Geosci. Model Dev. Discuss., 1, 125—-146, 2008
www.geosci-model-dev-discuss.net/1/125/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

N \ Geoscientific
GG Model Development

Discussions

Geoscientific Model Development Discussions is the access reviewed
discussion forum of Geoscientific Model Development

Spud 1.0: generalising and automating
the user interfaces of scientific computer
models

D. A. Ham', P. E. Farrell', G. J. Gorman', J. R. Maddison?, C. R. Wilson',
S. C. Kramer', J. Shipton?, G. S. Collins’, C. J. Cotter®, and M. D. Piggott’

'Department of Earth Science and Engineering, Imperial College London, UK
2Atmospheric, Oceanic and Planetary Physics, Department of Physics, Univ. of Oxford, UK
3Department of Aeronautics, Imperial College London, UK

Received: 30 June 2008 — Accepted: 4 July 2008 — Published: 17 July 2008
Correspondence to: D. A. Ham (david.ham @imperial.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

125

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< [
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

The interfaces by which users specify the scenarios to be simulated by scientific com-
puter models are frequently primitive, under-documented and ad-hoc text files which
make using the model in question difficult and error-prone and significantly increase the
development cost of the model. In this paper, we present a model-independent sys-
tem, Spud, which formalises the specification of model input formats in terms of formal
grammars. This is combined with an automated graphical user interface which guides
users to create valid model inputs based on the grammar provided, and a generic op-
tions reading module which minimises the development cost of adding model options.

Together, this provides a user friendly, well documented, self validating user inter-
face which is applicable to a wide range of scientific models and which minimises the
developer input required to maintain and extend the model interface.

1 Introduction

Computer models have become an indispensable tool in many fields of science and
engineering. As models have become increasingly sophisticated and complex, the
number of input parameters which control a typical piece of simulation software has
become very large indeed. For example, Fluidity is a multi-physics flow simulation
package which supports multiple fluids and multiple phases in flow regimes as diverse
as oceanography, porous media and flow inside nuclear reactors: the model therefore
has several hundred control parameters.

Frequently, especially in the case of software developed in the course of research,
the input parameters are read from one or more plain text files and the input system
is coded on an ad-hoc basis for that model. The addition of new options as the model
is developed typically requires that more code be added to read in the additional op-
tions, making model development cumbersome and tempting developers to engage in
poor practices such as option overloading and the hard-coding of parameters which

126

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

can make the model difficult to understand, maintain and use. From the model user’s
perspective, editing parameter files with a text editor is error-prone even when the doc-
umentation is excellent, which is frequently far from the case. Where graphical or “wiz-
ard” interfaces are available, the requirement to keep them current in turn increases
the model development workload and therefore retards development of the scientific
capabilities of the model.

In this paper, we describe a problem description system which provides model devel-
opers with a mechanism for ameliorating or avoiding altogether the problems described
above. The options which control a model are described in a machine readable speci-
fication known as a schema. From the schema, it is possible to automatically generate
a graphical user interface (GUI) which model users can use to set the control param-
eters. The schema can also be used to automatically check the input file for errors
and this information can even be used by the GUI to help the user produce valid input
files. A generic library is then used to read the options file generated by the GUI into
the model code and those options can then be accessed as needed from within the
model without the need for model-specific option parsing. The schema is therefore the
only part of the system which differs from model to model. From the model developer’s
perspective, this system offers a ready made front end which naturally grows with the
development of the model and which minimises the amount of code which must be writ-
ten to add new model options. From the model user’s perspective, the system provides
a self-documenting graphical interface with real-time syntax checking which actively
assists the user in generating a valid input file.

The system presented here, Spud, was developed to produce an options file for-
mat and user interface for the Imperial College Ocean Model (ICOM), however it has
been designed to be useful for the widest possible range of scientific models and, in
particular, for geoscientific simulation software.

127

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2 Problem description languages

The key concept on which the entire system we present here is based is that of the
problem description language. By this we simply mean a formal language in which
simulation problems are described. The consequences of this approach are perhaps
best explained by contrasting a formal language from existing options file formats, and
by contrasting problem description from existing data file formats.

2.1 Formal languages

The most common existing practice in the field of scientific modelling software is that
model parameters are specified in a text file, often with some informal grammar of
keyword followed by value or values. In the worst case, there is no documentation and
the validity of an input file is discernible only by what the model will or will not accept.
Even where a file format is well documented, a user will frequently have to consult a
large body of documentation in order to determine the correct expression in the terms
of the options file of the simulation which is to be conducted.

Formal languages are a well understood concept in computer science and mathe-
matics (see, for example Harrison, 1978). A formal language is defined by a vocabulary
of symbols and a formal grammar which mechanically states which combinations of the
vocabulary constitute well formed statements in the language. If the formal grammar is
itself specified in a manner amenable to parsing by a computer program, it is possible
for programs to automatically determine the validity of a statement and to ascertain
the locations at which symbols can be added to a valid statement and still yield a valid
statement. Among other things, the formal grammar determines which statements are
required or optional, whether and how many times statements may be repeated and
whether statements are required to be present in a particular order.

By formulating the combinations of options which constitute valid model input as a
formal grammatr, it is possible to mechanically determine the validity of model inputs.
Conversely, it is also possible to write generic tools which, given a formal grammar,

128

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

will guide a user to produce an options file which constitutes valid model input. The
input file documentation can be interspersed with the specification of the formal gram-
mar. This reduces the burden of documenting the input file format for the programmer
and enables the user to be prompted with the correct documentation by the generic
interface already mentioned.

An additional benefit of a machine parseable grammar is that the model itself can
parse the grammar. This means that the library which reads the input file can be a
generic tool which does not need to be modified as new options are added, or even for
use with a completely different model in a different field of science.

2.2 Problem description versus data description

The problem of storing and handling the large volumes of data used and produced by
scientific software is not a new one. In particular, large amounts of effort have been
expended in defining standard file formats in which scientific data may be efficiently
stored. As a leading example, many ocean and atmosphere models utilise the NetCDF
data format (Rew et al., 2006), often in combination with the NetCDF Climate and
Forecast (CF) Metadata Conventions (Eaton et al., 2008). The key distinction between
these file formats and a problem description language is that the former is focussed on
describing data, usually in a model independent manner, while the latter controls how
a model deals with and produces data.

As a concrete example, consider the simulation of the flow in the North Atlantic with
an ocean model. The initial conditions for velocity, temperature and salinity as well as
climatographic data such as wind fields and temperature and salinity fluxes may be
specified in a model independent manner in standard data file formats. However, in
order to fully specify the action of the model on that data, it will also be necessary to
prescribe model and problem specific parameters additional to the data. Examples of
such data may include the timestep and implicitness parameters, choices of parame-
terisations of viscosity and drag, convergence criteria for solvers, and instructions as
to which of the data is to be applied as initial and/or boundary conditions.

129

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

It is therefore apparent that a problem description language is not an attempt to re-
invent the standards for data file formats but rather is necessary to supply model and
simulation specific parameters for use with model and simulation independent data.

2.3 A generic problem description system

In many respects the “holy grail” of problem description would be a generic language
for some field of simulation, ocean circulation, say, which would formally describe a
simulation to be performed including specifying the fields to be loaded from some stan-
dardised data file. This input file would then be readable by any model in the field which
would then run the simulation and output standardised files ready for user intercompar-
ison.

Advantageous though such a system would be from a user perspective, there are
a number of reasons why this is not an achievable goal. To start with, even within
one field, models have very different capabilities — ocean models may solve different
flow equations, support different parameterisations and so on. A language which could
drive all models would therefore either have to restrict itself to some minimal subset of
functionality — in which case it would be of limited use to the user — or it would remain
the case that an input file valid for one model would not be valid for another model
— which defeats the purpose of a single language. From the developers’ perspective,
existing models may have strong assumptions about the structure and content of the
input options and refactoring those to conform with an externally specified problem de-
scription language would be expensive and might be undesirable from the perspective
of the scientific capabilities of the model.

Rather than attempting to define a generic problem description language, the system
presented here, Spud, defines a framework in which model-specific problem descrip-
tion languages can be formulated and then provides generic tools which work with
those languages. The design is based on separating those features of the problem
description which can be considered universal to all scientific models from those which
are specific to the model in question. The result is that for a model developer, there

130

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

is an off-the-shelf problem description interface available. All that the developer need
do is specify the grammar which defines which options the model takes and the user
interface and parsing capability will be instantly available.

3 Components of the Spud system

There are three key components to the Spud system. The first is the mechanism for
writing the formal grammar of a problem description language. This is based on XML
and schemas written in RELAX NG and is documented in Sect. 4. The second com-
ponent of Spud is Diamond. Diamond is a graphical user interface for writing options
files in Spud languages. The schema written by the developer is used by Diamond to
generate a model-specific interface which guides the model user to write a valid input
file for that model. Diamond is documented in Sect. 5. The final component of the sys-
tem is libspud. Libspud is a software library which will read any valid options file written
in any Spud language into an in-memory representation. This enables direct access
to any information in the options file from any point in the code with no requirement to
pass option values through interfaces within the code or to add new parsing code as
new options are added to the model. Section 6 documents this part of the code.

The full manual and source code of Spud 1.0 is included in the sup-
plementary material (http://www.geosci-model-dev-discuss.net/1/125/2008/
gmdd-1-125-2008-supplement.zip).

4 Language specification in Spud

Unsurprisingly, the problem of specifying machine readable formal languages and for-
mal grammars is a well studied one. In particular, the World Wide Web Consortium’s
Extensible Markup Language (XML) provides a generic syntax for machine parseable
languages (Bray et al., 2006). XML files are organised as trees of nested elements.

131

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-supplement.zip
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-supplement.zip
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-supplement.zip

10

15

20

25

This is a particularly natural data model for a scientific model as it enables the rela-
tionships between options to be represented in the structure of the options file. For
example, options to do with the timestep can be grouped on one branch of the tree
while options controlling, say, the discretisation of velocity can be grouped in another
branch. The tree structure also provides a natural mechanism for suboptions: where
a feature is selected and requires configuration, the options of that feature can be in-
cluded as child elements of the main feature element.

In the XML system, the term schema is used to describe a formal grammar and
there are a number of schema languages, where the term “schema language” refers to
a formal language in which formal grammars for XML languages may be written. Some
of the more prominent schema languages are analysed in Murata et al. (2005) while
a less formal introduction is given in van der Vlist (2001). Spud utilises the RELAX
NG schema language (Clark and Murata, 2001) which is a powerful schema language
closely tied to the theory of formal tree languages (Clark, 2001). One of the important
properties of a RELAX NG schema is that one schema can be imported into another
schema. Spud utilises this capability to provide a set of rich data objects defining basic
data types as building blocks for the schema developer. These core schema objects
(known in RELAX NG as patterns) are described as the Spud base language. By
specifying the low level representation of core data types, the generic tools included
in Spud can handle low level data in a more elegant manner. The ability to include
one schema in another also provides a mechanism by which coupled models could
seamlessly utilise the Spud system.

4.1 Schema syntax: compact and XML forms

RELAX NG supports two completely different syntaxes for schemas. The compact syn-
tax is optimised for human readability: the XML syntax is far more verbose but, being
written in XML, is more readily supported by software parsers. The two syntaxes are
absolutely equivalent in the grammars they express and it is possible to mechanically

132

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

translate a schema between the two using the software package Trang1. Compact
syntax is therefore the preferred syntax for editing Spud schemas and the Spud base
language is shipped in this format. The complete schema is then translated to XML for
use by Diamond. Figure 1 illustrates a fragment of a schema in compact syntax. This
illustrates the representation of related options as nearby elements in a tree: there is
one tree node which groups the timestepping options and specific timestep options are
children of this node.

4.2 Comments and documentation

A key advantage of the Spud system is that it enables documentation to be integrated
with the schema. There are, in fact, three layers of documentation which are applicable,
all of which are supported by the system. First, as with any programming language,
RELAX NG permits comments which are used to document the markup of the schema
for the benefit of schema developers. Much more importantly, Fig. 1 illustrates the use
of RELAX NG annotations, marked by double comment markers. These annotations
document the schema for the model users. The integration of user documentation with
the schema has two benefits. First, it enables user tools such as Diamond to present
that documentation to users as they formulate the problem description file. Second,
they encourage the developer to write documentation at the same time as adding op-
tions to the schema. Since model manuals are notorious for lagging long behind model
development, if they are written at all, this is a significant improvement. Finally, the
Spud base language, which is discussed below, incorporates comment patterns which
provide a mechanism for model users to comment their problem description files.

! http://www.thaiopensource.com/relaxng/trang.htmi

133

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.thaiopensource.com/relaxng/trang.html

10

15

20

25

4.3 The Spud base language

There are certain core features which are common to a very large range of scientific
software. By specifying certain schema features which will be common across all Spud
languages, the possibility is created for Spud tools to deal with these basic model op-
tions in a common and powerful manner. Conversely the schema developer is relieved
of the need to formulate low level schema representations of these basic features.

4.3.1 Problem dimension

It is a very common feature of scientific models, and geoscientific models in particular,
that they simulate some physical region. The region may be three-dimensional but
it is also common to model two or one dimensional regions. In some cases, higher
dimensional domains may be modelled. While it is not uncommon that one software
package may support modelling in domains of different dimension, it is generally the
case that a given simulation will be conducted in a domain with a particular number of
dimensions. That dimensionality will determine the number of components of vector
options and the shape of rank 2 tensors. Vector and tensor valued solution fields
are also likely to have a number of components determined by the overall problem
dimension.

To facilitate tools which account for the dimensionality of the problem, Spud reserves
the element dimension within a geometry element at the top level of the options tree to
specify the problem dimension. The dimension specified here is used by the rich data
types to ensure that numeric options conform to the problem dimension.

4.3.2 Rich data types

A large proportion of the options which are required to control simulation software are
numeric quantities. Many of these are scalar real (floating point) values but integer
qguantities are also common, as are lists or vectors of values and indeed rank two

134

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

arrays or tensors. It is also frequently necessary to supply short strings, such as file
names for data sources, or much longer strings such as scripts for model-embedded
scripting languages.

Spud supports numeric options by defining patterns for real and integer values of
rank O (scalars), 1 (vectors) or 2 (tensors). Options with rank greater than 0 may either
have unspecified extent, as is required when an arbitrary long list of values is to be
supplied, or they may be given an extent related to the dimension of the problem, as
might be required of a value such as a diffusivity. Tensor types may optionally be
specified as restricted to symmetric tensor values.

A basic string type which supports all strings is provided, as are filename and python
types for file names and python functions respectively. The latter two facilitate addi-
tional validation of input by user tools. All rich data types have an embedded comment
pattern to accommodate user comments.

4.3.3 Name attributes

Where a schema associates an attribute called name with an element, this has special
significance in Spud. User tools are encouraged to display this attribute particularly
prominently to enable users to distinguish between multiple identically named elements
— for example multiple field elements in a flow model. Libspud allows model developers
to access these multiple elements by specifying their name attribute. A name attribute
must be specified in the schema for elements which are permitted or required to be
repeated and may be specified for other elements. The value of the name attribute
may be fixed in the schema or may be left as user-specifiable.

4.4 Cross-tree dependencies

As previously noted, XML languages are trees and the specifications of a schema lan-
guage reflect this. This means that a schema defines which elements are permitted
or required under which other elements. This can be used to specify quite sophisti-

135

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

cated dependency relationships between model options in a manner which is clear to
the user. For example, a schema might permit the addition of any number of solu-
tion fields to a model and would then require that discretisation and solver options be
added as a children of those fields. However, it is inevitable that there will be depen-
dencies between options which are not related by a parent-child node relationship in
the options tree. These dependencies are termed “cross-tree dependencies” and are
not expressed, and therefore not enforced, by the schema. The absence of support for
cross-tree dependencies is a key limitation of Spud. If it is desired that these depen-
dencies are enforced, this can be achieved by the model interrogating the options tree
provided by Spud and applying its own rules. The libspud interface which is introduced
in Sect. 6 enables the model to interrogate the options tree but Spud does not itself
provide a mechanism for specifying the dependencies themselves. A future version of
Spud may incorporate a specific cross-tree dependency system based on a language
such as Schematron®.

5 Diamond

A very strong advantage of formally specifying the input language of a scientific model
is that it facilitates the creation of universal tools. A tool can read a formal specification
and work with the input language for a particular model without the need for case-by-
case modifications.

A concrete example of this is Diamond which is a dynamic, language driven graph-
ical user interface for creating validated input documents. Diamond parses an input
RELAX NG schema, uses this to automatically generate a user interface, and allows
the user to enter model configuration data. A screen shot of Diamond is shown in
Fig. 2. Diamond is written in Python and uses the GTK+ toolkit® to build crossplatform

2http://www.schematron.com/
3http://gtk.org

136

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.schematron.com/
http://gtk.org

10

15

20

25

graphical interfaces.

Whereas RELAX NG validators use the schema to decide the validity of a given
document, Diamond instead uses the schema to determine what possible valid doc-
uments may exist. Therefore, the schema parser must be different to those found in
RELAX NG validators. In fact, as it does not need to perform the derivation of reg-
ular expressions to compute the validity of a document (Brzozowski, 1964), it can be
simplified significantly. Diamond uses the Ixml XML Iibrary4 to build an in-memory rep-
resentation of the schema. Each element within this in-memory representation can be
queried for valid child elements, and this information used by Diamond to create an
interface with which to configure the elements; optional elements are greyed out with
a button to activate them, elements that can be present multiple times have buttons
to enable the addition of new instances or delete existing ones, and choices between
different sub-trees are presented using a drop-down selection box. Similarly, informa-
tion about element attributes and data are specified within the schema and stored in
the in-memory representation generated by the parser. Diamond uses this to generate
appropriate interfaces with which to edit the data. For example, with symmetric tensor
data the user is presented with only those elements necessary to uniquely specify the
tensor (the main diagonal and upper triangle).

Dynamically querying the schema in this way has two significant advantages. First,
only valid input as specified by the schema may be created within the interface; the
user may only generate elements in the correct numbers with the correct data types.
This validity is enforced by the interface, relieving the user from mundane tasks such
as the looking up of data types (e.g. integer or real), the length of vectors, or whether
a tensor may be asymmetric. Diamond performs this validation dynamically, with ele-
ments whose data have not been set flagged to indicate to the user that they require
attention. For example, in Fig. 2, the final_timestep element has been activated but its
value not set. As a result it is coloured blue to mark its invalidity, as are its parent ele-
ments timestepping and fluidity_options. This validation can also detect if the schema

4http://oodespeak.net/lxml/
137

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://codespeak.net/lxml/

10

15

20

25

has been changed, with newly added elements flagged as invalid until the user sets
their attributes.

The second major advantage is that the interface does not need to be modified as the
model input changes. Since the interface is generated automatically from the schema,
any changes to the schema are themselves sufficient to change the interface. This
allows for great flexibility in the model input, as only two tasks need be performed to
add new model options: the addition of a new element to the schema, and the addition
of code to the model to read in the new option. Due to the machine readability of the
schema, any tools used in between these operations do not not require modification.
This allows model developers to focus on the scientific functionality of their model and
relieves them from the burden of maintaining an intuitive graphical interface for model
users: the interface maintains itself.

6 Libspud

Libspud is the software library which enables scientific models to access the options
specified in an XML file written according to a Spud language. As with other compo-
nents of the Spud system, libspud is model-independent. This means that libspud will
work with any Spud language so that no changes need be made to the options reading
mechanism as changes are made to the schema. Naturally it will still be necessary to
modify the model code itself to make use of the new information contained in new op-
tions, but libspud reduces these modifications to a minimum. As noted in Sect. 4, XML
files are trees of elements and libspud provides its generic interface into these trees by
reading option files into an in-memory tree whose nodes correspond to the elements
and attributes in the XML file. Options stored in this tree may then be accessed by
specifying a string path similar to a reference to a file in a filesystem. This enables any
option to be interogated at any point in the model so long as its position in the tree is
known. Interfaces to the options tree are provided in Fortran, C and C++.

138

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

6.1 Spud base language support in libspud

The named patterns supplied in the Spud base language produce rich data types for
real and integer values of ranks 0, 1 and 2 as well as for strings. In the XML file
these rich data types are represented by multiple elements but these are collapsed
to a single node in the options tree. The type, rank and shape of these nodes can be
queried and when the option value associated with the node is extracted it will be of the
corresponding type, rank and shape. This facilitates options which provide the values
of, for example, diffusivity tensors or the value of a gravity vector.

7 The Fluidity markup language

Spud was developed to provide a new interface for the Imperial College Ocean Model
(ICOM) (Pain et al., 2005; Piggott et al., 2008). ICOM is implemented as a part of a
multiphysics finite element flow package called Fluidity and Spud has therefore been
applied to Fluidity as a whole. The resulting problem description language is called
the Fluidity Markup Language (FLML) and some details of its implementation are pre-
sented here as an example of the application of Spud. Figure 3 shows part of the FLML
tree for a simple flow problem, the driven cavity problem (see Erturk et al., 2005). From
this fragment, various aspects of the Fluidity problem description in FLML are apparent.

7.1 Field-centred options

The basic data object in any partial differential equation is the field: that is, a value asso-
ciated with each point in the domain. For instance, the incompressible Navier-Stokes
equations are solved for a vector valued velocity field and a scalar valued pressure
field. There may also be scalar fields for quantities such as temperature and density
and tensor valued fields for viscosity and diffusivities.

Fluidity supports a user specified number of scalar, vector and rank 2 tensor fields
and many options are associated with individual fields. Individual fields are repre-

139

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

sented by scalar_field, vector field or tensor_field elements and are differentiated by
their name attribute. For example, an advected tracer will have temporal and spatial
discretisation options and might even have additional fields associated with it to spec-
ify spatially and/or temporally variable quantities such as diffusivity or a source term.
The expression of a partial differential equation problem in terms of the state fields is
a prime example of the sense in which it is natural to represent problem options as a
tree. Figure 3 shows pressure, density and velocity fields, with the velocity field ex-
panded showing the next layers of options which apply to it. It can be seen that in this
problem the velocity field is prognostic, as is usually the case. However to test other
aspects of the model, the velocity can be switched to a prescribed field value for which
no equation is solved.

Since, in this case, we are solving the incompressible Navier-Stokes equations for
velocity, the field is specified as prognostic and this in turn switches on a subtree which
contains all of the options which pertain to solving for this field. For instance, the mesh
element determines which finite element space is to be used in representing this field
while solver is a subtree containing all the options pertaining to the linear solver which
will be used to solve the discretised system.

7.2 Support for multiple materials and phases

Fluidity supports simulations of multiphase flow, for example for simulating the flow of
oil and water through porous rock (Saunders et al., 2006) and a capability for simu-
lating multimaterial scenarios such as fluid-solid coupling and meteorite impacts is in
development. This is supported in FLML by grouping fields into an arbitrary number
of material_ phase elements. A material phase groups together fields which share the
same velocity, density and pressure. Material phases have their own equation of state.
Figure 3 shows the deactivated equation_of state element which is not required in this
simulation as the driven cavity scenario has a prescribed constant density. This exam-
ple illustrates the manner in which Diamond presents users with the options which are
available, rather than relying on the user finding this information in whatever manual for

140

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

the simulation software is available.

8 Applicability to other models

It has been emphasised throughout this paper that Spud is model-independent with
only the schema varying between models. The size and complexity of the schema is
directly related to the number of options supported and the complexity of their inter-
dependency. In addition, the provision of the Spud base language means that there
is essentially no groundwork to be done in supporting basic option types. This makes
Spud applicable to a wide range of models from the smallest projects undertaken by a
single PhD student up to very large multiphysics packages with dozens of developers
at multiple sites, as is illustrated by the example of Fluidity given above. Spud can also
be retrofitted to a model at modest development cost. For instance, Spud is currently
being applied to the FullWave seismic tomography model which has approximately
100 user parameters. This project is expected to be completed by an undergraduate
summer research student in a few weeks.

9 Conclusions

Scientific computer models of ever increasing complexity are a cornerstone of modern
science. The problem of specifying all of the options which control these models is
one which presents a serious development cost for model developers and a significant
barrier to users ability to set up simulations without making errors. Here we have pre-
sented a significant departure from the existing practice in geoscientific models. By
specifying a formal grammar for an XML problem description language, we have de-
veloped generic tools for both writing option files and for accessing those options from
within the model code. These tools guide the model user to set up a valid problem de-
scription, while from the developers’ perspective, the cost of adding new options as the

141

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

model is improved and expanded is minimised. The integration of documentation with
the formal grammar further encourages developers to properly document the model
and presents the users with documentation integrated in the GUI.

We have demonstrated the feasibility of this approach and illustrated its applicatation
to the Imperial College Ocean Model as a part of the general fluid mechanics package
Fluidity. Spud is also being applied to the FullWave seismic tomography package and
we are confident that the advantages of this approach will lead to its adoption in further
models in the geosciences and beyond.

Acknowledgements. This work was supported by a NERC consortium grant (numbers
NE/C52101X/1 and NE/C521028/2), NERC fellowships NE/C51829X/1 and NE/E013589/1,
and NERC studentship NE/FO07833/1.

The authors would like to thank Paul Kelly for useful discussions during the development of this
work.

References

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., and Cowan, J.: Extensible
Markup Language (XML) 1.1 (Second Edition), Tech. rep., World Wide Web Consortium,
http://www.w3.org/TR/xml11/, 2006. 131

Brzozowski, J. A.: Derivatives of Regular Expressions, J. ACM, 11, 481-494, doi:http://doi.acm.
org/10.1145/321239.321249, 1964. 137

Clark, J.: The design of RELAX NG, http://www.thaiopensource.com/relaxng/design.html,
2001. 132

Clark, J. and Murata, M.: RELAX NG specification, Tech. rep., Organization for the Advance-
ment of Structured Information Standards, http://relaxng.org/spec-20011203.html, 2001. 132

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron, J., and Signell, R.: NetCDF
Climate and Forecast (CF) Metadata Conventions, Version 1.1, http://cf-pcmdi.linl.gov/
documents/cf-conventions/1.1/cf-conventions.pdf, 2008. 129

Erturk, E., Corke, T., and Gokcol, C.: Numerical solutions of 2-D steady incompressible driven
cavity ow at high Reynolds numbers, International Journal for Numerical Methods in Fluids,
48, 747-774, 2005. 139

142

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.w3.org/TR/xml11/
http://www.thaiopensource.com/relaxng/design.html
http://relaxng.org/spec-20011203.html
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.pdf
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.pdf
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.pdf

10

15

Harrison, M. A.: Introduction to Formal Language Theory, Addison-Wesley Longman, Boston,
MA, USA, 1978. 128

Murata, M., Lee, D., Mani, M., and Kawaguchi, K.: Taxonomy of XML schema languages using
formal language theory, ACM Transactions on Internet Technology (TOIT), 5, 660—704, doi:
10.1145/1111627.1111631, 2005. 132

Pain, C., Piggott, M., Goddard, A., Fang, F., Gorman, G., Marshall, D., Eaton, M., Power, P,
and de Oliveira, C.: Three-dimensional unstructured mesh ocean modelling, Ocean Model.,
10, 5-33, 2005. 139

Piggott, M., Gorman, G., Pain, C., Allison, P, Candy, A., Martin, B., and Wells, M.: A new
computational framework for multi-scale ocean modelling based on adapting unstructured
meshes, Int. J. Numer. Meth. FI., 56, 1003, doi:10.1002/fld.1663, 2008. 139

Rew, R., Hartnett, E. J., and Caron, J.: NetCDF-4: software implementing an enhanced data
model for the geosciences, in: 22nd International Conference on Interactive Information Pro-
cessing Systems for Meteorology, Oceanography, and Hydrology, http://www.unidata.ucar.
edu/software/netcdf/papers/2006-ams.pdf, 2006. 129

Saunders, J., Jackson, M., and Pain, C.: A new numerical model of electrokinetic potential
response during hydrocarbon recovery, Geophys. Res. Lett., 33, L15316, 2006. 140

van der Vlist, E.: Comparing XML Schema Languages, XML.com, http://www.xml.com/pub/a/
2001/12/12/schemacompare.html, 2001. 132

143

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
[R] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf
http://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf
http://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf
http://www.xml.com/pub/a/2001/12/12/schemacompare.html
http://www.xml.com/pub/a/2001/12/12/schemacompare.html
http://www.xml.com/pub/a/2001/12/12/schemacompare.html

Options dealing with time discretisation
element timestepping {
Current simulation time. At the
start of the simulation this is
the start time.
element currenttime {
real
1
Simulation time at which the simulatio
should end.
element finish_time {
real
1
The time step size. If adaptive time
stepping is used then this is the
initial time step size.
element timestep {
real

Fig. 1. A fragment of compact RELAX NG schema defining some timestep parameters. This
fragment defines the timestepping element and its child elements, current_time, finish_time and
timestep. Real is a named pattern from the Spud based language for a scalar floating point
value. The double comment marker ## marks user documentation which Diamond will present
to the model user.

144

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< [
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

ivenscavity.fimlizPiamendilon attila ElEEE GMDD
File Actions Help
Node [5] option Properties
[~ fluidity_options Description = = 1 B 125_1 46, 2008
- Python function prescribing dimensional vector input. Functions
simulation_name should be of the form:
roblem_type
) P " P def val(X, t):
geometry # Function code
b io return # Return value Spud 1 -0:
v timestepping where X and the return value are tuples of length geometry general ising user
current_time dimension.
timestep Attributes |nterfaces for
finish_time Name Value . .
final_timestep -] SCIentlfIC mOdels
b nonlinear_iterations e D A Ham et al
3
b physical_parameters
= material_phase (Water) q
. -) Title Page
3 *
b scalar_field (Pressure) e ¥ D\a;al Abstract Introduction
b scalar_field (Density) e g o0 u
- global vtktools
~ vector_field (Velocity)) Impart viktools .
~ prognestic © u=vtkrools.vtu("driven_cavity_coarse_final_continuous vtu") Conclusions References
mesh (VelocityMesh)
b spatial_discretisation def wal(X,t): Tabl Fi
b temporal discretisation return u.ProbeData(vtktools.arr([X+(0.0,)]), "Velocity")[0] aples Igures
b solver
constitutive_law (fluid) [+]
= initial_condition (WholeMesh) (+] I« >l
(+]
» o # ool i Store Data
b boundary_conditions (TopWind) -] éfrmg;ent < >
b boundary_conditions (OtherWalls) -]
N ..
/fluidity_options/material_phase/vector_field/prognostic/initial_condition/python Back Close

. . . : . . Full S /E
Fig. 2. A screen shot of the Diamond interface. The options tree, including greyed out unse- A SEIEENEESE

lected options, is displayed on the left. On the right the value of the current option, in this case
an embedded Python script, is displayed. In the top right, the schema annotation for this option Printer-friendly Version
is visible while at the bottom right a space is available for user comments. Element names,
provided by name attributes, are clearly displayed by elements such as fields.

148

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

si

3
b io
b
3

3
3
3
3

-

~ fluidity_options

mulation_name

problem_type
geometry

timestepping
physical_parameters
~ material_phase (Water)

scalar_field (Pressure)
scalar_field (Density)
vector_field (Velocity)
~ prognostic

mesh (VelocityMesh)

-

spatial_discretisation
temporal_discretisation
b solver

-

constitutive_law (fluid)
initial_condition (WholeMesh)

boundary_conditions (TopWind)
boundary_conditions (OtherWalls)

tensor_field (Viscosity)

v v v v v v v v v v v

-

output
stat

v v

COnvernence

000+

GMDD
1, 125-146, 2008

Spud 1.0:
generalising user
interfaces for
scientific models

D. A. Ham et al.

Fig. 3. Diamond tree window showing part of an FLML options tree. As well as global options
such as problem geometry, fields for pressure density and velocity are selected. The velocity

field is expanded showing a number of dependent options.

146

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< [
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-print.pdf
http://www.geosci-model-dev-discuss.net/1/125/2008/gmdd-1-125-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

