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Abstract. Isostasy is one of the oldest and most widely ap-

plied concepts in the geosciences, but the geoscientific com-

munity lacks a coherent, easy-to-use tool to simulate flexure

of a realistic (i.e., laterally heterogeneous) lithosphere under

an arbitrary set of surface loads. Such a model is needed for

studies of mountain building, sedimentary basin formation,

glaciation, sea-level change, and other tectonic, geodynamic,

and surface processes. Here I present gFlex (for GNU flex-

ure), an open-source model that can produce analytical and

finite difference solutions for lithospheric flexure in one (pro-

file) and two (map view) dimensions. To simulate the flexural

isostatic response to an imposed load, it can be used by itself

or within GRASS GIS for better integration with field data.

gFlex is also a component with the Community Surface Dy-

namics Modeling System (CSDMS) and Landlab modeling

frameworks for coupling with a wide range of Earth-surface-

related models, and can be coupled to additional models

within Python scripts. As an example of this in-script cou-

pling, I simulate the effects of spatially variable lithospheric

thickness on a modeled Iceland ice cap. Finite difference so-

lutions in gFlex can use any of five types of boundary con-

ditions: 0-displacement, 0-slope (i.e., clamped); 0-slope, 0-

shear; 0-moment, 0-shear (i.e., broken plate); mirror sym-

metry; and periodic. Typical calculations with gFlex require

� 1 s to∼ 1 min on a personal laptop computer. These char-

acteristics – multiple ways to run the model, multiple solu-

tion methods, multiple boundary conditions, and short com-

pute time – make gFlex an effective tool for flexural isostatic

modeling across the geosciences.

1 Introduction

Flexure of the lithosphere is a frequently observed processes

by which loads bend the elastic outer shell of Earth or other

planets (Watts, 2001; Watters and McGovern, 2006). The

sources of these loads are wide-ranging (Fig. 1), encompass-

ing volcanic islands and seamounts (Watts, 1978; Watts and

Zhong, 2000), mountain-belt-forming thrust sheets and their

associated subsurface loads (Karner and Watts, 1983; Stew-

art and Watts, 1997), sedimentary basins (Watts et al., 1982;

Heller et al., 1988; Dalca et al., 2013), continental ice sheets

(Le Meur and Huybrechts, 1996; Gomez et al., 2013), lakes

(Passey, 1981; May et al., 1991), seas and oceans (Gov-

ers et al., 2009; Luttrell and Sandwell, 2010), extensional

tectonics (negative loads) (Wernicke and Axen, 1988), ero-

sion (negative loads) (McMillan et al., 2002), mantle plumes

(basal buoyant and therefore negative loads) (D’Acremont

et al., 2003), and more.

Theory to describe deflections of the lithosphere under

loads has evolved significantly over the past 160 years

(Watts, 2001). The development of this theory started with

simple approximations of perfect buoyant compensation of

loads by a lithosphere with no strength overlying a mantle of

known density (Airy, 1855; Pratt, 1855). These approxima-

tions allowed surveyors to explain the observed lack of sig-

nificant gravity anomalies around large mountain belts (cf.,

Göttl et al., 2009). While this theory, called isostasy, revolu-

tionized the way topography was viewed on the Earth, more

realistic solutions for isostatic deflections of the surface of

Earth take into account the bending, or flexure, of a litho-

spheric plate of nonzero but finite strength. This strength may

be defined as the elastic thickness, the effective thickness of

a flawless plate of the equivalent strength, or as the flexural
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Figure 1. Flexural isostasy can be produced in response to a range

of geological loads.

rigidity that is characteristic of a plate of a given thickness

(see Eq. A7). By bending over distances of several tens to

hundreds of kilometers, the lithosphere low pass filters a dis-

continuous surface loading field into a smoothed solid-Earth

response.

Even though the early geological theories of Pratt (1855)

and Airy (1855) focused on simple buoyancy, the differential

equation basis for solving lithospheric bending already ex-

isted at that time. Bernoulli (1789) and Germain (1826, and

earlier work) developed the first differential-equation-based

theories for plate bending. Lagrange (1828) reviewed the

prize that Germain won in 1811 for her work on elastic plate

flexure, and, on realizing an error in the lumping of terms due

to Germain’s incorporation of an incorrect formula by Eu-

ler (1764), corrected it and produced the first complete flex-

ure equation (see reviews by Todhunter and Pearson, 1886;

Ventsel et al., 2002). Around the same time, Cauchy (1828)

and Poisson (1828) better connected the theory of elasticity

to plate bending problems. These works predated Kirchhoff

(1850), who developed the classical or Kirchhoff–Love plate

theory that remains in use today (Ventsel et al., 2002). While

many further advances have been made (e.g., Love, 1888;

Timoshenko et al., 1959) especially for structural and aero-

nautical engineering, it is the Kirchhoff–Love plate theory

that has been used most widely for geological applications

(e.g., van Wees et al., 1994). Comer (1983) tested classical

Kirchhoff plate theory, which is a thin-plate theory that sim-

plifies the plate geometry and therefore the mathematics re-

quired to solve for it, against a thick-plate theory of litho-

spheric flexure. While this thick-plate theory relaxes several

approximations, its solutions are very similar to those for

thin-plate flexure (Comer, 1983).

In the first half of the twentieth century, Vening Meinesz

(1931, 1941, 1950) and Gunn (1943) applied analytical so-

lutions of the plate theory of Kirchhoff (1850) to geological

problems. They employed analytical solutions that relate the

curvature of the bending moment of a plate of uniform elastic

properties to an imposed surface point load, line load, or si-

nusoidal load. These load solutions could be used to compute

flexural response to any arbitrary sum of individual loads in

either the spatial or spectral domain, due to the linear nature

of the biharmonic flexure equation (Eqs. 1 and 2), and may

be combined with a variety of boundary conditions (Watts,

2001).

Computational advances allowed discretized models to re-

place purely analytical solutions. These models fall into one

of several categories. Many take advantage of the linear na-

ture of the flexure equation for constant elastic thickness to

superimpose analytical solutions of point loads (in the spa-

tial domain) or sinusoidal loads (in the wavenumber domain)

in order to produce the flexural response to an arbitrary load

(Comer, 1983; Royden and Karner, 1984). Other models pro-

duce numerical solutions to the thin plate flexure equation

by solving the local derivatives in plate displacement with

numerical (mostly finite difference) methods (e.g., Bodine

et al., 1981; van Wees et al., 1994; Stewart and Watts, 1997;

Pelletier, 2004; Govers et al., 2009; Sacek et al., 2009; Wick-

ert, 2012; Braun et al., 2013). Models in this latter category

allow for variations in the elastic thickness of the plate, a fac-

tor of growing importance as variations in elastic thickness

through space and time are increasingly recognized, mea-

sured, and computed (e.g., Watts and Zhong, 2000; Watts,

2001; Van der Lee, 2002; Flück, 2003; Pérez-Gussinyé and

Watts, 2005; Tassara et al., 2007; Pérez-Gussinyé et al., 2007,

2009; Tesauro et al., 2009; Kirby and Swain, 2009, 2011;

Lowry and Pérez-Gussinyé, 2011; Tesauro et al., 2012b, a,

2013; Braun et al., 2013; Kirby, 2014). In spite of these ef-

forts, the community currently lacks a robust, easy-to-use,

generalized tool for flexural isostatic solutions that can be

used by modelers and data-driven scientists alike.

Here I introduce a broadly implementable open-source

package of solutions to flexural isostasy. This package, called

gFlex (for GNU flexure), advances and makes more ac-

cessible an earlier model, generically called flexure (Wick-

ert, 2012). gFlex has been released under the GNU Gen-

eral Public License (GPL) version 3 and is made avail-

able to the public at the University of Minnesota Earth-

surface GitHub organizational repository, at https://github.

com/umn-earth-surface/gFlex, and through the Python Pack-

age Index (PyPI). This allows for rapid collaborative editing

of the source code and easy automated installation. It is writ-

ten in Python (e.g., Rossum et al., 2012) for easy interoper-

ability with a range of other programming languages, mod-

els, and geographic information systems (GIS) packages, and

to take advantage of the numerical packages for Python that

allow for much more rapid matrix solutions than would be

typical with a more basic interpreted language (Jones et al.,

2001; Davis, 2004; Oliphant, 2007; van der Walt et al., 2011).

See Section 5 for further information on obtaining and run-

ning gFlex.

gFlex can solve plate flexure in two major ways (Fig. 2).

First, it can produce analytical solutions to flexural isostasy

generated by superposition of local solutions to point loads in
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Figure 2. Flowchart for gFlex as either a standalone model with configuration and input files, a Python module or coupled component in a

modeling framework, or a GRASS GIS component.

the spatial domain (i.e., as a sum of Green’s functions) (e.g.,

Royden and Karner, 1984). These use biharmonic equation

for plate flexure with uniform elastic properties (Eqs. 1 and

2) (Bodine et al., 1981). Second, it can compute finite dif-

ference solutions for both constant and arbitrarily varying

lithospheric elastic thickness structures. These solutions fol-

low the work of van Wees et al. (1994), and hence Braun

et al. (2013), except that gFlex does not incorporate terms for

end loads but does include a wider range of implementable

boundary conditions (Table 1). gFlex can be run as a stan-

dalone program with an input file, as a component of the in-

development Landlab landscape modeling framework (Hob-

ley et al., 2013; Tucker et al., 2013, 2015) and by extension as

a component within the Community Surface Dynamics Mod-

eling System (CSDMS) (Syvitski et al., 2011; Overeem et al.,

2013), or as a pair of add-ons to the Geographical Resources

Analysis Support System (GRASS) Geographic Information

System (GIS) (Neteler et al., 2012). The GRASS GIS imple-

mentation is particularly important, as it provides pre-built

and standardized command-line and graphical interfaces and

the ability to directly pull inputs from and compare solutions

against field data in their native coordinate systems.

2 Methods and model development

Two solution types for flexural isostasy are provided in

gFlex, and these are formulated for both one-dimensional

(line load, assumed to extend infinitely in an orientation

orthogonal to the line along which the equation is solved)

and two-dimensional (point load) cases. The derivation that

forms the basis for both of these is provided in Appendix

Sect. A, and similar approaches to this derivation may be

found in the work of Timoshenko et al. (1959) and Turcotte

and Schubert (2002). The analytical and finite difference ap-

proaches are compared and shown to approximate each other

well in Fig. 3.
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Table 1. Boundary conditions. Names provided here are the same as those used in the model, and b.c. stands for boundary condition. The first

five can be selected for numerical solutions. The final one, NoOutsideLoads, is the outcome of superposition of analytical solutions, which

allows the entire space to respond to local loads as if the 0-deflection boundaries were infinitely far away. In this notation, the subscript b

indicates the boundary, generically. Where 0 and n are included as subscripts, i.e., for the mirror and periodic boundary conditions, these

indicate boundaries at the first and last node of the model domain along a particular axis. Subscript x, which is a stand-in for x or y, is a

variable distance to indicate the symmetry across a mirror boundary. Each of these boundary conditions requires a corresponding boundary

condition for flexural rigidity.

Name Mathematical Description Rigidity b.c.

0Displacement0Slope wb = 0 no displacement at boundaries
d2Db

dx2 = 0

0Moment0Shear
d2wb

dx2 =
d3wb

dx3 = 0 broken plate with a free cantilever end
d2Db

dx2 = 0

0Slope0Shear
dwb
dx
=

d3wb

dx3 = 0 free displacement of a horizontally clamped boundary
d2Db

dx2 = 0

Mirror wb=n−x = wb=n+x plane of mirror symmetry at boundary Db=n−x =Db=n+x

Periodic wb=n = wb=0 wrap-around boundary: infinite tiling of model domain Db=n =Db=0

NoOutsideLoads w∞ = 0 produced by analytical solutions with uniform D
dDb
dx
= 0

Figure 3. Numerical (FD) and analytical (SAS) solutions in one dimension (a) and two dimensions (c) and their differences (b, d) in response

to a 100 km (long/in diameter) central line/circular load. These differences are due primarily to the NoOutsideLoads boundary condition of

the analytical solution and the 0Displacement0Slope boundary condition of the numerical solution. This can be seen in panel (b) where the

example with a lower elastic thickness is less offset due to the greater number of flexural wavelengths between the load and the boundary,

and in the greater agreement between the solutions on the longer diagonal boundaries in (d). The offset in the middle, visible as a small bump

in (b) and a blue diamond surrounded by red petals in (d), is due to the difference between approximating the load as a sum of point impulses

(analytical) and as the solution to a rectangularly gridded matrix equation based on the same theory (numerical).
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2.1 Superposition of analytical solutions

The first solution type takes advantage of the linear nature

of the analytical solution for flexure of a plate of constant

thickness and elastic properties when subjected to a point or

line load. These solutions may be superposed (i.e., summed)

in space to compute the full flexural response. The sec-

ond approach is to solve the equation for lithospheric flex-

ure as a matrix equation by employing a finite difference

scheme. This employs a sparse matrix elimination solver

(e.g., Davis, 2004). The primary gFlex finite difference solu-

tion follows the approach of van Wees et al. (1994) to permit

computations with steep gradients in flexural rigidity (Ap-

pendix Sect. A2), but gFlex also offers the discretization of

Govers et al. (2009).

The analytical solution imposes the assumption that scalar

flexural rigidity, D, is uniform. This leads to biharmonic ex-

pressions for plate bending in one and two dimensions, re-

spectively:

D
d4w

dx4
+1ρgw = q, (1)

D∇4w =D
∂4w

∂x4
+D

∂4w

∂y4
+ 2−D

∂4w

∂x2∂y2
+1ρgw = q. (2)

Here, w is vertical deflection of the plate, q is the applied

surface load, and 1ρ = ρm− ρf is the density of the mantle

minus the density of the infilling material; see Fig. A1 for a

diagrammatic description of all variables. The 1ρ term rep-

resents the feedback by which flexural subsidence can lead

a depression to be filled by material, which leads to addi-

tional flexural subsidence. This can occur, for example, in a

system that is fully underwater (e.g., an underwater volcano

load) or one in which the depression is completely filled with

sediments. If this infilling material is not uniform in density

and/or spatial extent – for example, due to onlap or offlap of

water along a shoreline – then one may solve this feedback

instead via iteration, by solving for ρf = ρair ≈ 0 and adding

water (or another load) to regions that match certain condi-

tions after every cycle of the iteration.

The above equations are linearizable, and therefore can be

solved by superposition of analytical solutions. In gFlex, this

is done in the spatial domain on both structured grids and as

a response to an arbitrarily placed set of point loads. Spectral

solutions are possible (Stephenson, 1984; Stephenson and

Lambeck, 1985) and efficient using fast Fourier transform al-

gorithms (cf. Welch, 1967), but have not been implemented.

The one- and two-dimensional solutions for lithospheric flex-

ure take the form of an exponentially damped sinusoid. In

one dimension, this is represented by the following expres-

sion:

wi = q
α3

1-D

8D
e
(x−xi )
α1-D

[
cos

(
x− xi

α1-D

)
+ sin

(
x− xi

α1-D

)]
. (3)

Here, the i subscript indicates that this is the response to

a line load at a single x position, xi . α1-D is the one-

dimensional flexural parameter, defined by Vening Meinesz

(1931) (following Hertz, 1884):

α1-D =

[
4D

(1ρ)g

]1/4

. (4)

The significance of the flexural parameter is that the flex-

ural wavelength, λα is related to the flexural parameter as

λα = 2πα. The distance from a point load to the first flexural

bulge (forebulge) that it creates around its local depression,

for example, is a flexural half-wavelength, πα. This nature

of plate bending as an exponentially decaying periodic func-

tion can be seen most easily in the one-dimensional analyti-

cal (constant Te) solution in Eq. (3).

Brotchie and Silvester (1969) derived that the exponen-

tially damped sinusoid due to a point load in two dimen-

sions should be expressed by kei (Abramowitz and Stegun,

1972), which is the zeroth-order Kelvin function that satis-

fies the equation ker(r)+ ikei(r)=K0

(
reπi/4

)
, whereK0 is

the zeroth-order modified Bessel function of the second kind.

This function was defined by Lord Kelvin to solve for elec-

trical current density in a circular wire with an applied os-

cillating (alternating) current (Barron and Barron, 2012, Ap-

pendix 5), and its solution has been broadly applied to the

two-dimensional bending of a plate (e.g., Timoshenko et al.,

1959; Lambeck, 1981; McNutt and Menard, 1982; Watts,

2001).

wi,j = q
α2

2-D

2πD
kei


√
(x− xi)2+ (y− yj )2

α2-D

 (5)

α2-D =

[
D

(1ρ)g

]1/4

(6)

The subscripts i,j indicate that this is the flexural response

to a single point load at the x and y positions xi and yj . The

two-dimensional flexural parameter, α2-D, containsD instead

of 4D in the numerator because it does not need to include

implicit loads and deflections along the y orientation that are

required in the one-dimensional line-load plate bending case.

Lithospheric flexure calculated by superposition of analyt-

ical solutions can be represented as a simple sum across all

line loads ql or point loads qp:

w =
∑
ql

wi (1−D), (7)

w =
∑
qp

wi,j (2−D). (8)

For a given elastic thickness, each flexural response to a

line or point load is similar in shape, but different in ampli-

tude. Therefore, I optimize solution speed by pre-calculating

the flexural response to a unit load in the center of a template

array. This pre-calculated unit deflection array has twice the
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linear dimensions of the solution array, and is subsampled

and re-scaled to compute the distributed response to each

cell in the grid that contains a load. This technique works

for all for rectilinear grids with uniform x and y grid spac-

ing, though the x and y grid spacing do not have to be equal

to one another. A similar optimization is possible for one-

dimensional solutions, but these are so rapid that this has not

been found to be necessary. Within gFlex, this solution type

is termed SAS, which stands for superposition of analytical

solutions.

The analytical solution response to point or line loads can

also be computed for a scattered set of loads and a scattered

(and not necessarily the same) set of points at which the

flexural response is calculated. This solution type is termed

SAS_NG, which stands for, superposition of analytical so-

lutions: no grid. Because it lacks the grid uniformity that

permits the a solution template to be used, its computational

time is not optimized in this way (Sect. 2.5).

2.2 Finite difference solutions

Finite difference solutions in one and two dimensions em-

ploy Eqs. (A19) and (A20), respectively. For these solutions,

dx and dy may differ from one another, but each must be con-

stant. First, for the one-dimensional solution, the expansion

of Eq. (A19) is

D
∂4w

∂x4
+ 2

∂D

∂x

∂3w

∂x3
+
∂2D

∂x2

∂2w

∂x2
+1ρgw = q. (9)

The two-dimensional solution is based on an expansion of

Eq. (A20) (van Wees et al., 1994):

D
∂4w

∂x4
+D

∂4w

∂y4
+ 2−D

∂4w

∂x2∂y2

+ 2
∂D

∂x

∂3w

∂x3
+
∂2D

∂x2

∂2w

∂x2
+ 2

∂D

∂y

∂3w

∂y3
+
∂2D

∂y2

∂2w

∂y2

+ν
∂2D

∂y2

∂2w

∂x2
+ ν

∂2D

∂x2

∂2w

∂y2
+ 2

∂D

∂x

∂3w

∂x∂y2
+ 2

∂D

∂y

∂3w

∂x2∂y

+ 2(1− ν)
∂2D

∂x∂y

∂2w

∂x∂y
+1ρgw = q. (10)

These equations are discretized using a second-order ac-

curate centered finite difference approximation (Fornberg,

1988, Table 1).

Finite difference solutions in two dimensions may also be

generated following the solution and discretization of Govers

et al. (2009), which produces solutions for a more limited

range of flexural rigidity variations.

The finite difference solution is computed as a linear ma-

trix equation,

AW =Q, (11)

where A is a sparse matrix of operators from a linear de-

composition of Eqs. (A19) or (A20), W is a vector of de-

flections (typically unknown), and Q is a vector of imposed

loads (typically known). It is solved directly by using the

sparse LU (lower upper) factorization package UMFPACK

(unsymmetric-pattern multifrontal package) (Davis, 2004)

or, at the user’s choice, iteratively with one of the many

solvers that are available with the SciPy (Scientific Python)

package (Jones et al., 2001).

2.3 Boundary conditions

gFlex supports a number of boundary conditions, and

these are summarized in Table 1 and schematically drawn

in Fig. 4. The finite difference (sparse matrix) nu-

merical solutions can freely define any combination of

no-displacement-and-no-slope (0Displacement0Slope), no-

bending-moment-and-no-shear (0Moment0Shear), no-slope-

and-no-shear (0Slope0Shear), and mirror boundaries. Peri-

odic boundaries may be mixed with any combination of the

aforementioned boundary conditions, with the requirement

that they exist on both sides of the deflection array, as having

(for example) deflections at the west end of the array sensi-

tive to loading and deflections to the east, but with those on

the east not, in turn, sensitive to the west, being nonsensical.

Superposition of analytical solutions naturally produce a 0-

displacement boundary at infinite distance from each point

load (NoOutsideLoads). This can be seen by solving Eqs. (3)

and (5) as x→∞ and y→∞. Each of these boundary con-

ditions can be related to geological processes or locations

that one may wish to model (Fig. 5).

The 0Displacement0Slope (or clamped) boundary condi-

tion (Fig. 4a) may be used to approximate a NoOutsideLoads

case for the finite difference solutions (Fig. 3). When placed

one flexural wavelength away from a point or line load, the

surface displacement should, for a plate of constant elastic

thickness, be∼ 0.2 % of that at the point of maximum deflec-

tion, which is negligible compared to most sources of geolog-

ical error. It is conceivable that a difference in elastic thick-

ness in a continuous plate may exist that is so great that the

thicker plate can be approximated to not bend; a 0Displace-

ment0Slope boundary condition may also be used to simulate

this, though one must debate whether to do this or to compute

the flexural response across a plate with a prescribed elastic

thickness variability.

The 0Moment0Shear boundary condition (Fig. 4b) means

that the edge of the plate is completely free to flex, like

the cantilevered end of diving board. This is appropriate for

places in which the elastic thickness of the lithosphere goes

to zero. Such broken-plate boundary conditions have been

used in analytical solutions to simulate flexure of the litho-

sphere beneath the Hawaiian volcanoes, where heating sig-

nificantly weakens the lithosphere (Wessel, 1993). This ap-

proximates the (zero-dimensional) single point discontinuity

of a hotspot as a (one-dimensional) line boundary condition.

A broken-plate solution has also been used for zones beneath

mountain ranges where sufficient deformation may weaken

the lithosphere (Stewart and Watts, 1997), and may be best

Geosci. Model Dev., 9, 997–1017, 2016 www.geosci-model-dev.net/9/997/2016/
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Figure 4. Schematics of boundary condition types allowed in the

finite difference solutions to gFlex.

suited for continental rift zones (Burov et al., 1994), as these

closely approximate a linear discontinuity in an otherwise

thick lithosphere. In all three of these cases, the lithosphere

should lose strength as it approaches the boundary condition.

For this reason, 0Moment0Shear is implemented only for the

finite difference solution, which allows for spatial variations

in elastic thickness.

The 0Slope0Shear boundary condition (Fig. 4c) may be

considered to be a flat clamp on the boundary of the plate

that may be freely moved upwards or downwards. While it

may require creative thought to uncover a geological pro-

cess that holds a plate edge flat but allows it to move freely

in the vertical, this boundary condition can also be used at

an appropriate distance away from the load(s) to approxi-

mate a NoOutsideLoads boundary for a finite difference so-

lution, though typically the 0Displacement0Slope boundary

provides a closer match.

The periodic boundary condition (Fig. 4d) wraps one side

of the model around to the other side such that they form an

infinite loop. To visualize this, one may imagine taking a pa-

per map and taping either the east and west sides together or

the north and south sides together, such that the flexure in-

duced by loads on one edge is continuous with load-induced

flexure on the opposite edge. Elastic thickness and loads both

wrap around this boundary, making it possible to, if one is not

careful, create sudden jumps in elastic thickness at the edge

of the model. This takes somewhat longer to solve (Fig. 6c),

but can be useful to compute a flexural response to the load

of a long mountain belt by modeling just a limited region

perpendicular to the strike of the range crest and allowing

this slice to infinitely repeat in the range-crest-parallel ori-

entation; at the limit of a very narrow slice of model space,

this approaches the one-dimensional line-load solution. If a

future model of lithospheric flexure relaxes the current as-

sumption in gFlex that dx and dy may be different but must

be constant in space, the periodic boundary condition should

enable a finite difference flexural model to be employed on a

closed surface, such as a sphere, enabling full global model-

ing. This is, to the best knowledge of the author, the first time

that a periodic boundary condition has been implemented for

lithospheric flexure.

The mirror boundary condition (Fig. 4e) reflects the elas-

tic thickness and load structure across a plane of symme-

try at the boundary. This may be used to speed a solution

where a plane of mirror symmetry may be implied, which is

important for large grids or where gFlex is used as part of

a coupled set of numerical models (e.g., through CSDMS:

Syvitski et al., 2011; Overeem et al., 2013; Peckham et al.,

2013; Tucker et al., 2015). Example usage cases include to-

pographic unloading by erosion of a symmetrical mountain

range (Fig. 5c, and 5d), isostatic adjustment under a sym-

metrical ice cap, and emplacement of a volcanic load. The

latter two cases often have fully radial symmetry, and there-

fore may be placed at the corner of the solution array with

mirror boundary conditions on both adjacent sides to fur-

ther limit the needed computational area. This is also to the

best knowledge of the author the first application of a mir-

ror boundary condition to modeling of lithospheric flexure,

which is surprising considering its potential utility.

The names of the boundary conditions are based on

their effects on deflections, w, but solutions also require

boundary conditions to be placed upon the flexural rigid-

ity, D; these are listed in Table 1. For the 0Displace-

ment0Slope, 0Slope0Shear, and 0Moment0Shear deflection

boundary conditions, a 0-curvature flexural rigidity bound-

ary condition has been chosen. This allows for near-boundary

gradients in flexural rigidity to be assumed to continue out-

side the computational domain. As noted above, mirror and

periodic boundary conditions are applied to the rigidity field
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Figure 5. Example runs of gFlex with varying elastic thickness and boundary conditions. (a) depicts a long north–south mountain belt and

foreland basin under uniform elastic thickness. (b) provides a contrived field of variable elastic thickness. (c) is similar to (a) except in

that it uses a mirror boundary for a symmetrical mountain belt over a continuous lithospheric plate instead of a broken-plate solution, and

that the plate has the variable elastic thickness structure given in (b). (d) depicts the flexural interaction of two mountain belts on the same

variable-elastic-thickness lithosphere shown in (b) and has mirror boundary conditions at all edges.

as well. For the analytical solutions, the approximation is an

infinite plate of constant elastic thickness.

In two-dimensional solutions, boundary conditions meet

at corners. Where a boundary condition meets another of the

same boundary conditions at the corner, the two generate a

continuous boundary condition that includes the corner of

the array. This is always the case for the analytical solutions

with implicit NoOutsideLoads boundary conditions. Where

mirror or periodic boundary conditions meet themselves at

corners, these produce doubly reflecting or doubly periodic

boundaries; if every boundary is mirror or periodic (neces-

sary in the latter case as periodic boundary conditions must

always exist as pairs on opposite sides), these generate an in-

finite tessellated plane of loads and elastic thicknesses. Some

boundary conditions in gFlex can work harmoniously with

others. Periodic and mirror boundary conditions propagate

0Moment0Shear, 0Slope0Shear, and 0Displacement0Slope

boundary conditions that exist orthogonally to them. Where

mirror and periodic boundary conditions intersect at a corner,

the periodic boundary condition will propagate the mirror

boundary to ±∞. Those boundary conditions that do not re-

flect or repeat the effects of the other boundary conditions do

not share the corners equally: in gFlex, 0Displacement0Slope

boundary conditions dictate all corners where they meet

other boundary conditions, forcing them to remain fixed at

0; physically, this means that the clamp of the 0Displace-

ment0Slope boundary condition continues through the edges

of the perpendicular boundaries. 0Moment0Shear bound-

ary conditions were chosen to control the corners where

they meet 0Slope0Shear boundary conditions, as the 0Mo-

ment0Shear boundary condition has been recognized in geo-

logical work (e.g., Wessel, 1993; Burov et al., 1994; Stewart
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Figure 6. Model benchmarking. (a) The ungridded superposition of analytical solutions (SAS_NG) computation time is proportional to

the number of cells with loads present, as the solutions are calculated once for each of these positions. (b) The gridded superposition of

analytical solutions (SAS) scales with the total number of grid cells times the number of cells with loads, as this is the total number of

computations that must be made. (c) Finite difference solutions are computed with sparse matrices with dimensions equal proportional to

the grid dimensions, squared, and therefore scale with the number of total grid cells. All of the solution time relationships are close to linear

except for the two-dimensional finite difference solutions, due to the added complexity of their finite difference stencil. Many fits are to a

subset of the data to avoid those solutions that are so rapid that the amount of time required for the non-solver portions of the code becomes

significant. All marker symbols are semi-transparent, meaning that darker symbols than those that appear in the legend imply additional data

points underneath.

and Watts, 1997), while the 0Slope0Shear boundary condi-

tion has not.

2.4 Discontinuities and limit as Te → 0

Two notable issues inherent to the finite difference solutions

and the treatment of a continuous plate become apparent as

Te→ 0. The first is that a region of Te = 0 must have a width

of at least three cells to produce the expected local isostatic

equilibrium; this is a result of numerical diffusion in the cen-

tral difference discretization provided in Eqs. (9) and (10).

The second is that because any region of 0 elastic thickness

will enter isostatic equilibrium with its local loads and not

be affected by nonlocal effects; if this region lies along the

edge, it will ignore all boundary conditions. If a Te = 0 re-

gion along a boundary is ≥ 3 cells wide, it imposes a 0Dis-

placement0Slope boundary condition on the interior cells;

smaller regions of Te = 0 will allow some information on the

ultimate boundary condition to leak through via numerical

diffusion.

These issues are important to note, but unlikely to be im-

portant in most cases of gFlex. First, discontinuous transi-

tions to zones of Te = 0 may also be modeled by segmenting

the inputs into multiple arrays, running gFlex for each array

with a 0Moment0Shear (broken-plate) boundary condition

applied to the model domain edges representing the discon-

tinuities, and then recombining the outputs into a continuous

displacement field. Second, and more importantly, the condi-

tions for broken-plate or Te = 0 solutions to be required are

rare on Earth. Elastic thickness of 0 implies that there is no

elastic lithosphere, and a broken-plate solution implies that

there is no shear between adjacent lithospheric blocks. These

conditions are most likely to be met in rift zones, though

even these have some nonzero thickness of brittle crust. End
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loads, which are not currently included in gFlex, could be

used in combination with a 0Moment0Shear boundary con-

dition to better parameterize faults (e.g., van Wees et al.,

1994) and expand the utility of gFlex. However, the typical

case for which gFlex is designed involves glacial-isostatic

adjustment, large-scale water loads, sedimentary basin devel-

opment, large-scale erosional unloading, and other processes

that extend across a swath of heterogeneous lithosphere that

may contain many faults. In these cases, it has been found to

be sufficient to simply characterize a variable field of finite

elastic thickness across the domain, where elastic thickness

falls around fault zones (e.g., Manríquez et al., 2013).

2.5 Model benchmarking

A set of tests was performed to measure the speed at which

gFlex computes solutions. In these tests, an elastic plate that

is 1000 km long (one-dimensional and two-dimensional) and

1000 km wide (two-dimensional) is subjected to a square

load at its center that ranges from 100 km to the full 1000 km

on each side. This load places a normal stress of 9 702 000 Pa

on the surface, which is equal to 300 m of mantle material

(3300 kg m−3). In these scenarios, there is no assumed infill-

ing material (ρf = 0). gFlex computed solutions for uniform

rectilinear grids of increasing size using gridded and ungrid-

ded superposition of analytical solutions (SAS and SAS_NG,

respectively) and finite difference (FD) methods. All bound-

ary conditions (Table 1 and Fig. 4) were tested, though not in

combination. The finite difference solutions include scenar-

ios with both constant (25 km) and variable (10–40 km) ef-

fective elastic thickness, with the latter varying sinusoidally

over a wavelength of 500 km such that the plate contains two

full Te cycles. In the two-dimensional case, Te varies in both

dimensions to produce a smoothed checkerboard pattern of

elastic thickness. Finite difference solutions reported employ

the direct solver UMFPACK (Davis, 2004), as it has been bet-

ter tested in gFlex than the iterative solution methods and is

therefore the default solver. Fig. 6 displays computation time

for all of the benchmarking tests, and Fig. 7 is a comparison

of the SAS_NG, SAS, and FD solution techniques for the

case in which every point at which the solution is calculated

also contains a nonzero load. These solution times do not ac-

count for file input or output or graphics generation. They do

include the initialization time for the solution steps of gFlex;

therefore, a number of the power-law fits to solution time do

not include the times calculated with the smallest arrays, for

which initialization time is a significant fraction of the total

model runtime.

The factors that determine computation time are the so-

lution method and the inclusion of periodic boundary con-

ditions. While the SAS_NG method scales the best with in-

creasing grid size, it is so much slower than the other meth-

ods for standard model-run grid sizes that it will not often ex-

ceed their speed. The finite difference method is the fastest if

every cell contains a load, but can become slower than the an-

Number of grid cells

Figure 7. Comparison between solution methods where every cell

in the domain contains a load. The ungridded superposition of an-

alytical solutions (SAS_NG) scales best but in these tests is the

slowest. It can, however, be faster when fewer cells contain loads.

Some fits are to a subset of the data to avoid those solutions that

are so rapid that the amount of time required for the non-solver por-

tions of the code becomes significant. All marker symbols are semi-

transparent, meaning that darker symbols than those that appear in

the legend imply additional data points underneath.

alytical methods if only a few cells contain loads, as analyti-

cal methods must make one set of calculations across the grid

per load. Standard runtimes are between a fraction of a sec-

ond and a few minutes on a personal laptop computer (Dell

XPS 13 Developer Edition running Ubuntu 14.10) (Figs. 6

and 7).

3 Model interfaces and coupling

Some users of gFlex may want to run a single calculation,

while others may want to produce many solutions as part of

a larger-scale numerical modeling exercise, such as an in-

version for elastic thickness or coupling with another model.

Therefore, four different methods to use gFlex have been pre-

pared:

1. standalone, with input files;

2. as part of a Python script;

3. driven by GRASS GIS (Neteler et al., 2012) to simplify

integration of geospatially registered data with the litho-

spheric flexure model;

4. as a component for the CSDMS framework (Syvitski

et al., 2011; Overeem et al., 2013; Peckham et al.,

2013), including its tight integration into Landlab,

a CSDMS-led Python-based Earth-surface modeling

framework that is currently being developed (Hobley

et al., 2013; Tucker et al., 2013, 2015).
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GRASS GIS integration is also possible for model coupling

using Python, including efforts that use the Landlab frame-

work.

3.1 Standalone with input files

Some users may want to employ gFlex as a single calcula-

tion, for example to calculate the flexural response to a set

of loads generated by a sedimentary deposit that was mea-

sured in the field. The user prepares an input file of model

settings, an input ASCII grid of loads, and, should the elastic

thickness be nonuniform, an input ASCII grid of lithospheric

elastic thicknesses. Outputs from this mode of running gFlex

include an ASCII grid of surface deflections and a set of plots

of surface deflections and loads.

3.2 As part of a Python script

gFlex may also be imported as a Python module to be run

either as a standalone simulation or as a component in a

multi-model integration effort. This allows it, for example,

to be a part of a flexural backstripping toolchain or a model

of glacial-isostatic adjustment. Backstripping calculations

may be performed by simply removing the sedimentary load

(Roberts, 1998), or, in the case of a foreland basin, by in-

verting for the mountain belt loading history and lithospheric

elastic thickness that would be required to produce the basin

(Ballato et al., 2016). A programmatic approach is also use-

ful for scenarios in which material infills a depression, but

not over the whole domain and/or not with uniform density.

While the flexure equations require that ρf be constant, a

more flexible way to solve for the effect of infilling mate-

rial is to compute flexural response with ρf = ρair ≈ 0, add

loads based on some set of rules, and then re-calculate flex-

ure iteratively until convergence is achieved. This can occur

in regions with a complex set of sedimentary deposits (see

also Watts et al., 1982; Watts, 2001) and/or to be used for

seawater loading across a shoreline (see also Mitrovica and

Milne, 2003).

3.3 Driven by GRASS GIS

gFlex is also prepared for integration with the open-source

geospatial software GRASS GIS (Neteler et al., 2012) as two

add-ons or extensions named r.flexure and v.flexure, which

are raster and vector operations, respectively. As GRASS

GIS is a map-based application, r.flexure and v.flexure

employ two-dimensional solutions (both analytical and fi-

nite difference), though future extensions of these mod-

ules to compute flexure from line loads along chosen one-

dimensional profiles would be possible. r.flexure can use the

finite difference or SAS solution methods, whereas v.flexure

exclusively uses the SAS_NG solution method to take advan-

tage of its ability to produce solutions for an arbitrary scatter

of point loads. Advantages of GRASS GIS include

1. full integration within a geospatially registered environ-

ment, meaning that data can be used directly as model

inputs, and that model outputs may be compared against

data;

2. a documented and standardized command-line inter-

face;

3. a pre-built and standardized graphical user interface

(GUI).

The graphical user interface is incorporated into the GRASS

GIS wxPython GUI (Landa, 2008; Neteler et al., 2012), and

this is particularly helpful for researchers, who are not as ac-

customed to command-line interaction with computers to use

gFlex with their data. For computer modelers, the GRASS

GIS coupling may be used to support broader model cou-

pling and data–model integration efforts (see, for example,

Srinivasan and Arnold, 1994).

3.4 Modeling frameworks

CSDMS (broadly) and Landlab (in particular) both include

methods for integrating modular blocks of code as part of

their respective efforts towards the community-wide goal

to make modeling of Earth systems less time intensive and

more streamlined (Voinov et al., 2010; Syvitski et al., 2011;

Overeem et al., 2013; Peckham et al., 2013; Hobley et al.,

2013; Tucker et al., 2013, 2015). gFlex is included as a mod-

ular component of the still-in-development Landlab Earth-

surface modeling framework (Hobley et al., 2013; Tucker

et al., 2013, 2015). Landlab integration provides wrapping

with the CSDMS Basic Model Interface (BMI) and Com-

ponent Model Interface (CMI) using the CSDMS Stan-

dard Name construction conventions (Peckham et al., 2013).

The standard interfaces provided by both of these model-

ing frameworks will streamline model coupling that uses

gFlex and help to prevent duplication of effort in building

plate bending models. Furthermore, the inclusion of gFlex

in Landlab will allow numerous Earth-surface systems to be

modeled more precisely (Fig. 1).

4 Application example: Iceland

As a first example to utilize both the ability of gFlex to gen-

erate solutions with variable effective elastic thickness and

its incorporation into GRASS GIS, gFlex is used along with

a simple and efficient GIS-enabled glacier and ice cap model

modified from the work of Colgan et al. (2015) to model a

hypothetical expansion of the Iceland Ice Cap. While the im-

portance of flexural isostasy in ice dynamics modeling has

long been well-known (cf. Cuffey and Paterson, 2010), the

author knows of no dynamic ice model that runs with a vari-

able elastic thickness lithosphere, making this possibly the

first such exercise. Earth’s crust at Iceland has been built by
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Figure 8. This coupled model run for a hypothetical extent of the Iceland ice cap shows the influence of a variable elastic thickness structure

(i). The areal extent of the three ice caps is nearly identical (a, d, g) in this small-scale and largely topographically controlled example.

Flexural isostasy with a constant 3.7 km elastic thickness (c) (following Hubbard, 2006) reduces ice cap extent and causes some interior ice

thickening when compared to the case without flexure (b), as the ice cap conforms to the bowl-shaped depression that it creates. Deformation

in the case with variable elastic thickness (f) is focused along the ridge and extends farther on the southwestern side that has greater elastic

thickness, and modifies the topography of western Iceland (low elastic thickness) to produce spatially variable ice thickness changes (e, h).

the unique intersection of the Iceland hotspot and the Mid-

Atlantic Ridge, which together produce a weak lithosphere

with spatially variable elastic thickness, resulting in short-

wavelength variability in the solid-Earth response to loading.

Here I test the two-way coupling between ice dynamics and

solid-Earth deformation and the differences in steady-state

ice caps that are produced in a modest climate change and

ice cap extent scenario.

This coupled ice dynamics and flexural isostatic model

of Iceland requires four input components: the elastic thick-

ness structure around Iceland, the modern topography of Ice-

land, the modern surface temperature field of Iceland, and

modern precipitation rates across Iceland. The ice cap model

used here (cf. Colgan et al., 2015) employs a shallow-ice ap-

proximation with basal sliding as a linear function of driving

stress, which is intentionally much simpler than the modeling

approach (Hubbard, 2006) that Hubbard et al. (2006) used to

model the Last Glacial Maximum (LGM) Iceland Ice Cap.

This is because the goal here is to show schematically the

importance of including lateral variations in elastic thickness

on the reconstructed thickness of an ice cap for a given pa-

leoclimate, with less emphasis on actually reproducing any

particular extent of the Iceland Ice Cap.

The elastic thickness structure under Iceland, in this

schematic example, is related to the age of the oceanic crust.

Calmant et al. (1990) related elastic thickness to the age of

the lithosphere with the simple equation that results from the

square-root time dependence of lithospheric cooling via ther-

mal conduction (cf. Stein and Stein, 1992):

Te = (2.70± 0.15)
√
1t. (12)

Here, Te is given in kilometers and the age of the lithosphere,

1t , is given in millions of years. As continental material also

exists within the computational window, the elastic thickness

map of Tesauro et al. (2012a, b) is used for all subaerial land-

masses. Across the continental shelves, the oceanic-crust-

based map and the map from Tesauro et al. (2012a, b)

are blended using spline interpolation within GRASS GIS
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(Neteler et al., 2012). The regional age of oceanic crust is

provided by Müller et al. (2008), but their map indicates that

even crust at the ridge in Iceland has an age of 6–7 Ma, re-

sulting in a greater computed effective elastic thickness than

would be expected based on the presence of the ridge or from

heat flow data (e.g., Flóvenz and Saemundsson, 1993). While

the structure of Iceland is certainly more complicated than

the simpler parts of the ridge due to the effects of the hotspot

and its tectonic environs (e.g., Watts and Zhong, 2000; Foul-

ger, 2006), the assumption here is that the lithospheric effec-

tive elastic thickness structure due to the ridge is as if young

crust continued along the Mid-Atlantic Ridge through all of

Iceland, and the elastic thickness map (Fig. 8i) was modified

to approximate this for the sake of this example.

The underlying digital elevation model, GEBCO_08

(British Oceanographic Data Centre , BaODC), includes the

modern ice caps on Iceland, but these are already flexurally

compensated and are small compared to the ice cap modeled

here. While their removal would improve reconstructed ice

discharge, they are ignored due to the schematic nature of

this modeling effort.

Modern temperature and precipitation fields are from the

Monthly NOAA-CIRES (National Oceanographic and At-

mospheric Administration– Cooperative Institute for Re-

search in Environmental Sciences) 20th Century Reanalysis

(V2) by Compo et al. (2006, 2011) (for further background

on their methods, see Whitaker and Hamill, 2002). These

provide twentieth century mean conditions on a 2◦× 2◦

latitude–longitude grid (temperature) or a 94× 192 Gaussian

grid (precipitation). These were cast as point data and inter-

polated using splines in GRASS GIS (Neteler et al., 2012).

Prior to this spline interpolation, temperature was projected

to sea level using the mean cell elevation (with lapse rate of

4.7 ◦C km−1), following Anderson et al. (2014) for ice caps;

after interpolation, the resultant temperatures were then in-

terpolated up to their respective surface elevations using the

same 4.7 ◦C km−1 lapse rate. Although not all of the Ice-

landic surfaces are covered in ice at present, this rule was

prescribed uniformly for the sake of a schematic model.

Three experiments were run: one with no flexure, one with

flexure using a constant elastic thickness of 3.7 km (follow-

ing Hubbard, 2006, and assuming E = 65 GPa), and one in

which the full spatially variable flexure was used. In each of

these runs, temperature was reduced from its present value

by 5 ◦C and ice expanded to cover an area approximately

equal to the currently subaerially exposed continent, approxi-

mately consistent with the previous modeling results of Hub-

bard et al. (2006) and with a temperature change that is much

less than the LGM drop of 10–13 ◦C that was predicted to

cause ice to spread onto the continental shelves as well (Hub-

bard et al., 2006). Mass balance was simulated by a posi-

tive degree-day melt model. June, July, and August temper-

atures were used to compute ablation, with a melt factor of

6 mm d−1 K−1. Precipitation was held constant and all pre-

cipitation was assumed to contribute to positive mass bal-

ance. Each scenario was run for 4000 years to reach full

glacial and isostatic equilibrium, with isostatic equilibrium

being assumed to occur instantaneously to facilitate more

rapid computation of the equilibrium solution.

The results in Fig. 8 summarize the experiments. Figure 8c

and f show the modeled flexural isostatic deformation and

Fig. 8b and e show the deviation from the case with no

isostasy; each of these pairs is for constant and variable elas-

tic thickness, respectively. Figure 8h shows that with variable

elastic thickness (Fig. 8i), ice thickness variability is concen-

trated where lithospheric elastic thickness is low.

The example of isostatic response to ice advance in Iceland

is just one possibility of a feedback between an Earth-surface

(or other geological) process and flexural deformation. Fur-

ther such scenarios involving, for example, orogenesis and

foreland basin formation (in settings such as that studied by

Ballato and Strecker, 2014), rifting (Braun et al., 2013), and

river delta morphologic evolution (Kim et al., 2006), will im-

prove our understanding of the dynamic interactions between

Earth’s surface and subsurface (e.g., Braun et al., 2013).

5 Code availability

gFlex is available from the University of Minnesota

Earth-surface GitHub repository at https://github.com/

umn-earth-surface/gFlex. It runs on Linux, Windows, and

Mac computers running Python 2.(X ≥ 7).Y. It may be

downloaded as an archive that is a snapshot of the state of the

code, or cloned into an updatable copy of the software on the

computer of an end-user. Version 1.0, described in this pa-

per, is stored at https://github.com/umn-earth-surface/gFlex/

releases/tag/v1.0. gFlex is also stored on the Python Pack-

age Index (PyPI) at https://pypi.python.org/pypi/gFlex for

easy automated download and installed with the command-

line tool pip. gFlex documentation is available in its file

README.md that is displayed at the main GitHub reposi-

tory page, and some additional information is presented at

the gFlex CSDMS Wiki page at http://csdms.colorado.edu/

wiki/Model:GFlex.

Interfaces to GRASS GIS and Landlab are available

from their respective repositories. The GRASS GIS inter-

face works with GRASS GIS 7.X and can be downloaded

and installed automatically with the g.extension tool within

GRASS (Neteler et al., 2012) or be downloaded through the

subversion repository at http://trac.osgeo.org/grass/browser/

grass-addons/grass7. The Landlab interface is located in

the Landlab GitHub repository at https://github.com/landlab/

landlab/tree/master/landlab/components/gflex. Both require

a locally installed copy of gFlex to run.

6 Conclusions

gFlex is a new, open-source, easy-to-use model to compute

isostatic deflections of Earth’s lithosphere with uniform or
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nonuniform flexural rigidity due to arbitrarily distributed sur-

face loads. It can be run as a standalone model through a con-

figuration file, a Python module, a component in the Landlab

and CSDMS community modeling frameworks, or via one of

two GRASS GIS add-ons for a direct link to geospatial data.

Its open-source code base may be updated and improved by

the community, it may be easily installed using automated

tools, and it is poised to be coupled with other models in

efforts to understand interactions between multiple compo-

nents of the Earth system. These attributes all embody my

primary aim in creating gFlex: to provide an accessible set of

flexural isostatic solutions for work across the geosciences

by field scientists and modelers alike.
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Appendix A: Derivation: flexure

Figure A1. Schematic of the bending of a buoyant plate under a load

that is long in the y orientation. This figure highlights the symme-

try in the fiber stresses associated with the bending moment; shear

forces should therefore be visualized within each segment of the

plate.

Plates resist bending (i.e., flexure) through fiber stresses

that develop in response to loading-induced deformation. In

this appendix, the background of the theory is provided by an

abridged derivation of plate flexure, which provides the back-

ground for the assumptions and solution methods employed

in both the analytical and finite difference one-dimensional

and two-dimensional solutions. Components of the theoret-

ical background are also relevant for the various boundary

condition options introduced in the main text.

A derivation of flexural response to a load can be subdi-

vided into two components. The first is the bending moment,

which describes the internally generated torques that resist

bending. The second is the relationship between the bending

moment and the imposed load.

A1 Bending moments

The bending moment of a plate, M , is the resistance of the

plate to bending. This resistance exists because when a plate

of > 0 thickness is bent, layers within the plate on the inside

of the curve are placed under compression and layers within

the plate on the outside of the curve are placed under tension.

These fiber stresses are denoted σx′x′ in the along-plate co-

ordinate system (x′, z′) depicted in Fig. A1, and cause each

infinitesimal layer of the plate to act like a spring that resists

plate bending.

Classical (Kirchhoff–Love) plate theory is derived using

an approximation of cylindrical bending (cf. Love, 1888).

Over short distances, the bent plate is assumed to follow the

arc of a circle (Fig. A1). Arc length, s, is the product of the

radius of curvature, rc, and the angle over which the arc is

defined, θ .

s = rcθ (A1)

The layer halfway between the top and the bottom of a ho-

mogeneous plate experiences no net extension or shortening

during bending. This midpoint layer is therefore taken to be

the reference radius of curvature, rc = r0, of a plate that ex-

tends from r =−Te/2 to r = Te/2, where Te is the effective

elastic thickness of the plate. Flexural isostatic deflections

are small compared to the length scale over which they oc-

cur, meaning that r0� Te/2, and therefore approximates the

true radius of curvature regardless of through-plate position

z′. To calculate the range of arc lengths, s, that exist above

and below the reference layer at r0, one can note that Eq. (A1)

describes a linear relationship between arc length and radius

of curvature. Therefore, it is possible to use the definition of

strain and Eq. (A1) to define the fiber strain in each layer as a

function of its distance from the midpoint. The normal strain

along the x′ orientation, εx′x′ , is given by

εx′x′ =
1s

s
=
(r0− r)

r0
=
z′

r0
. (A2)

Here, z′ is defined to be zero at r0 and θ is held constant

and therefore cancels out. Sign conventions are unimportant

due to the symmetry of the problem above and below the

midpoint layer (Fig. A1).

As radius of curvature decreases, curvature increases:

1

rc
≡

∣∣∣∣∣∣∣∣∣
d2z

dx2(
1+

(
dz
dx

)2
)3/2

∣∣∣∣∣∣∣∣∣ . (A3)

The long horizontal length-scales involved in flexure prob-

lems result in a small slope, (dz/dx)� 1, and this squared

becomes so much smaller than 1 that the denominator on the

right-hand side ≈ 1. This small slope also allows the small

angle approximation to be used, meaning that (x′,y′)≈

(x,y). As noted above, sign convention is unimportant – half

of the plate experiences tension and the other half experi-

ences compression – so taking the absolute value, which is

included in the definition in order to maintain a positive ra-

dius of curvature, becomes unnecessary. Substituting w for z

and r0 for rc, removing the slope-related term in the numera-

tor of Eq. (A3), and combining it with Eq. (A2), provides the

magnitude of fiber strains as a function of distance from the

midplane in the plate and curvature of the plate:

εxx = εx′x′ =
z′

r0
= z′

d2w

dx2
(A4)
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Equation (A4) becomes important in the final step to define

the bending moment because it relates fiber strains directly

to deflections that can be measured and/or modeled.

The bending moment itself, M , balances the torques gen-

erated by plate flexure. It therefore describes the resistance

of the plate to bending, and is defined as the sum through

the thickness of the plate of all fiber stresses σx′x′ times their

respective lever arms z′ (cf. Turcotte and Schubert, 2002).

M =

Te/2∫
−Te/2

σxxz
′dz′. (A5)

It is possible to rewrite this in terms of strain instead of

stress via an elastic constitutive relationship (Hooke’s Law),

σxx = Eεxx + νσyy . Here, E is Young’s modulus, which is

a generalized spring constant that typically ranges between

1010 and 1011 Pa for rock (Turcotte and Schubert, 2002, p.

106), and is 65 GPa by default in gFlex. ν is Poisson’s ra-

tio, which describes how much material tends to extend (or

shorten) in one direction when shortened (or extended) in

another, and is commonly taken to be 0.25 for the litho-

sphere. An analagous equation, σyy = Eεyy + νσxx , exists

in the y orientation. The stress required for these additional

strains reduces the strain in a given orientation by a factor of

1/(1− ν2):

M =
E

1− ν2

Te/2∫
−Te/2

εxxz
′dz′. (A6)

In the one-dimensional case, εyy = 0. Both E and ν lie out-

side of the integral because they are assumed constant over

z′.

It is possible to solve for the bending moment in one di-

mension by using Eq. (A4) to replace εxx in Eq. (A6). As the

orientation of the curvature (d2w/dx2) is orthogonal to the

direction of integration, the integral is simple to solve and

results in the solution for the bending moment:

M =
ET 3

e

12(1− ν2)

d2w

dx2
. (A7)

The terms to the left of the derivative define the scalar flex-

ural rigidity, D:

D =
ET 3

e

12(1− ν2)
. (A8)

AsD is the key parameter that controls flexural response, and

is a function of Te, E, and ν, gFlex contains the additional

simplifying assumption that E and ν are uniform constants.

This permits variations in scalar flexural rigidity to map to

variations in effective elastic thickness via Eq. (A8). It pre-

vents overparameterization in gFlex, and implicitly states the

assumption that changes in the effective elastic thickness of

the lithosphere, cubed, are more significant than changes in

Poisson’s ratio, squared, or Young’s modulus.

To generalize the bending moment of a plate that is loaded

in two dimensions, one can start by writing a vector of cur-

vatures, κ (cf. van Wees et al., 1994):

κ̂ =


∂2

∂x2

∂2

∂y2

∂2

∂x∂y
+

∂2

∂y∂x

 ; (A9)

κ = κ̂w =


∂2w

∂x2

∂2w

∂y2

∂2w
∂x∂y
+

∂2w
∂y∂x

= 1

z′

εxxεyy
γxy

 . (A10)

The first term in κ , εxx/z
′, scales with the x-directed nor-

mal strain that is also part of the one-dimensional solution.

εyy/z
′ is the equivalent for y-oriented fiber normal strains,

and γxy/z
′ is the fiber shear strain term that accounts for tor-

sion.

The flexural rigidity must also be defined in three dimen-

sions, and is defined here following linear elasticity:

D=D

1 ν 0

ν 1 0

0 0 1−ν
2

 . (A11)

Using Eqs. (A10) and (A11), one can define the bending

moment as

M = Dκ . (A12)

Solving Eq. (A12) for only the upper (left) terms allows one

to recover Eq. (A7), the one-dimensional case.

A2 Force and torque balance

A static lithospheric plate that experiences the downward

force of an imposed load, qdx, responds with differential

shear forces, V and V+dV , that develop in response to bend-

ing. Further vertical normal stresses that influence plate flex-

ure are generated by the sum of the buoyant restoring force

of displaced mantle, ρmg(−w), and additional driving forces

by any surface loads that fill the flexural depression, ρf gw.

Summed together, these form the additional term −1ρgw,

where 1ρ = (ρm− ρf ) The total vertical force balance is

therefore∑
F = qdx−1ρgwdx+ (V + dV )−V = 0, (A13)

dV

dx
−1ρgw =−q. (A14)

These shear forces generate torques that must be balanced

in turn by the bending moments. Here I explicitly ignore end

loads because they are not part of the numerical solution

in gFlex, which was designed with surface loads in mind,

though they are straightforward to include (see van Wees
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et al., 1994; Turcotte and Schubert, 2002; Braun et al., 2013).

The resultant torque (τ ) balance is:∑
τ =M− (M+dM)+

dx

2
[−V − (V + dV )]= 0. (A15)

After noting that dV � V , Eq. (A15) simplifies to

dM =−V dx. (A16)

This can be rearranged to define the shear force as the neg-

ative slope of the bending moment, which in turn is propor-

tional to the curvature of the deflection (Eq. A7):

V =−
dM

dx
=−

d

dx

(
D

d2w

dx2

)
. (A17)

This observation is key to defining the 0Moment0Shear and

0Slope0Shear boundary conditions (Table 1 and Fig. 4).

Equations (A14) and (A17) can be combined by substitut-

ing V in Eq. (A14) to relate the bending moment and deflec-

tion to the imposed load, q.

d2M

dx2
+1ρgw = q. (A18)

d2

dx2

(
D

d2w

dx2

)
+1ρgw = q. (A19)

To solve the two-dimensional case, one can follow van

Wees et al. (1994) in using the differential operators for cur-

vature in κ̂ (Eq. A9) to generalize the one-dimensional flex-

ural solution. This is then combined with the infill and buoy-

ancy term. Written in compact form, the two-dimensional

flexural isostatic equation is:

κ̂TDκ +1ρgw = q. (A20)
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