations and parameter representations.
In his chapter 5 Snyder discusses partly the oblique translation with its exceptions and
their alternatives, intermediate derivations are omitted. It is hard to abstract his final
oblique stereographic equations, but we have not found a better hint to derive his equa-
tions so far. Rutt (2009), a nice example of model documentation, discusses in section
6 the mapping in Glimmer, however it does not give the details as we do and in the
latest Glimmer manual we could not find more than a reference to Snyder.

For our purpose the data should be projected on well defined and well oriented grid
planes (of any size and at any location); this requires an accurate and clear derivation.
In case of OBLIMAP any grid has the Cartesian orientation relative to the normal vector
on the spherical surface, which implies that a continuous collection of projected grid
planes over the globe can be obtained including the polar cases. With our derivation
we obtained a single set of projection equations which were successful in all eight
octants (and borders) of the spherical surface, and at the oblique poles. We think the
derivation in our appendices are clear, complete, and relatively easy to follow, and we
feel supported by the comment of D. Roche (Referee).

With the expertise of our projections, we implemented finally successfully for all eight
octants the Snyder equations in OBLIMAP. Both methods give the same results for our
applications, in case we adopt our α into the Snyder projection instead of k0. Working
with α is more intuitive, and an α for an optimal projection is estimated by OBLIMAP in
advance, so a least squared method (see Snyder p. 157) can be avoided.

We recommend our method including the derivation because it is well documented,
it concerns a direct oblique approach, it guarantees a continuous collection of well
defined Cartesian orientated projection planes over the globe, it uses an intuitive angle
α to define an optimal projection plane, and because the OBLIMAP inverse projection
is two times faster in computation avoiding the use of both arcsin and arccos which are
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vertical-asymptotic functions.

Furthermore, our direct oblique methodology might be of interest in future applications
of high accuracy: to derive an oblique stereographic projection and its inverse in case
the earth surface is represented by a geoid, or by a function even closer to the earth
topography. In that case S should be replaced, but T remains a sphere through M’.

We will improve the manuscript by discussing these Snyder related issues in the in-
troduction. Besides we decided to include the inverse oblique stereographic projection
of Snyder in OBLIMAP, so one has the possibility to use the Snyder equations. This
allows comparison of both methods, but also serves as an illustrative example for in-
cluding in OBLIMAP one of the many other (azimuthal) projections which are available
in Snyder.

Concerning the second important remark of Referee #1 and the first remark of D.
Roche (Referee):

With OBLIMAP we developed a general mapping package. In most work in which cli-
mate fields are projected to an ice model the polar stereographic projection is used, so
by changing to an oblique projection, the oblique stereographic projection was a logi-
cal choice. However, with the name OBLIMAP we anticipated, the OBLIMAP routines
were designed in a way that adding other oblique projections is really easy. We think
that it is a good suggestion of Referee #1 to consider the oblique Lambert azimuthal
equal-area projection. We believe the oblique stereographic and the oblique Lambert
azimuthal equal-area are the two projections which are of most interest. Therefore we
decided to include the oblique Lambert azimuthal equal-area (Snyder p. 182-187) in
the OBLIMAP code.

The stereographic projection is conformal and azimuthal (i.e. perspective, see Snyder
p. 154), and by choosing an optimal projection plane in a parallel manner relative to
the tangent plane (in our case with α) it can be close to equal-area. Conformal means
that the relative local directions are true at any given point (Snyder p. 4), which might
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be important from ice modeling perspective to keep a match with the ice flow direc-
tions. The Lambert azimuthal equal-area projection is equal-area and azimuthal (see
Snyder p. 182) but non conformal. Its equal-area property is interesting for mapping
of conserved quantities. However, citing Snyder at pages 3 and 5: "It cannot be said
that there is one ’best’ projection for mapping. It is even risky to claim that one has
found the ’best’ projection for a given application" and for areas as large as the US:
"a trained eye cannot often distinguish whether the map is equal-area or conformal".
In our applications both projection methods give very similar results indeed. For small
areas one could argue that the distortions are that small that an equal-area method
is convenient because of surface conservation (but be aware this doesn’t imply exact
volume conservation).

The reason to use an oblique approach instead of a polar approach is that only with
an oblique projection one can choose an optimal projection for any area on Earth.
Projecting a local area at low latitude with a polar projection will unnecessary lead to
larger distortions (because the projection plane cannot be centralized). Furthermore,
it is inconvenient because such an area will be far off the grid centre, and one has to
determine a shift. To and fro mapping of such ’oblique’ areas will still yield good results
with a polar projection, because the inverse is exactly inverse, but the mapped fields in
the ice model will be more and more distorted for areas at lower latitude. We compared
(after shifting) oblique and polar projected fields, but that is awkward because the dif-
ference in projection causes a different ’stretching’ of the area, so the large differences
are at ice model grid points laying in areas with large gradients because actually not
the same points are compared: immediately causing large differences. Once again:
in OBLIMAP the optimal projection is chosen for any given centre, which is of large
practical convenience.

By adding the oblique Lambert azimuthal equal-area projection and its inverse to the
OBLIMAP code, we got already one step further than initially intended with this paper.
Both referees appreciate the clear structure of the paper. We therefore propose to
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address the possibility of using this oblique Lambert azimuthal equal-area projection
and to generally discuss and compare these results in the discussion, but maintain the
current structure of the paper which is based on the oblique stereographic projection.

Concerning the third important remark of Referee #1:

Of course we can compare the integrated values of the mapped area of both grids,
but the involved GCM points which correspond to the edge points of the IM grid will not
represent exactly the same area. We therefore decided to compare the area-integrated
values per surface unit. This overcomes a difference in integrated values due to a
possible small mismatch of the represented grid edge area. Both these IM and GCM
values could be multiplied by e.g. the IM area to obtain a representative estimate for
the total mapped area.

At the GCM grid the area per grid point has to be calculated for the spherical surface,
which is complicated in case the four corners (situated between the grid points) all
have different λ and φ coordinates. Using the standard surface integral on a sphere
is not appropriate in that case. The RACMO data is defined on a reduced Gaussian
grid which causes this complicated situation, but in general this grid is constructed in
that way that the grid points represent equal areas. If we assume that all this reduced
Gaussian grid points are equal in area, we easily can obtain the area integrated value.
The CCSM grid points can be weighted by the spherical surface integral to obtain the
area integrated value. Because the high latitude points represent smaller areas, the
average values for CCSM in Table 3 will change significantly because these points
were equally weighted instead of area weighted.

We consider the results of an optimal oblique stereographic projection and the oblique
Lambert equal-area projection and did not find much difference from which we con-
clude that in those cases the ’stereographic’ area distortion probably will be rather
small. A possible second order effect arising from a correlation between the local area
distortion and e.g. the mass balance is therefore not expected to be important. How-
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ever, an area integrated approach is a useful check.

Concerning the minor remarks of Referee #1:

We adapted and corrected almost all minor comments as suggested, a few comments
are addressed here:
(2) We think this is mentioned at p. 937 line 12-13.
(4) Wrong (typo) indeed: it should be R cos(α), as in equation (A2).
(6) Snyders equations are not ’spelled out’, how to handle the arctan is defined in note
2 at page ix of Snyder. A drawback in his equations are the use of arcsin and arc-
cos. We presented our inverse equations in a computationally beneficial form. (10)
We used the standard Mean Absolute Error (MAE). RMSE is preferred above the MAE
in case large errors are particularly undesirable (often for measurement comparison).
We chose the simplest and intuitive MAE, but this choice is arbitrary. We suggest that
we adapt at p. 951 line 6 the text in such a way that it is clear we use absolute errors;
a standard MAE method.
(24) and comment (13) of D. Roche:
The figures are most informative and convincing. We included the figures of nine mis-
cellaneous experiments, they represent tests with: two GCM data sets, which differ
in resolution, in grid distribution, and in global extent, different IM extents, different
amount of involved mapped points, areas with complicated patterns because of the
topography (e.g. islands), local areas being part of a larger (glaciated) system, ar-
eas at the border of the GCM domain, areas covering data gaps, areas covering the
Greenwich longitude, and a spread of oblique locations. We could omit the figures of
Iceland because it resembles the Svalbard case. Ellesmere is an area at the border
of the RACMO covered area, has a demanding topography, and its amount of involved
mapped points is nicely intermediate.

Concerning the (remaining) remarks of D. Roche (Referee):

(2) We can discuss our method for areas as large as an oblique Hemisphere or even
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larger in an extra paragraph in the discussion. As an example we added the spe-
cific configuration file for the Northern Hemisphere to OBLIMAP. While testing such
extended cases we encountered situations in which our optimal alpha estimation is not
longer unambiguous, this is improved by giving an advising message. Additionally, we
derived the equations for an optimal alpha and the corresponding NX * dx extent for a
squared IM grid for a given angle γ being equal to the angle ICM’ in Figure 2. This γ =
45 degrees for half the globe. With help of some trigonometric calculus we obtained:

α = 2arctan

(√
1

2π
tan(γ)

)
(1)

Nx ∆x = R [1 + cos(α)] tan(γ) (2)

for 0 ≤ γ ≤ 90 degrees. With this equations it is easy to project a certain part of the
globe, without trial and error. Of course taking a very large projected area will increase
the mapping errors.
(3) We can provide a zoom-in panel (some work), but depending on the final figure size
we can decide about that. (The N with dot will be removed from the figure.)
(4)-(12): Will be adapted.

We thank the anonymous referee and D. Roche (Referee) for their useful comments,
we think the manuscript and the OBLIMAP package have benefited from them.
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