Geosci. Model Dev. Discuss., 1, S122-S126, 2008 — —K

www.geosci-model-dev-discuss.net/1/S122/2008/ Geoscientific
. AR Model Development
© Author(s) 2008. This work is distributed under DISCUSSIONS

the Creative Commons Attribute 3.0 License. —

Interactive comment on “gtcm 0.1.2: A Python
Implementation of the Neelin-Zeng
Quasi-Equilibrium Tropical Circulation model” by
J. W.-B. Lin

J. Lin
jlin@northpark.edu
Received and published: 17 December 2008

Many thanks to the referee for his kind and generous comments! They are greatly
appreciated, as are his constructive and helpful suggestions! Below | address his
comments using his numbering system.

Specific comments:

#1: In the second para. in the Introduction, the following sentence is included (based
upon changing an existing sentence):

Finally, as a compiled language, Fortran is non-interactive and requires
S122

GMDD
1, S122-S126, 2008

Interactive
Comment

Full Screen / Esc
Printer-friendly Version
Interactive Discussion

Discussion Paper

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S122/2008/gmdd-1-S122-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008.pdf
http://creativecommons.org/licenses/by/3.0/

separate compiling and linking steps. This hinders informal small-scale
testing, prevents users from interacting with the model at run time, and
can result in a longer development cycle.

#2: I've added Fortran 95 and 2003 as explicit examples. I'm not sure which aspects of
“old” the referee has in mind to point out, but my sense is that too much specificity there
might result in a tangential discussion on whether Fortran is old or new. By focusing on
the fact that few scientific programs take advantage of the new Fortran features, | hope
to circumvent that debate.

#3: The new last sentence of para. 3 is now changed to:

Some modern languages are also interpreted; in those languages,
source code is directly executed at run time without separate compiling and
linking steps, thereby enabling interactive debugging and execution.

#4. Instead of the parenthetical statement “described later,” | put in the parenthetical
statement “key model variables and parameters are instances of this class.”

#5: Likewise as in #4, | make the parenthetical statement read “which defines model
objects.”

#6: A new subsection discussing OO is added right after the first paragraph in section
3. All section 3 are incremented up by 1, as a result. The text of the new subsection is
below:

Because Python is an object-oriented language, the fundamental pro-
gramming unit is not the subroutine, but rather is the “object.” In a procedu-
ral language, data and functions that operate on data are two separate en-
tities. In an object-oriented language, these two entities are bound together

S123

GMDD
1, S122-S126, 2008

Interactive
Comment

Full Screen / Esc
Printer-friendly Version
Interactive Discussion

Discussion Paper

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S122/2008/gmdd-1-S122-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008.pdf
http://creativecommons.org/licenses/by/3.0/

in a single construct, the object. Because of this framework, functions are
automatically considered in context with the data they operate on, and vice
versa. This lessens the risk of errors that occur when data is manipulated
by functions that were never intended to be used on that kind of data.

Data bound to an object are called “attributes” of that object, and func-
tions that operate on that data are called “methods” of that object. In
Python, the attributes of an object are specified by a name that comes after
a period at the end of the object name. Thus, model.runname refers to the
runname attribute of the model object. Methods are similarly named; how-
ever, to call a method, a parameter list (even if empty) must be specified.
Thus, model.run_session() calls the run_session method bound to
the model object.

In general, Python objects consist of two types of attributes and meth-
ods: public and private. Public attributes and methods are accessible to
the general user. Private attributes and methods, on the other hand, are
designed to be accessed only by developers. In Python, private attributes
and methods have names prepended by one or two underscores.

Objects are created from a “template” that defines the attributes and
methods that go into that object. The template is known as a “class,” and
individual objects that are derived from a class are called “instances” of
that class. Creating an object that is an instance of a class is known as
“instantiating” the object. In the example above, model is an instance of
the Qtcm class, which defines the runname attribute and run_session
method. There is no limit to the number of instances of a class, and all in-
stances of a class have equal access to the attributes and methods defined
by the class.

Python’s highest level of organization is the package, a library of related
modules. Modules, in Python, are individual files that define related objects,
functions, and variables, and thus a package is a directory of module files.

S124

GMDD
1, S122-S126, 2008

Interactive
Comment

Full Screen / Esc
Printer-friendly Version
Interactive Discussion

Discussion Paper

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S122/2008/gmdd-1-S122-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008.pdf
http://creativecommons.org/licenses/by/3.0/

A single module can contain an unlimited number of objects, functions, and
variables.

#7:. See #6.
#8: The parenthetical statement “e.g., units, long name, etc.” is added after “metadata.”

#9: Unfortunately, there are a few Qtcm attributes that are not model parameters or
field variables at the Python-level, so to say there are only two sorts of attributes may
not be accurate. | tried to make this part more readable by creating a new paragraph,
starting with these two sentences:

All model parameters (e.g., time step, etc.) are attributes of Qtcm in-
stances. Field variables, at the Python-level, are also Qtcm instance at-
tributes.

#10: Yes, the instance state encoded in the snapshot includes the date of the model,
and thus the model will start from the date specified in the snapshot. Earlier in the
paragraph where this line occurs, | add the line “The snapshot includes the date of the
model and prognostic variables like T1.

#11: | added the following sentences:

Recall that nearly any model variable or parameter can be set via input
keyword parameters. Thus, inputsl and inputs2 could be different in
the number of days the model is integrated, whether the land scheme is on
or off, the initial values of the prognostic variables, etc.

in the paragraph after the block of code in this section.

#12: In the text, | add an example of reordering the list so that the convection scheme
is called after all the other physics schemes:
S125

GMDD
1, S122-S126, 2008

Interactive
Comment

Full Screen / Esc
Printer-friendly Version
Interactive Discussion

Discussion Paper

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S122/2008/gmdd-1-S122-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008.pdf
http://creativecommons.org/licenses/by/3.0/

tmp = model.runlists['atm_physics1’].pop(0)
model.runlists['atm_physics1’].append(tmp)

#13: | was a little confused what this referred to; | assume it was to the use of the name
“cloudroutine” in Fig. 9. If so, | changed it to “cloudscheme” to avoid the confusion
between thinking this run list name was the same as a function.

Technical corrections:
#1. Changed.
#2:. Changed.

Thanks again to the referee for all his help! In gratitude, I've added his name to the
acknowledgments section.

Interactive comment on Geosci. Model Dev. Discuss., 1, 315, 2008.

S126

GMDD
1, S122-S126, 2008

Interactive
Comment

Full Screen / Esc
Printer-friendly Version
Interactive Discussion

Discussion Paper

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/S122/2008/gmdd-1-S122-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008-discussion.html
http://www.geosci-model-dev-discuss.net/1/315/2008/gmdd-1-315-2008.pdf
http://creativecommons.org/licenses/by/3.0/

