
GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Geosci. Model Dev. Discuss., 1, S138–S145, 2009
www.geosci-model-dev-discuss.net/1/S138/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribute 3.0 License.

Geoscientific
Model Development

Discussions

Interactive comment on “Spud 1.0: generalising
and automating the user interfaces of scientific
computer models” by D. A. Ham et al.

D. A. Ham et al.

Received and published: 19 January 2009

We would like to thank the reviewer for his constructive comments on our paper which
have enabled us to produced a revised version which we feel is significantly improved.

Namelist files

We did not discuss namelist files in the paper, partly because they are specific to one
programming language (Fortran) and would therefore add little clarity to those readers
not familiar with that language, but mostly because namelist files are not sufficiently
different from keyword value text files to warrant separate consideration in the paper.
Happily, however, GMDD provides this alternative forum to publicly discuss detailed
concerns and we are happy to do so here.

There are a number of respects in which namelist files fail to provide the facilities which

S138

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

are provided by Spud:

Lack of grammar Namelist files have a syntax defined in the Fortran standard but they
lack any mechanism short of reading the source code of the model for providing
either the user or an interface tool with the information about which options are
permitted or required and what their ranks, shapes and types are. In particular,
the lack of a formal grammar makes it essentially impossible to write a generic
user interface for namelist files. The most important feature of the Spud system
is that it improves model usability by supplying information to the user about valid
options combinations. Namelists do not do this.

No support for dynamic sizing Namelist variables are explicitly prohibited by the For-
tran standard from containing any dynamically sized or allocated variables. Take
as an example a fluid dynamics code which allows the user to specify any num-
ber of tracer variables. It will be necessary for the input files to specify initial and
boundary conditions for a variable number of fields. Since there must be a fixed
number of namelist variables each of a fixed size, this is essentially beyond the
capability of namelist input.

Limited support for grouping of options The reviewer points out namelists support the
logical arrangement of options via namelist groups. While this is true, namelists
support exactly one layer of grouping. Referring to the options tree presented
in figure 2 of the GMDD paper it is apparent that, at least for more complex
models, there are multiple layers of grouping which are appropriate and that using
multiple layers of grouping and allowing these groups to be enabled and disabled
as appropriate makes the model significantly more comprehensible to the user.
It also makes it easier for the developer as options can be retrieved relative to
other options in the tree which makes it very easy to determine, for instance,
which discretisation options apply to the current field.

S139

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Namelist files provide a convenient pre-defined mechanism for inputting keyword value
option files. This is very convenient when producing a simple model with perhaps
a dozen or so control parameters. As model complexity grows, namelists become
unmanageable and, in comparison with Spud, detract from the usability of the model.

Formal grammars and languages

In the revised paper we have included the following example of formal language and
grammar usage:

As an illustration of the concept of a formal language, we may anticipate
Sect. 4 and introduce a trivial formal grammar, or schema written in the
Relax NG syntax:

start = (
element a {

element b {
string

},
element c {

xsd:integer+
}?,
element d {

xsd:float
}*

}
)
Relax NG is a schema language for XML documents so this grammar

defines an XML language. The schema above can be translated into En-
glish as saying:

“there will be an XML element a containing:

• an element b containing any string; followed by
S140

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

• an optional (‘?’) element c containing one or more (‘+’) integers; fol-
lowed by

• zero or more (‘*’) elements d each containing a single floating point
number.”

XML elements are delimited by tags consisting of the element name
in angle brackets at the start of the element (<a>) and the same with the
element name preceded by a slash at the end of the element (). For
example, the following statement is valid in the language defined by this
grammar:

<a>test<c>1 2 3</c><d>10.0</d><d>-5.0</d>

as is the much shorter:

<a>test

since neither the c nor the d elements are required. However:

<a>test<d>3.0</d><c>red</c>

is invalid both because c elements can only contain integers and be-
cause a d is not permitted to precede a c element. It should be noted that
this brief example does not reveal the full flexibility of formal languages and
that, in particular, it is possible to permit much more flexibility in the ordering
and content of elements than is presented here.

Scripted modification of options files

Because of the standardised tree structure of XML files, it is particularly easy to
uniquely address individual elements in a file and high level text handling program-
ming languages such as Python include standard tools for accessing and modifying

S141

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

element values in XML files. The standard mechanism for accessing an element in
an XML file is XPath and Spud directly supports simplified XPath addressing. Indeed,
users need not even be familiar with XPath as the latest version of Diamond allows
users to copy the path for the currently selected option to the clipboard using the “copy
spud path” command in the edit menu.

The latest Spud source tree, included in the revised supplementary materials, contains
the very short (19 executable lines) script spud-set which can be used to change the
value of any option in a Spud options file given the path of the option to be changed.
This makes it trivial to script modifications to input files to conduct multiple related
simulations. Spud-set is documented in chapter 5 of the revised Spud Manual in the
doc directory of the Spud sources.

Model performance

The reviewer states with respect to section 2.3:

lines 11-22: I would argue that model performance is the most limiting
factor, rather than the reasons stated here.

We fear there must be some misunderstanding here. The point of this paragraph is to
convey the idea that it is not possible to write a single problem description language
(i.e. an options file format) which could be used directly to conduct the same simula-
tion using a number of different models. Model performance (of any sort: efficiency,
accuracy or capability) is a completely different question. Indeed, the desire to run the
same scenario on a number of different models is often motivated by the desire to learn
something about model performance.

Examples

It is not really appropriate to provide complete examples in the journal text, however
we have added a completely coded example called ballistics in the examples directory

S142

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

of the Spud sources in the revised supplementary materials. This includes a sam-
ple Fortran program (ballistics.F90) and schemas in compact (ballistics.rnc) and XML
(ballistics.rng) formats.

In-memory representation

The reviewer writes:

It is not clear to me what exactly is meant by "in-memory"; and how a
model acesses the parameters specified in the input file. Is it as simple
as simply having a variable, for example, r_pie, which can then be given a
value in diamond, which is then be accessed in the model using the variable
"r_pie" (where r_pie is defined by libspud)? It doesn’t appear to work this
way...

It very nearly works this way. Clearly the contents of the schema or input file cannot
directly define variables in the model. The point of the in-memory representation is
that libspud reads in the options file and stores the values of all the options in memory.
These can then be queried at any point in the model, rather than having to pass those
values through the code. We have added the following illustration of this to Sect. 6:

From the developer’s perspective, options are accessed as needed by
referring to their location in the options tree. For example, suppose that the
schema fragment shown in Fig. 1 occurs at the top level of the options tree.
Then the model developer can retrieve the value of the model time step with
the Fortran call:

call get_option(’/timestepping/timestep’,dt)

where dt is a double precision real variable. In the schema used to
drive the diamond interface in Fig. 2 there is an optional parameter which

S143

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

enables adaptive time stepping. Clearly the relevant routine in the model
will need to test for the presence of this parameter. The following function
call returns true if the parameter is present and false otherwise:

have_option(’/timestepping/adaptive_timestep’)

A more comprehensive example of the use of libspud in model code is
presented in ballistics.F90 in the examples directory in the accompanying
source code while a full description of the entire libspud interface in Fortran,
C and C++ is to be found in the manual (doc/manual.pdf in the source
directory).

Development cost

The reviewer writes:

as it is currently done, a developer is only required to define a variable
and read it in, rather than setup a series of additional routines on top of an
entire XML frontend.

With respect, this massively underestimates the complexity of reading options and
passing them through a complex geoscientific model. For example some options will
only be present if certain discretisations are selected. Other options may vary in num-
ber: a field may have one boundary condition or its boundary may be subdivided into
many parts each of which has different boundary condition options. Reading and stor-
ing options in memory is only a trivial task if the number of configurations of a model
are trivial.

The advantage of Spud to the developer in adding options is that the dependencies,
type, rank and shape of the option can be declared in a single neat and efficient manner
in the schema and Spud make those values available anywhere in the model where

S144

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

GMDD
1, S138–S145, 2009

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

they need to be used without the developer having to deal with the logic of determining
which options to read and where to pass them. Our experience is that this makes it
much, much easier for developers to add options and to do so in a way that improves
model usability rather than detracting from it.

Interactive comment on Geosci. Model Dev. Discuss., 1, 125, 2008.

S145

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S138/2009/gmdd-1-S138-2009-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008.pdf
http://creativecommons.org/licenses/by/3.0/

