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Abstract. Ultraviolet–visible (UV–Vis) satellite retrievals of

trace gas columns of nitrogen dioxide (NO2), sulfur diox-

ide (SO2), and formaldehyde (HCHO) are useful to test and

improve models of atmospheric composition, for data as-

similation, air quality hindcasting and forecasting, and to

provide top-down constraints on emissions. However, be-

cause models and satellite measurements do not represent

the exact same geophysical quantities, the process of con-

fronting model fields with satellite measurements is compli-

cated by representativeness errors, which degrade the quality

of the comparison beyond contributions from modelling and

measurement errors alone. Here we discuss three types of

representativeness errors that arise from the act of carrying

out a model–satellite comparison: (1) horizontal represen-

tativeness errors due to imperfect collocation of the model

grid cell and an ensemble of satellite pixels called superob-

servation, (2) temporal representativeness errors originating

mostly from differences in cloud cover between the modelled

and observed state, and (3) vertical representativeness errors

because of reduced satellite sensitivity towards the surface

accompanied with necessary retrieval assumptions on the

state of the atmosphere. To minimize the impact of these rep-

resentativeness errors, we recommend that models and satel-

lite measurements be sampled as consistently as possible,

and our paper provides a number of recipes to do so. A prac-

tical confrontation of tropospheric NO2 columns simulated

by the TM5 chemistry transport model (CTM) with Ozone

Monitoring Instrument (OMI) tropospheric NO2 retrievals

suggests that horizontal representativeness errors, while un-

avoidable, are limited to within 5–10 % in most cases and of

random nature. These errors should be included along with

the individual retrieval errors in the overall superobservation

error. Temporal sampling errors from mismatches in cloud

cover, and, consequently, in photolysis rates, are of the or-

der of 10 % for NO2 and HCHO, and systematic, but partly

avoidable. In the case of air pollution applications where

sensitivity down to the ground is required, we recommend

that models should be sampled on the same mostly cloud-

free days as the satellite retrievals. The most relevant rep-

resentativeness error is associated with the vertical sensitiv-

ity of UV–Vis satellite retrievals. Simple vertical integration

of modelled profiles leads to systematically different model

columns compared to application of the appropriate averag-

ing kernel. In comparing OMI NO2 to GEOS-Chem NO2

simulations, these systematic differences are as large as 15–

20 % in summer, but, again, avoidable.

1 Introduction

Chemistry transport models (CTMs) are increasingly being

evaluated with satellite column retrievals from ultraviolet–

visible (UV–Vis) solar backscatter satellite instruments.

Satellite retrievals of trace gas concentrations constitute

a rich source of information on key tropospheric species

such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and

formaldehyde (HCHO) that is beginning to be exploited on

an ever-larger scale. UV–Vis satellite observations are being

used to
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– evaluate the capability of models to simulate atmo-

spheric concentrations of various species (e.g. Uno et

al., 2007; Herron-Thorpe et al., 2010; Huijnen et al.,

2010a),

– drive data assimilation experiments aimed at improv-

ing estimates of the atmospheric state (e.g. Wang et al.,

2011; Inness et al., 2013; Miyazaki et al., 2012),

– provide constraints on uncertain model inputs such as

emission inventories through inverse modelling (e.g.

Wang et al., 2007; Müller et al., 2008; Mijling and

van der A, 2012; Barkley et al., 2013), and to identify

new emissions sources (for instance newly built power

plants; Zhang et al., 2009),

– test processes influencing the lifetime of crucial chemi-

cal species (e.g. Schaub et al., 2007; Lamsal et al., 2010;

Beirle et al., 2011; Stavrakou et al., 2013), or, more

broadly, the chemical regime of the atmosphere (e.g.

Martin et al., 2004; Duncan et al., 2010).

When comparing model simulations to satellite measure-

ments, both modelling errors and measurement errors are

usually taken into account. Measurement errors are often rea-

sonably well characterized (e.g. Boersma et al., 2004; De

Smedt et al., 2012; Lee et al., 2009), but modelling errors are

more difficult to establish, because of the large number of un-

certain model processes, uncertain boundary (e.g. emissions)

and initial conditions, and unresolved or misrepresented as-

pects of atmospheric physics and chemistry. Modelling er-

rors are best characterized by comparing model simulations

to observations. Unfortunately, the observations available for

such comparisons are mostly limited in vertical range and

regional coverage such as in the case of ground-based net-

works, or they are merely sporadic in space and time, such

as for aircraft campaigns. Satellite data records are based on

robust retrieval methods, provide global coverage, and cover

decadal time spans. Satellite data have recently been success-

fully used for dedicated modelling error studies (e.g. Lin et

al., 2012; Stavrakou et al., 2013).

When using satellite data, modellers need to be aware that

most UV–Vis retrievals generally contain little information

on the vertical distribution of a species (the exception is

stratospheric ozone profile retrieval in the far UV of the spec-

trum, but this species will not be considered in this study).

Here we focus on the application of tropospheric UV–Vis re-

trievals, and we limit ourselves to retrievals of tropospheric

species NO2, SO2, and HCHO for comparison with models.

These species are all relatively short-lived and their retrievals

are generally based on differential optical absorption spec-

troscopy (DOAS; Platt and Stutz, 2008). DOAS retrievals in

the UV–Vis match relevant absorption cross-section spectra

to the solar backscatter spectrum measured by the satellite in-

strument in order to infer the column integral (slant column

density, expressed in molecules cm−2) of a species along the

effective atmospheric photon path. The subsequent retrieval

step requires the conversion of the slant column density into

a vertical column density, and this conversion depends on

knowledge (assumptions) of the state of the atmosphere, e.g.

on the presence of clouds and aerosols, the vertical distri-

bution of the species, and surface properties. When these as-

sumptions are very different from the atmospheric state mod-

elled by a CTM, this will lead to inflated differences between

modelled (by, say, CTM 1) and retrieved columns (aided by

CTM 2). Such differences, however, can be avoided or in

any case minimized, if the user of satellite data accounts

for the representativeness and averaging kernels of the satel-

lite data while interpreting model simulations. Representa-

tiveness here is defined as the context in which the satellite

measurement holds, i.e. the horizontal coverage, the tempo-

ral representativeness, and the vertical information content of

the retrieval. It is the goal of this study to provide guidelines

on how users can take the representativeness of the UV–Vis

column retrievals into account when comparing CTM simu-

lations to satellite retrievals, and by how much the model–

retrieval differences would inflate if aspects of representa-

tiveness are neglected.

In Sect. 2, we introduce the definitions and terminology

for sources of error in the comparison of models and ob-

servations, and relate these to what is common practice in

the data assimilation community. In doing so, we follow the

notation proposed by Ide et al. (1997), also used in rele-

vant work by Rodgers and Connor (2003) and Migliorini et

al. (2008). Section 3 will give an overview of the common

features shared by various UV–Vis retrievals with an empha-

sis on the assumptions made in the retrieval approach that are

relevant to modellers and other data users, and it provides

a recipe for constructing an appropriate observation opera-

tor. Section 4 introduces the TM5 and GEOS-Chem models

that we will evaluate to demonstrate the nature and magni-

tude of representativeness errors. In Sect. 5, we discuss the

error budgets associated with a confrontation of CTM sim-

ulations with satellite measurements, and, in particular, how

the representativeness errors contribute to that budget. Sec-

tion 6 presents the result of a practical assessment of repre-

sentativeness errors made when comparing global CTM sim-

ulations of tropospheric NO2 to satellite measurements from

the Ozone Monitoring Instrument, and provides recommen-

dations on how to minimize these.

2 Comparing models and UV–Vis satellite

measurements

2.1 UV–Vis satellite retrievals

Over the last two decades, tropospheric NO2, SO2, and

HCHO columns have been retrieved from measurements by

the GOME, SCIAMACHY, OMI, and GOME-2 (on Metop-

A and Metop-B) satellite sensors. The retrievals generally
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use a two-step approach, based on the DOAS technique. In

step 1, the reflectance spectra measured by the satellite in-

struments are modelled with a fitting routine that accounts

for the spectral signatures from trace gas absorption, inelas-

tic scattering, and (broadband) Rayleigh, Mie, and surface

scattering. For each of the above species, spectral regions

are selected where the absorption structures are most dis-

tinct, and spectral interference from other species is minimal.

The species’ slant column density is then calculated from the

inferred absorption in combination with knowledge of the

species’ absorption cross-section. Before converting the slant

column densities into tropospheric vertical columns, back-

ground corrections may be required to account for the fact

that a portion of the slant column has originated from the

species’ absorption of light in the stratosphere.

In step 2 of the retrieval, the tropospheric slant column

densities are converted into vertical column estimates, us-

ing a radiative transfer (forward) model and forward model

parameters, that influence the retrieval. For DOAS UV–Vis

retrievals, forward model parameters typically include the

sensor viewing geometry, and best estimates of the surface

albedo, terrain height, cloud and aerosol properties (or an ef-

fective representation thereof), as well as the a priori verti-

cal distribution of the species (xa) of interest. The radiative

transfer calculations are expressed as so-called air mass fac-

tors, defined as the (forward) modelled ratio of slant (NS) and

vertical columns (NV), given the set of forward model pa-

rameters: M =NS/NV. Tropospheric air mass factors have

been shown to be very sensitive to choices for surface albedo,

for cloud correction, and for a priori vertical distribution,

and, consequently, air mass factor uncertainties are large, and

dominate the retrieval error budget for tropospheric columns

(e.g. Boersma et al., 2004; Millet et al., 2006; Lee et al.,

2009).

Data users need to be aware of the important role played

by clouds in UV–Vis retrievals. With the exception of ele-

vated plumes resulting from volcanoes, lightning, and air-

craft, most tropospheric NO2, SO2, and HCHO generally re-

sides in the lower atmosphere, close to their surface sources.

Clouds thus typically obscure the absorbing species from

(satellite) view, leading retrieval groups to advise against the

use of their satellite data when taken under cloudy condi-

tions. Trace gas retrievals under cloudy situations suffer from

larger errors (e.g. Schaub et al., 2006), because the detectable

fraction corresponds to the column above the cloud, leav-

ing a so-called “ghost column” below the cloud to be added

somehow. Because ghost columns are generally taken from

climatology or a CTM, they do not contribute to the mea-

sured information in any way, so that inclusion of columns

under cloudy situations compromises a model–satellite com-

parison, unless the averaging kernels are taken into account

(Schaub et al., 2006). In data assimilation systems, cloudy

measurements still provide valuable information on the abun-

dance and vertical information of trace gases above the cloud,

for instance for constraints on e.g. lightning-produced NO2

(Boersma et al., 2005) and in recent cloud-slicing techniques

(Choi et al., 2014; Belmonte-Rivas et al., 2015).

DOAS UV–Vis nadir retrievals are characterized by a ver-

tical sensitivity that generally reduces with increasing atmo-

spheric pressure, and require an a priori vertical profile of

the species xa to interpret the slant column (e.g. Palmer et

al., 2001; Richter et al., 2006). Because Rayleigh scatter-

ing of sunlight is more effective in the UV, fewer photons

reach the lower atmosphere in the spectral range where SO2

has distinct absorption spectral features (300–330 nm), com-

pared to the spectral windows for HCHO (340–360 nm) or

NO2 (400–500 nm). This implies that the measurement sen-

sitivity to species in the lower atmosphere is lowest for SO2,

followed by HCHO, and highest for NO2. The contribution

of the a priori profile to the retrieved column increases with

decreasing sensitivity of the measurement. Uncertainty in the

species a priori vertical profile thus propagates stronger for

SO2 (up to 22 % error; Lee et al., 2009), and somewhat less

for NO2 (10–15 % error, e.g. Hains et al., 2010; Vinken et al.,

2014).

This a priori profile error contribution to model–satellite

comparisons can be eliminated by application of the averag-

ing kernel to the model output (Eskes and Boersma, 2003;

Boersma et al., 2004; Rodgers and Connor, 2003). The aver-

aging kernel for UV–Vis retrievals describes the relationship

between the true column and the estimated, or retrieved col-

umn ŷo where the hat denotes that the retrieval represents an

estimated value of the true column:

ŷo = A · xtrue (1)

with A the averaging kernel whose discretized elements can

be described as Al =
ml

M(xa)
, with ml the scattering weights

(Palmer et al., 2001), or box air mass factors for layer l (see

Eskes and Boersma, 2003, and Boersma et al., 2004, for more

detail). Note that the retrieval problem has been linearized

around xa = 0, related to the weak absorber character of the

species, which implies that the a priori state does not explic-

itly appear in Eq. (1).

2.2 Model evaluation with UV–Vis satellite retrievals

A comparison between satellite measurements ŷo (e.g. the re-

trieved tropospheric NO2 columns within a model grid cell),

and the model state xm (e.g. the modelled vertical NO2 dis-

tribution in the troposphere), in the form of measurement-

minus-model departures (d) is expressed as

d = ŷo−Hxm (2)

with H the observation operator that describes the relation

between the observed data and the modelled state. Apart

from the observation errors (σo in the following) and the

modelling errors (σm), we also need to take into account rep-

resentativeness errors (σr) associated with the fact that model

simulations and satellite measurements provide different rep-
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resentations of a geophysical quantity. We generalize the rep-

resentativeness errors as the errors introduced in a satellite-

to-model evaluation by an incorrect description of the rela-

tion between the grid cell mean concentrations and the satel-

lite retrieval(s), i.e. we can think of them as errors in the ob-

servation operator H. In data assimilation, representativeness

errors are normally included in the observation errors (e.g.

Jones et al., 2003; Miyazaki et al., 2012).

Substantial representativeness error may arise when the

observation operator H is simplified and the model is not

sampled in a manner fully consistent with the satellite ob-

servation. We can identify three types of representativeness

errors associated with model–satellite comparisons:

1. Spatial representativeness errors. Such errors will arise

because models provide a spatially smoothed represen-

tation of the atmospheric state, whereas satellite mea-

surements provide “snapshots”, and often resolve vari-

ability at scales (pixels) smaller than the model grid cell.

2. Temporal representativeness errors. In applications fo-

cusing on clear-sky situations such as emission esti-

mates, failure to sample the model for the same clear-

sky conditions and overpass time as the satellite mea-

surements, will lead to systematic sampling errors.

3. Vertical representativeness errors. Because the sensi-

tivity of the UV–Vis satellite retrievals is altitude-

dependent (Palmer et al., 2001), UV–Vis retrievals

should be regarded as estimates of the state weighted by

the averaging kernel (Eskes and Boersma, 2003). Ne-

glecting the averaging kernel or vertical sensitivity of

the retrieval in the comparison will inevitably introduce

additional representativeness errors to the comparison

in Eq. (2).

To minimize these representativeness errors in comparing

CTMs and satellite measurements, we recommend to follow

the recipe given in Sect. 3.2.

This recipe on how to compare a CTM with satellite ob-

servations is a set of mathematical operations on satellite

and model data. This is particularly relevant for short-lived

species that have a high spatial and diurnal variability such as

NO2, SO2, and HCHO (e.g. Boersma et al., 2008; Vrekous-

sis et al., 2009; Barkley et al., 2013). Details of the approach

may differ (e.g. spatial interpolation of the model state to the

location of the pixel, averaging over different model times

close to the satellite measurement time, replacing the a pri-

ori profile with the model profile in the retrieval), as long

as the general principle of consistent sampling is observed.

We advise against a comparison of the original satellite col-

umn (retrieved with a priori profile xa) to the model column

x̂m because in that case differences between the a priori and

modelled vertical profiles would inflate the overall error d,

see Sect. 6 and recommendations in Sect. 2.3 of Boersma et

al. (2004), and Duncan et al. (2014).

3 Theoretical model evaluation error budget

3.1 Sources of errors in evaluating CTMs with UV–Vis

retrievals

A comparison between model simulations and satellite re-

trievals begins with a comparison of their theoretical capa-

bilities. A model–satellite comparison will be influenced by:

1. modelling errors σm, related to an incomplete knowl-

edge and description of the atmospheric state xm,

2. retrieval errors σo, because of instrument noise and un-

certainty in the (external) forward model parameters,

and

3. representativeness errors σr, arising from fundamental

differences between the-atmospheric sampling by mod-

els and satellites, i.e. errors in the observation operator

H.

Assuming that these error terms are independent, the error

analysis for a satellite–model column difference
(
ŷo−Hxm

)
can be written as:

σ =
(
σ 2

o + σ
2
m+ σ

2
r

)1/2

(3)

with σ 2
o the best estimate for the (relative) column retrieval

errors, σ 2
m for the (relative) modelling error, and σ 2

r the con-

tribution to the error arising from the act of carrying out the

comparison itself (i.e. from errors in the observation opera-

tor). Some studies (e.g. Jones et al., 2003) include representa-

tiveness errors in the observation errors. Below we will show

that representativeness errors may contribute substantially to

the overall error in satellite–model confrontations.

The retrieval, modelling, and representativeness errors will

all have systematic and random components. In principle,

one would like to distinguish between the random and sys-

tematic contributions, but in practice this is very compli-

cated, because many systematic contributions to retrieval and

model errors are only weakly correlated in space and time.

Examples of subtle systematic retrieval effects are errors

in individual albedo values with a small spatial correlation

length but with 100 % correlation in time (for instance be-

cause residual cloud effects in the albedo climatology are

strongly variable from one location to the other; Kleipool et

al., 2008). When averaged over a larger region such as the

spatial extent of a coarse model grid cell, the impact of such

errors tends to reduce. Likewise, models will suffer from sys-

tematic errors in for instance the description of vertical trans-

port. In particular circumstances, such as strong, small-scale

convective activity, such errors tend to be acute, but in an av-

erage sense, such as comparisons aggregated over a month

and a region, we may expect these errors to be smaller.
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3.2 Recipe for minimizing representativeness errors

(1) The first step in comparing satellite observations to model

simulations is to ensure that the satellite measurements are

spatially representative for the area of the model grid cell.

This is achieved by calculating the weighted average of all

individual retrievals ŷoi within the superobservation model

grid cell over the entire area covered by all (valid) retrievals,

where the weight is given by the pixel area wi (in km2):

ŷo =

∑
i

wi ŷ
o
i∑

i

wi
. (4)

If the model grid cell happens to be smaller than the satellite

pixel, Eq. (4) will reduce to ŷo = ŷ
o
1 for grid cells that are

completely overlapped by a single satellite pixel (w1 = 1).

(2) The second step is to sample the CTM field sequence

xm [t], here expressed as a discrete series of periodic fields

with t an integer, when model time t is closest to the satellite

overpass time to:

xm = xm [t]δ [t] , with δ [t]=

{
0, t 6= to
1, t = to .

(5)

The model sequence is sometimes also sampled with

somewhat looser criteria, by requiring that the absolute

model–satellite time difference stays within 1–2 h (e.g. Mar-

tin et al., 2003).

(3) The third step is to apply the averaging kernel on the

model vertical distribution xm to obtain the model estimate

ŷm that can be directly compared to the observed state ŷo:

ŷm = Axm =

L∑
l=1

AlSlxm,l, (6)

where Sl are the components at the lth vertical layer of an

operator that executes a mass-conserving vertical interpola-

tion or integration followed by a conversion to sub-columns

(molecules cm−2) in the case that the model vertical distri-

bution xm,l is not yet given in those units. The product of the

mathematical expressions (5) and (6) forms the observation

operator H in Eq. (2), which describes the relation between

the superobservation and the modelled state.

3.3 Representativeness errors in evaluating CTMs with

UV–Vis retrievals

The total representativeness error σr is composed of horizon-

tal representativeness errors, (temporal model) sampling er-

rors, and vertical smoothing errors, and these three contribu-

tions may be assumed to be largely uncorrelated:

σr =

(
σ 2
h + σ

2
t + σ

2
v

)1/2

. (7)

For an appropriate comparison between model simulations

and satellite retrievals, it is important to sample the CTM

as closely as possible to the satellite’s sampling of the atmo-

sphere (see Sect. 3.2). These may seem like trivial conditions

for comparison, yet one or more of these conditions are often

violated.

4 Data used in this study

4.1 Satellite data

In this study, we use tropospheric NO2 retrievals from the

Dutch OMI NO2 (DOMINO) algorithm v2.0 (Boersma et

al., 2011). These retrievals proceed along the lines dis-

cussed above, with spectral fitting of NO2 in the 405–

465 nm window (van Geffen et al., 2015), data assimilation

of the NO2 slant columns in the TM4 chemistry transport

model (Williams et al., 2009) to estimate the stratospheric

background (Dirksen et al., 2011), and final conversion of

the tropospheric slant columns with air mass factors based

on radiative transfer calculations with the DAK model. In

the DOMINO algorithm, altitude-dependent air mass factors

(AMFs) are interpolated from pre-calculated look-up tables

using the best available information on the satellite view-

ing geometry, surface albedo (Kleipool et al., 2008), and

terrain height (3 km resolution elevation data provided with

Aura data). Subsequently, the local altitude-dependent AMFs

are combined with the predicted local vertical NO2 distri-

butions (from TM4), to produce the (tropospheric) AMFs.

The AMF step also includes a correction for the temperature-

dependency of the NO2 absorption cross-section (Boersma et

al., 2004), because only the 220 K cross-section is used in the

spectral fit. The DOMINO v2.0 data have been evaluated in

a number of validation exercises (e.g. Irie et al., 2012; Ma

et al., 2013; Lin et al., 2014), showing their quality and use,

although a number of relevant improvements is planned and

currently being implemented (Maasakkers, 2013; van Geffen

et al., 2015). DOMINO v2.0 has been used in many applica-

tions and model studies (e.g. Stavrakou et al., 2013; Castel-

lanos et al., 2014; McLinden et al., 2014; Verstraeten et al.,

2015), which makes the data product well suited for evaluat-

ing satellite-to-model comparisons and the errors associated

with such comparisons, which is the purpose of this study.

CTMs are the central tools to simulate tropospheric con-

centrations of NO2, SO2, and HCHO, and to help inter-

pret and use satellite measurements of these species. For

the short-lived species studied here, previous studies indicate

modelling biases of ±20–30 % for NO2 (e.g. van Noije et

al., 2006), and 20–50 % for HCHO (e.g. Dufour et al., 2009;

Williams et al., 2012) over regions with substantial pollution.

4.2 TM5

We use the TM5, the global 3-D CTM version 3.0 (Hui-

jnen et al., 2010b) with a grid of 3◦ longitude× 2◦ lati-

tudes× 34 vertical layers, and a model top at 0.1 hPa (Krol et

al., 2005). The TM5 model is used in many studies for atmo-
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spheric chemistry (e.g. Williams et al., 2014), aerosol haze

(e.g. von Hardenberg et al., 2012), data assimilation, and in-

version applications (e.g. Hooghiemstra et al., 2012; Krol et

al., 2013). The model is driven by ERA-Interim meteorolog-

ical reanalysis data from the European Centre for Medium

Range Weather Forecasts (ECMWF) (Dee et al., 2011) and

the base time step is 1 h. In the version used here, TM5 op-

erates with Carbon Bond Mechanism 4 chemistry (Gery et

al., 1989) to describe the production of ozone, hydrogen ox-

ide radicals (HOx =OH+HO2) and oxidation of nitrogen

oxides (NOx =NO+NO2), SO2, and volatile organic com-

pounds (VOCs), with 40 species, 64 gas-phase, and 16 pho-

tolysis reactions. In TM5, SO2 is oxidized in clouds and

on aerosols, and nighttime hydrolysis of N2O5 into nitric

acid (HNO3) is parametrized with a global mean uptake co-

efficient of 0.02 following recommendations by Evans and

Jacob (2005). NOx emissions are from the RETRO inven-

tory for the anthropogenic sectors (Regional Emission inven-

tory in ASia – REAS for Asia) with a total of 33 Tg N yr−1,

9 Tg N yr−1 from soil, 5 Tg N yr−1 from biomass burning

(from the Global Fire Emissions Database v2 (GFED2) van

der Werf et al., 2006), and 6 Tg N yr−1 for lightning. Global

anthropogenic SO2 emissions are taken from the AeroCom

project at 108 Tg SO2 yr−1 (Dentener et al., 2006). Bio-

genic VOC emissions, including the important HCHO and

its precursor isoprene, are from the ORCHIDEE database

(Lathière et al., 2006), and are 10 Tg C yr−1 for HCHO and

565 Tg C5H8 yr−1 for isoprene. We simulated the year 2006

with a 1-year spin-up.

TM5 simulations of NO2 and HCHO have been evaluated

by Huijnen et al. (2010b) and Williams et al. (2012). These

studies indicate that tropospheric NO2 columns in TM5 are

20–30 % low compared to DOMINO v2.0 columns, but the

model captures the seasonality, and shows realistic vertical

distributions of NO2 relative to INTEX-B aircraft measure-

ments. TM5 captures the seasonality of HCHO tropospheric

columns but also overestimates these columns by 0–50 %,

partly because of inadequate photolysis rates in the model

(Williams et al., 2012).

4.3 GEOS-Chem

We also use the GEOS-Chem model, v9-02i, with a grid

of 2.5◦ longitude× 2◦ latitude× 47 vertical layers, and the

model top at 80 km. The GEOS-Chem model is a CTM in

use by a large community of scientists for a wide range of

applications including, shipping NOx plume-in-grid chem-

istry (Vinken et al., 2011), and estimating isoprene and

ammonia emissions (e.g. Millet et al., 2008; Paulot et al.,

2014). GEOS-Chem is driven by GEOS-5 meteorological

fields from NASA GMAO, with a time step of 30 min. As

TM5, GEOS-Chem uses a condensed O3–NOx–HOx–VOC–

aerosol chemistry scheme (described in Mao et al., 2010, and

references therein). The standard chemistry scheme has 66

species, and 236 chemical reactions. GEOS-Chem takes into

account heterogeneous chemistry on aerosol and cloud par-

ticles (Mao et al., 2010), including the uptake of N2O5 on

aerosols leading to nighttime HNO3 formation following the

parametrization by Evans and Jacob (2005). Anthropogenic

NOx emissions are from the global EDGAR 3.2FT2000 in-

ventory (Olivier and Berdowski, 2001), but these are re-

placed by regional inventories over various continents. Other

NOx emission sources in GEOS-Chem include soil, light-

ning, biomass burning, biofuel, aircraft, and ship, resulting

in a global total source of 51.5 Tg N yr−1 for 2006 (simi-

lar to TM5 with 53 Tg N yr−1 for the same year). A 2-year

spin-up was performed (2004–2005), and GEOS-Chem out-

put was stored for the year 2006. For more details on the

GEOS-Chem simulation, see Vinken et al. (2014).

GEOS-Chem simulations of tropospheric NO2 columns

have been evaluated before by Lamsal et al. (2010) and

Lin (2012), who found, similar to the TM5 evaluation dis-

cussed above, that the model underestimates tropospheric

NO2 by 20–35 % (over China). Zhang et al. (2012), in a

study targeting nitrogen deposition over the United States,

found excellent agreement between the modelled and OMI-

observed spatial distribution of tropospheric NO2, but under-

estimates of 10 % in the northeastern US, and 40 % locally in

southern California, were also evident.

5 Representativeness errors

5.1 Horizontal representativeness errors

If the complete spatial extent of a model grid cell is cov-

ered with valid retrievals, a good comparison is straightfor-

ward because a spatially fully representative area average can

be calculated. For partly covered cases, the difficulty lies in

estimating the magnitude of the (horizontal representative-

ness) errors associated with limited coverage of a model grid

cell. One way to calculate a representative grid cell average

is by averaging all valid satellite observations that were taken

within the boundaries of the grid cell within a given model

time step, as in Eq. (3), with wi the fractional grid cell cov-

erage defined as Apixel/Acell with Apixel the area (in km2)

covered by the fraction of the satellite pixel that falls within

the boundaries of the model grid cell with areaAcell (in km2).

In this manner, one obtains a “superobservation” that may be

considered as representative for the grid cell average (Dirk-

sen et al., 2011; Miyazaki et al., 2012). In some model–

satellite confrontations, the number of satellite retrievals is

thinned out to one per grid cell, but we advise against such

an approach in view of the strong sub-grid variations and

the considerable errors in individual measurements. In many

global applications, the spatial resolution of the model is

coarser than the resolution of the satellite observations.

We caution against applying additional weighting by the

individual retrieval errors in Eq. (4). Because, by nature of

the DOAS approach, retrieval errors are largest for large col-
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Figure 1. Relative horizontal representativeness errors as a func-

tion of the covered fraction of one model grid cell in the case of

OMI tropospheric NO2 columns for polluted area(s) (mean column

5× 1015 molecules cm−2). The black line indicates the error as a

function of the fractional coverage for a 3◦× 2◦ grid cell over the

area of New York City on 1 day (17 July 2006, 114 OMI pixels).

The blue asterisks indicate the mean error as a function of fractional

coverage for various 0.5◦× 0.5◦ grid cells on 17 July 2006.

umn values (see e.g. Boersma et al., 2004), error weight-

ing would skew the average to the lower values in the dis-

tribution. The measurement error for superobservations can

be calculated from area-weighting the individual pixel errors

σo,i to provide an area-weighted average (statistical) retrieval

error σ , and by accounting for a partial correlation in the er-

rors between pixels as in Eskes et al. (2003) (see Appendix B

for a derivation):

σo = σ

√
1− c

n
+ c (8)

with the second term on the right-hand side representing the

error correlation (c) between the n retrievals. Miyazaki et

al. (2012) propose c = 0.15, based on the consideration that

errors in clouds, albedo, a priori profile, and aerosol in re-

trievals are typically correlated in space, but they acknowl-

edge that the exact number is difficult to estimate.

Some studies take a different approach than the superob-

servations proposed in Eq. (4) and interpolate the model sim-

ulations to the centre of a satellite pixel, but the difficulty

with this approach is the questionable spatial representative-

ness of the interpolated model value, especially if the model

grid cells cover a larger area than the satellite pixels.

Both individual pixel errors and representativeness errors

contribute to the total error in the superobservation. Follow-

ing Miyazaki et al. (2012), we calculate the horizontal rep-

resentativeness error σr as a function of the total fractional

coverage achieved by all valid pixels by random reduction of

the number of retrievals used to calculate the mean grid cell

value. For homogeneous scenes with little variability of NO2,

SO2, or HCHO, such errors will obviously be small. But for

grid cells covering strong inhomogeneous sources of air pol-

lution, such as megacities or coal plants, we may expect the

area average to depend strongly on the spatial sampling. Fig-

ure 1 illustrates the horizontal representativeness error as a

function of total fractional coverage for one polluted model

grid cell, here taken over the eastern United States (greater

New York City), at two resolutions, i.e. 3◦× 2◦ (typical for

a global CTM) and 0.5◦× 0.5◦ (regional CTM). To calcu-

late the horizontal representativeness error, we randomly re-

duced the number of pixels n in Eq. (4) first by 1, then

by 2, and so on, until there was only one pixel left, to ob-

tain new estimates ŷ′o. We repeated this 100 times and in-

terpret the root mean squared difference with the original ŷo
as the horizontal representativeness error, which is zero in

situations of full coverage. Complete coverage of the grid

cell is typically achieved by more than 100 OMI pixels in

the case of 3◦× 2◦ resolution grid cells, and by ±5 pixels1

for 0.5◦× 0.5◦. The horizontal representativeness errors ap-

pear higher for the 0.5◦× 0.5◦ than for the 3◦× 2◦ grid cell,

due to the smaller sample (n= 5) size and the strong spa-

tial gradients over the central New York area for the higher

resolution model. For models with higher spatial resolution

(0.5◦× 0.5◦), there is less tolerance for reduced area cover-

age over strongly inhomogeneous areas such as central New

York, as indicated by the steeper representativeness error in-

crease with reduced cover (blue dashed line in Fig. 1). This

reflects the more heterogeneous distribution of polluted NO2

column values for the high-resolution model with a small

sample (five pixels) than for the coarse resolution with a large

sample (> 100 pixels). The 3◦× 2◦ case with complete area

coverage by OMI NO2 pixels (on 17 July 2006) illustrates the

potential for horizontal representativeness errors. For a frac-

tional coverage of 0.5, the horizontal representativeness error

increases to 10–15 %, which is still considerably smaller than

the 20–30 % errors in the satellite measurements themselves.

For fractional coverage of 0.1 however, the representative-

ness error increases to 35 %, a level that exceeds the theo-

retical NO2 retrieval error (Boersma et al., 2011) and NO2

validation errors (e.g. Irie et al., 2012). However, by averag-

ing over multiple days, the representativeness error can be

reduced further, depending on the day-to-day variability of

the columns. Table S1 (in the Supplement) shows the statis-

tics of a comparison between monthly mean observed and

simulated columns over the greater eastern United States in

July 2006, for different degrees of fractional coverage re-

quired.

In data assimilation systems, any fractional coverage may

be used as long as the horizontal representativeness error is

1Because OMI pixel sizes vary with viewing zenith angle

(largest pixels at the edge of the swath), the exact number of pix-

els covering a model grid cell depends on which part of the OMI

swath covers the grid cell.
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OMI	  

TM5	   TM5	  

OMI	  

Figure 2. Monthly average effective cloud fraction observed from OMI (upper panels) and simulated by TM5 based on ECMWF meteo-

rological fields (middle panels) in February (left column) and August 2006 (right). Cloud fractions have been selected only for those days

and locations that had a successful OMI O2–O2 retrieval. Grey areas indicate less than three successful coincidences. Bottom panels: scatter

plot of daily pairs of OMI (x axis) and TM5 cloud fractions (y axis) in February 2006 (left) and August 2006 (right) over Europe (10◦W–

30◦ E; 35–60◦ N). The colours indicate the number of times a particular grid cell has been filled, where light blue corresponds to 2×, green

3×, yellow 4×, orange 5×, red 6×, and magenta to 7× or more. TM5 effective cloud fractions can be expressed as −0.10+ 1.06 fOMI

(February) and −0.01+ 1.07 fOMI (August).

well described and accounted for along with the observation

error. This can be achieved by adding in quadrature the mea-

surement error and representativeness error
√
σ 2

N̄,o
+ σ 2

N̄,r
to

represent the overall superobservation error.

5.2 Temporal representativeness errors related

to clouds

In the case where UV–Vis satellite retrievals of the tropo-

spheric column are used for air pollution applications (taken

under cloud-free situations, see e.g. Schaub et al., 2006; Mil-
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Figure 3. Box and whisker plots for OMI (black) and TM5 (red) effective cloud fractions over Europe in February 2006 (left panel) and

August 2006 (right panel). The two left boxes of each panel indicate the clear-sky situations when the OMI cloud fraction < 0.2. The

centreline of each box indicates the median cloud fraction, the upper and lower edges indicate the 25th and 75th percentiles and the lower

and upper whiskers represent the minimum and maximum value in the sample. For February 2006, the sample consisted of 3379 pairs (737

clear sky, 2642 cloudy), and for August, the sample size was 4665 (1991 clear sky, 2674 cloudy).

let et al., 2006; Geddes et al., 2012), both measurements

and models should be sampled under similar clear-sky sit-

uations. As long as the model appropriately simulates the

effects of clouds on photolysis rates, this ensures that mea-

surement and model represent the trace gas concentrations

under similar photochemical regimes. Failure to sample the

model on clear-sky days only, will introduce a bias in the

modelled average. Short-lived trace gases may have a longer

lifetime against photochemical loss in situations with over-

head clouds (assuming they are represented well in mod-

els), when actinic fluxes and temperatures are lower and

chemistry slower than in clear-sky situations. For trace gases

whose emissions reflect distinct anthropogenic patterns, it is

also necessary to sample the model according to the observa-

tions, in order to properly weigh well-documented weekend

(e.g. Beirle et al., 2003; Boersma et al., 2009) and national

holiday reductions (Lin and McElroy, 2011) when calculat-

ing the model average.

We first evaluate the TM5 model’s ability to simulate the

effective cloud cover as observed by OMI at 13:30 local time.

Cloud cover (and cloud optical thickness) data in TM5 are

hourly interpolated from 3-hourly pre-processed ECMWF

fields (Huijnen et al., 2010b). Since the OMI cloud retrieval

reports effective cloud fractions, based on the assumption

that clouds are optically thick (optical thickness of 40, with

a corresponding cloud albedo of 0.8) (Acarreta et al., 2004;

Stammes et al., 2008), we converted the TM5 geometrical

cloud cover into an effective fraction comparable to the OMI

observations. To do so, we used the maximum-random over-

lap assumption (Morcrette and Jakob, 2000) to compute the

total geometrical cloud cover and total cloud optical thick-

ness from the vertically resolved cloud cover and optical

thickness in TM5. We used the modelled relationship be-

tween the total cloud optical thickness for a liquid water

cloud and its spherical cloud albedo in Buriez et al. (2005)

to calculate the effective cloud albedo associated with each

grid cell’s cloud cover. Finally, we weighted the total geo-

metric cloud cover with the ratio of the effective cloud albedo

to 0.8, the value assumed for all clouds in the OMI retrieval

(Acarreta et al., 2004; Stammes et al., 2008). For more details

we refer to Appendix C.

Figure 2 shows monthly mean effective cloud fractions as

retrieved from OMI and simulated with TM5 for February

and August 2006. The model was sampled within 30 min

of the OMI overpass time of 13:30, and model and satel-

lite were matched in space and time for further analysis. We

see that TM5 captures the spatial patterns observed by OMI,

with low cloud fractions over the subtropics, and high cloud

fractions over the tropical ITCZ and the middle-to-high lati-

tudes (> 40◦). Largest differences occur at the edges of ar-

eas flagged as snow-covered in the OMI retrieval (Febru-

ary 2006), and over areas where TM5 predicts cloud opti-

cal thickness to exceed 40, such as over the tropics, where

ice clouds often occur (and the relationship for water clouds

from Buriez et al., 2005, is less valid).

To evaluate the simulated effective cloud fractions, we re-

port the correlation coefficient, mean bias, and root mean

square error relative to the OMI-observed cloud fractions

over Europe for February and August 2006. Figure 2 shows

significant positive correlation between TM5 and OMI effec-

tive cloud fractions over Europe both in February (r = 0.70,

n= 3379) and August (r = 0.75, n= 4665). The mean bias
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Figure 4. (a) Monthly mean tropospheric NO2 columns simulated by TM5 for polluted grid cells (with all-sky monthly means

> 1.0× 1015 molecules cm−2, n= 18 in February, n= 17 in August). The blue bars represent the average of the tropospheric NO2 col-

umn sampled on days when the OMI cloud fraction was smaller than 0.2. Light blue: average for columns sampled when OMI cloud fraction

> 0.2. (b) Monthly mean TM5 HCHO columns for clear-sky and cloudy situations (n= 18 in February, for August: all-sky monthly mean

> 7.5× 1015 molecules cm−2, n= 12).

between TM5 and OMI is −0.08 in February and +0.02 in

August, and the root mean square error is 0.23 in February

and 0.20 in August. The agreement between TM5 and OMI,

while far from perfect, suggests that TM5 has some success

in simulating the contrast between “cloud-free” (fOMI< 0.2)

and “cloudy sky” (fOMI> 0.2) situations, i.e. the likelihood

that OMI reports a clear-sky scene, while TM5 simulates a

cloudy sky, and vice versa is < 20 and < 14 %, respectively.

Figure 3 shows a box and whisker plot for OMI and TM5

effective cloud fractions over Europe in February and Au-

gust 2006. The figure indicates that for OMI measurements

of effective cloud fractions smaller than 0.2, TM5 repro-

duces similar small effective cloud fractions (February me-

dian OMI: 0.09, TM5: 0.06; August median OMI: 0.05,

TM5: 0.04). For days and locations when OMI observes ef-

fective cloud fractions larger than 0.2 (February: 0.59, Au-

gust: 0.47), TM5 simulates comparable high effective cloud

fractions (January: 0.49, July: 0.45), providing some confi-

dence in the TM5 model, driven by ECMWF meteorological

fields, to capture the observed effective cloud fractions.

Figure 4a shows a comparison of average TM5 tropo-

spheric NO2 columns simulated under clear-sky and cloudy

situations over Europe in February and August 2006. TM5

was sampled for polluted situations (cells with monthly mean

NO2 columns in excess of 1.0× 1015 molecules cm−2) be-

tween 12:00–15:00 local time, on days with clear skies and

on days with cloud cover. Under clear-sky situations, TM5

simulates tropospheric NO2 columns that are on average 15–

20 % lower than under cloudy circumstances, in line with

in situ observations reported by Boersma et al. (2009) and

Geddes et al. (2012) over Israeli and Canadian cities, respec-

tively. Both in February and August, the clear-sky mean NO2

column is 12 % below the 28-day monthly mean in February

and 31-day monthly mean in August. Although we cannot

rule out that other effects than enhanced photochemical loss

may have contributed to lower NO2 columns over the pol-

luted grid cells (e.g. increased ventilation or deposition) on

clear-sky days, a comparison of NO2 columns for all Euro-

pean grid cells showed that the geometrical mean of the lo-

cal clear-sky to cloudy column ratios was 0.74 in February

and 0.89 in August, suggesting that reduced clear-sky NO2

columns presented in Fig. 4 show a robust effect.

The results for August 2006 indicate that clear-sky sam-

pling of the model is also relevant for HCHO in the growing

season (Fig. 4b). Average HCHO columns are 12 % higher

under clear-sky situations than on cloudy days and the clear-

sky mean HCHO column is 8 % higher than the all-sky

monthly mean (August 2006). In winter, HCHO concentra-

tions are generally low over Europe and differences between

clear and cloudy sky are well below the detection limit of

UV-Vis satellite sensors.

Exclusive sampling of the model on clear-sky days is im-

portant, because photolysis rates J [NO2] in the lower tro-

posphere are significantly higher on those days and can be

simulated well by TM5 (Williams et al., 2012), so that NO2

columns will be systematically lower. The differences be-

tween HCHO columns sampled on clear-sky and cloudy days

are somewhat smaller than for NO2 columns because both

the formation and destruction of HCHO are driven by pho-

tochemistry. Nevertheless, the stronger summertime produc-

tion of HCHO from the (OH-driven) oxidation of methane

and especially isoprene outpaces the increased loss of HCHO

through photolysis and oxidation (Fried et al., 1997) on clear-

sky days compared to cloudy days, in line with observations

(e.g. Munger et al., 1995; Cerquiera et al., 2003).

To estimate the magnitude of the temporal representative-

ness errors arising from the particular choice of model sam-

pling, we evaluated the satellite–model comparison results

for different sampling strategies. Again, we use the aver-

aged ratio of satellite measurements to model simulations
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Figure 5. Impact of sampling strategy on monthly averaged

OMI :TM5 ratio of tropospheric NO2 columns (black dots) and

on spatial correlation coefficient (R2, blue dots) over the eastern

United States (30–44◦ N, 90–72◦W). Left panel: ratio and R2 for

February 2006 (n= 28). Right panel: August 2006 (n= 32). Grid

cells were selected in the comparison when the covered fraction ex-

ceeded 0.5. The dashed black line shows the normalized OMI :TM5

ratio for strategy (A), and the dashed grey line shows the R2 for

strategy (A) as a guide to the eye.

(ŷo/x̂m), and the spatio-temporal correlation coefficient, as

appropriate indicators of representativeness errors. Since the

model–measurement bias may well be due to unrelated sys-

tematic errors in either the CTM (emissions, chemistry) or

the satellite retrievals, we are not concerned with the abso-

lute value of the measurement-to-model ratio, but we are

interested in the sensitivity of the ratio to various sampling

strategies. We tested four strategies for comparing tropo-

spheric NO2 over large polluted regions: (A) both OMI (for

OMI effective cloud-fraction) and TM5 (TM5 effective cloud

fraction) collocated and sampled for mostly clear-sky scenes

only at the OMI overpass time of 13:30, (B) OMI and TM5

collocated and co-sampled for situations with OMI effective

cloud radiance fractions < 0.52, (C) OMI sampled for situa-

tions with OMI effective cloud radiance fractions < 0.5, but

TM5 more loosely sampled for OMI effective cloud fractions

< 0.6, and (D) OMI sampled for situations with OMI effec-

tive cloud radiance fractions < 0.5, but TM5 sampled for all

days in the month (i.e. no temporal collocation except for

appropriate overpass time). Strategy (A) is considered to be

optimal, but to our knowledge has not been applied in studies

to date. Strategy (B) has been followed in numerous studies,

and relies on the assumption that CTMs capture the observed

cloud cover well. In spite of its erroneous co-sampling with

the satellite measurements, strategy (D) has also been used

frequently, and therefore we tested its impact on the temporal

representativeness errors. Finally, strategy (C) holds middle

2The cloud radiance fraction is defined as the relative contribu-

tion of top-of-atmosphere radiance received by the cloud part of the

pixel. A cloud radiance fraction of 0.5 corresponds to a geometric

cloud fraction of ±0.2.
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Figure 6. Vertical averaging kernel (black dashed line) and NO2

profiles simulated by GEOS-Chem (blue), TM4 (red, a priori pro-

files in OMI NO2 retrieval), and GEOS-Chem convolved with the

averaging kernel (purple) following Eq. (6): (a) 18 February 2006,

(b) 23 August 2006 over the Beijing grid cell (centered on 40◦ N,

116.25◦ E), (c) 17 February 2006, and (d) 31 August 2006. The

numbers given in blue, purple, and red indicate the tropospheric

vertical NO2 columns in GEOS-Chem and TM4.

ground between (B) and (D). Figure 5 shows that the model-

to-measurement ratio shows substantial dependence on the

comparison strategy, especially in winter. The differences be-

tween strategies (A) and (B) are negligible, but with strat-

egy (D) the OMI /TM5 ratio drops more than 25 % below

the values obtained by strategies (A) and (B). These strate-

gies also demonstrate that strategy (D) leads to a reduced ca-

pacity of the model to explain the observed variability in the

NO2 spatial patterns, with R2 dropping almost 10 % (from

0.64 to 0.55 in winter and from 0.66 to 0.59 in summer).

Analyses for other regions showed similar results as in

Fig. 5. These results imply that for applications of satel-

lite data such as emission estimates or model evaluations,

substantial systematic errors may occur in the final esti-
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mate, if sampling strategies such as (D) are used. We there-

fore strongly discourage the use of such comparison strate-

gies, as they lead to considerable temporal representativeness

errors, and, thus, systematic underestimations in measure-

ment :model ratios.

5.3 Vertical representativeness errors

Here we evaluate the representativeness errors introduced in

a satellite–model comparison if the averaging kernel is not

accounted for. To illustrate the way the kernels work, Fig. 6

shows GEOS-Chem NO2 vertical profiles with and without

the averaging kernel applied over the Beijing grid cell on

clear-sky days with excellent spatial coverage (18 February

and 23 August 2006). On both days, application of the kernel

leads to a higher value for the model column, reflecting the

relatively larger amounts of NO2 aloft in GEOS-Chem simu-

lations compared to the a priori TM4 NO2 profiles. The lower

panels show that on two other clear-sky days (17 Febru-

ary and 31 August 2006) the kernel has only little effect on

the GEOS-Chem tropospheric NO2 column. On these days,

the TM4 a priori and GEOS-Chem NO2 profiles show sim-

ilar, less pronounced vertical distributions. Nevertheless, in

Fig. 7 we see that, on average, for February and August 2006,

the OMI averaging kernels result in increases in GEOS-

Chem NO2 columns over Beijing of 15 % (February) and 8 %

(August), and a closer agreement with OMI NO2 retrievals.

This result can be understood from the stronger vertical mix-

ing in the GEOS-Chem model compared to TM4, rather than

from differences in NOx emissions or chemistry between

models (NO2 amounts are quite similar between TM4 and

GEOS-Chem over Beijing in 2006).

The above finding does not have general validity in the

sense that applying the kernel on any other model will also

result in a tropospheric column increase. Applying the ker-

nels to NO2 profiles from a model with weaker vertical mix-

ing than TM4 (rather than generally stronger vertical mix-

ing as in the case of GEOS-Chem) is likely to reduce those

columns. Figure S1 in the Supplement shows as much for

the North Sea grid cell in February 2006, when GEOS-Chem

exceeds TM4 NO2 concentrations below 900 hPa, and for

Siberia in August 2006, when GEOS-Chem simulates a sub-

stantially enhanced tropospheric NO2 column compared to

TM4.

We next compare the monthly averaged GEOS-Chem tro-

pospheric NO2 column fields for February and August 2006

with and without the kernels applied. Figure 8 shows that

applying the kernel leads to substantial increases of up to

2× 1015 molecules cm−2 in the columns for the polluted

source regions in the Northern Hemisphere (eastern USA,

Europe, and China). At the periphery of these regions in win-

tertime, and over regions with possible biomass burning in

summer, we see that the smoothed columns can be lower than

the original columns, indicating that the GEOS-Chem verti-

cal NO2 profile is more skewed towards the surface than the
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Figure 7. Monthly mean averaging kernel (black dashed line) and

NO2 profiles simulated by GEOS-Chem (blue), TM4 (red, a priori

profiles in OMI NO2 retrieval), and GEOS-Chem convolved with

the averaging kernel (purple) following Eq. (6): left panel. Febru-

ary 2006; right panel, August 2006 over the Beijing grid cell (cen-

tred on 40◦ N, 116.25◦ E). The numbers given in blue, purple, and

red indicate the tropospheric vertical NO2 columns in GEOS-Chem

and TM4.

TM4 a priori in those situations, as confirmed by the profiles

shown in Fig. S1.

Here we evaluate the level of agreement between the orig-

inal GEOS-Chem and OMI NO2 columns, compared to the

level of agreement between the kernel-based GEOS-Chem

and OMI NO2 column for the polluted source regions in the

Northern Hemisphere, as the differences provide a measure

of the representativeness errors that can be avoided by using

the averaging kernel. Figure 9 shows the agreement between

OMI and the GEOS-Chem NO2 columns with and without

kernel over Europe in February and August 2006. The upper

panels indicate that the spatial correlation between the model

and OMI tropospheric columns improves when the kernel

is applied on the model NO2 profiles, especially in summer

when differences between the TM4 a priori and GEOS-Chem

NO2 profile shapes are strong. Application of the kernel also

results in geometric mean OMI :GEOS-Chem ratios with

smaller uncertainty intervals at values of 1.151.88
0.70 (February)

and 1.241.80
0.86 (August) compared to 1.131.89

0.67 and 1.422.21
0.91. We

find similar results over the eastern United States and China

(see Table 1). Figure 9d further supports the notion that appli-

cation of the kernel allows for a better-constrained evaluation

of the model, as witnessed by the more peaked and narrower

histogram of satellite :model ratios. We conclude that sam-

pling the model according to the averaging kernel is espe-

cially relevant in summer, and improves the satellite–model

evaluation by removing differences between (TM4 a priori

and GEOS-chem) profile shapes contributing to the discrep-

ancies (Boersma et al., 2004). Neglecting the kernels for

GEOS-Chem would lead to up to 15 % stronger discrepan-
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August	  2006	  

February	  2006	  

Figure 8. Difference between monthly mean GEOS-Chem with AK (Eq. 6) and GEOS-Chem tropospheric NO2 columns without AK for

February 2006 (upper panel) and August 2006 (lower panel). Only grid cells with more than 3 days of better than 40 % coverage of clear-sky

pixels have been selected.

Table 1. Summary of tropospheric NO2 GEOS-Chem model evaluations following recipes (A), (B), and (C) with OMI NO2 retrievals for

February and August 2006. n refers to the number of grid cells used in the comparison.

R2 Geometric mean

Model evaluation (A) (B) (C) (A) (B) (C) n

Europe February 2006 0.66 0.63 0.54 1.151.88
0.70

1.131.89
0.67

0.921.59
0.54

120

Europe August 2006 0.66 0.57 0.59 1.241.80
0.86

1.422.21
0.91

1.402.13
0.92

137

US February 2006 0.82 0.79 0.75 1.121.29
0.97

1.081.34
0.87

0.951.25
0.72

41

US August 2006 0.83 0.61 0.67 0.750.95
0.59

0.911.21
0.68

0.901.16
0.70

42

China February 2006 0.58 0.57 0.54 1.001.37
0.72

0.991.63
0.59

0.861.08
0.69

35

China August 2006 0.61 0.58 0.58 1.131.39
0.92

1.071.36
0.84

1.061.37
0.82

44

cies between OMI and GEOS-Chem, and this portion could

be wrongfully attributed in a model evaluation to e.g. too low

NOx emissions, or too fast NO2 removal by chemistry or de-

position. Appendix D presents an alternative to the applica-

tion of the averaging kernel by providing a recipe to replace

the a priori profile used in the retrieval by the profile from

the CTM under evaluation. Such a recipe results in a mod-

ified retrieval that can be directly compared with the CTM

under evaluation.

6 Combined representativeness errors

To obtain an estimate of typical, overall representativeness

errors in model evaluations with UV–Vis satellite measure-

ments, we define three types of model evaluations, executed

with increasing degree of detail. We again evaluate tropo-

spheric NO2 from the GEOS-Chem model here (with OMI

NO2 retrievals), as this model is sufficiently different from

the TM4 model used to provide the a priori profiles in the

OMI retrievals. The three types of evaluations can be charac-

terized as advanced, common, and naïve:
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Figure 9. Comparison between monthly average OMI and GEOS-Chem tropospheric NO2 columns over Europe in February 2006 (left

panels) and August 2006 (right panels); (a) scatter diagram of monthly average GEOS-Chem with AK (black circles) and GEOS-Chem

without AK (grey circles) vs. OMI tropospheric NO2 columns for February 2006. The black and grey lines indicate the geometric mean of

the OMI :GEOS-Chem ratio; (b) as for (a) but for August 2006; (c) histogram of per-grid cell OMI-to-GEOS-Chem with AK tropospheric

NO2 column ratios (black bars) and OMI-to-GEOS-Chem without AK ratios (grey bars) for February 2006; (d) as (c) but for August 2006.

Only grid cells with more than 3 days of better than 40 % coverage of clear-sky pixels have been selected.

A. advanced evaluation: accounting for sufficient spatial

coverage and appropriate temporal representativeness,

and also taking into account vertical representativeness,

B. common evaluation: as (A) but without taking into ac-

count vertical sensitivity,

C. naïve evaluation: no consideration of potential represen-

tativeness errors whatsoever.

For evaluation (C), the model monthly average was based on

samples from all days of the month (on OMI overpass time),

irrespective of cloud coverage, and no kernel was applied (in

other words a 31-day, all-sky, without AK monthly mean).

We first evaluate the (avoidable) representativeness errors

by comparing local OMI : GEOS-Chem ratios evaluated with

approaches (A) vs. (C), and approaches (A) vs. (B). Figure 10

shows the relative difference in the local OMI : GEOS-Chem

ratios for February and August 2006. We see that the sys-

tematic, avoidable errors in the OMI : GEOS-Chem ratio are

largest with evaluation approach (C). The blue colours in the

upper panel of Fig. 10a indicate that, in winter, sampling the

model on all (including cloudy sky) days leads to too low (by

15–20 %) OMI/GEOS-Chem ratios reflecting the too high

GEOS-Chem NO2 values resulting from temporal represen-

tativeness errors (cloudy-sky sampling, see Fig. 4).

The similarity between the panels of Fig. 10b shows that

appropriate sampling is not as important in summer, a season

with ample clear-sky days, and, consequently, a smaller sam-

pling error. Figure 10b suggests that application of the av-

eraging kernel when sampling the model is the most impor-

tant step, with the red colours indicating that failure to apply

the averaging kernel leads to OMI /GEOS-Chem NO2 ratios

that are too high by up to 30 %. We conclude that appropriate

clear-sky sampling is mainly important in winter, but vertical

smoothing is less relevant in that season. The reverse holds in

summer: with sufficient clear-sky days available, application

of the averaging kernel becomes essential, reflecting the fact

NO2 vertical distributions are especially different between

(the TM4 and GEOS-Chem) models in that season.

Geosci. Model Dev., 9, 875–898, 2016 www.geosci-model-dev.net/9/875/2016/



K. F. Boersma et al.: Representativeness errors in model-retrieval comparisons 889

Figure 10. Relative difference between local monthly mean OMI : GEOS-Chem NO2 column ratios for (a) February 2006 between

method (C) and (A) (upper panel) and between method (B) and (A) (lower panel), and (b) August 2006. Relative difference defined as

100 %× ((C/A)− 1), and 100 %× ((B/A)− 1).

Table 1 summarizes the results of the OMI /GEOS-Chem

comparisons for the three specific regions of the United

States, Europe, and China following the different evalu-

ation approaches. In all cases, the spatial correlation be-

tween model and measurements within the regions is high-

est for evaluation approach (A), and generally lowest for

approach (C). Wintertime OMI : GEOS-Chem ratios are too

low by 15–20 % with approach (C) and too high by 5–10 %

in summer. Using the common approach (B), OMI/GEOS-

Chem ratios are primarily biased in summer, by +15–20 %

for Europe and the United States, and by−5% for China. The

results in Table 1 and Fig. 9 also indicate that the spread of

local OMI/GEOS-Chem ratios is ±30 % for approach (A),

smaller than for approaches (B) and (C) with spreads of

±35 %, corroborating the fact that using the kernel results in

a better-defined comparison between satellite measurements

and model simulations.

We summarize the contribution of the model sampling er-

rors to the overall representativeness errors for the evalua-

tion of GEOS-Chem simulations with OMI NO2 in Table 2.

The table should not be interpreted as a general recommen-

dation for all applications, but rather as a recommendation

for air pollution applications such as model evaluation and

inversions to estimate emissions. For instance, for data as-

similation and studies of the higher atmosphere, retrievals

under cloudy situations can still be used, and the main rec-

ommendation there is to apply the averaging kernel. The ta-

ble shows that naïve comparison strategies (C) that do not

account for appropriate temporal or vertical sampling will re-

sult in a largely systematic representativeness error of up to

25 %. Following the motivated recommendations discussed
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Table 2. Overview of magnitude and nature of various model sampling errors, their contribution to the overall comparison error budget,

and ways to avoid them. Based on the GEOS-Chem evaluation with OMI NO2 retrievals for February and August 2006. Note that these

recommendations hold for air pollution applications of UV–Vis satellite retrievals such as model evaluation and top-down emission estimates.

Relative error Type of error Recommendation

Horizontal sampling < 5–10 % Inevitable and random Require at least 40 % coverage of model grid cell.

Temporal sampling 10 % Avoidable and systematic Sample model grid cells exclusively on clear-sky days

Vertical sampling 20 % Avoidable and systematic Apply averaging kernel on model vertical distribution

Overall representativeness error 10–25 % Follow recommendations listed above to keep σr<σo

above however (i.e. comparison strategy A) would eliminate

temporal and vertical representativeness errors and limit the

overall comparison error to not more than 5–10 % from im-

perfect horizontal sampling.

7 Discussion and conclusions

Evaluations of CTM simulations with UV–Vis satellite re-

trievals of short-lived gases, notably NO2 and HCHO, are

strongly influenced by the exact comparison strategy. The

characteristics of these satellite retrievals – with ground pix-

els typically smaller than model grid cells, clear-sky sam-

pling needed for air pollution applications, and reduced ver-

tical sensitivity towards the lower troposphere – require that

models and retrievals are sampled as consistently as possible.

This pertains to consistent sampling in space (horizontally

and vertically) and in time (day-of-week, clear-sky day, time-

of-day). Of these aspects, appropriate horizontal sampling is

a relatively minor, but unavoidable concern. In most model-

to-satellite comparisons, we recommend using the concept

of the superobservation, which has the distinct advantage of

providing a grid cell average observed state along with a re-

alistic measurement plus horizontal representativeness error.

Depending on the model resolution and the satellite instru-

ment resolution, users can impose a minimum fractional cov-

erage (of the model grid cell area) by the ensemble of pixels

to reduce horizontal representativeness errors down to levels

where the measurement contribution becomes the dominant

term in the superobservation error budget.

Recommendations on and error estimates of the fractional

coverage requirement depend on the exact method of com-

paring model simulations and satellite retrievals and on the

spatial variability of the species of interest. Generally speak-

ing, fractional coverage requirements may be rather loose

for comparisons over regions with little spatial variability in

gas concentration, for coarse-resolution model simulations,

and for temporal averages over multiple days (e.g. monthly

means). In contrast, total fractional coverage requirements

need to be strict for comparisons over regions with strong

variability in gas concentrations (i.e. SO2 and NO2 source

regions), and for high spatial resolution modelling with (re-

gional) CTMs.

In these situations we recommend limiting horizontal rep-

resentativeness errors to within ±10 % because representa-

tiveness errors are then still considerably smaller than the

satellite observation error σN̄,o.

A faithful comparison between satellite measurements and

model simulations requires that models need to be sam-

pled appropriately in time. Sampling models irrespective of

photochemical regime (such as when calculating a 31-day

monthly mean without collocating the model with individual

measurements) gives rise to systematic temporal represen-

tativeness errors on the order of +12 % for NO2 and −8 %

for HCHO. Such errors should (and can) be avoided, as they

may misdirect interpretation of model–satellite differences,

for instance by misinforming inversion studies by requiring

changes in the rates of emissions, or chemical reactions to

better match the observations. Our comparison of OMI O2–

O2 and co-sampled TM5 cloud information indicated that a

strict requirement on the TM5 model to simulate a clear-sky

scene along with a mostly clear-sky OMI superobservation

has little effect over omitting such a filter. In the case of

TM5, driven by ECMWF ERA Interim meteorological fields,

the model shows good correlation with OMI-observed cloud

fractions, with little probability (< 15 %) of simulating false

positives or negatives.

Larger systematic errors in model–satellite ratios will be

introduced when model profiles are not sampled according

to the averaging kernel associated with most UV–Vis satel-

lite products. While the exact magnitude effect depends on

the model under evaluation and on the a priori profiles and

other assumptions used in the retrievals, our analysis showed

that for a comparison between OMI and GEOS-Chem NO2,

application of the averaging kernels results in up to 20 %

lower satellite-to-model ratios, and more coherent values of

these ratios within relevant regions such as the eastern United

States and Europe. The effect of applying the kernel is most

relevant in summer, when the vertical distribution of species

like NO2 and HCHO is variable, and differences between the

model profiles and the profiles used in the retrieval are most

prominent. We strongly recommend using averaging kernels

in satellite–model evaluations. Use of the averaging kernel

allows for a better satellite-to-model comparison, by ensur-

ing that the model is sampled in a manner consistent with the

satellite retrievals because identical assumptions are made
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on vertical sensitivity, and differences between the model

and satellite a priori vertical distribution cancel. Here we

focused on an evaluation of tropospheric NO2 simulations

from the GEOS-Chem model with retrievals of tropospheric

NO2 columns with substantial vertical sensitivity down to

the lower troposphere. However, application of the averag-

ing kernel will be even more relevant for model evaluations

of HCHO and SO2, since these retrievals are less sensitive

to the lower troposphere. Recently, retrieval scientists have

also made averaging kernel information available along with

the HCHO and SO2 data products (e.g. González Abad et al.,

2015; Theys et al., 2013).

For future evaluations of CTMs and data assimilation with

UV–Vis satellite retrievals (of NO2, HCHO, CHO–CHO, or

SO2), we advocate the use of the recommendations laid out

in this paper, especially with respect to the required clear-sky

sampling and appropriate vertical smoothing.
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Appendix A: Calculating horizontal

representativeness errors

The horizontal representativeness error of an ensemble of

satellite measurements (superobservation) for a model grid

cell of any size can be calculated as follows:

First compute the distance from one corner coordinate to

the two adjacent (not opposite) corners to obtain estimates

for the “base” and the “height” of the pixel (see Fig. A1).

Then approximate the pixel as a parallelogram, to calculate

the pixel area Ai as base× height.

Calculate the fractional coverage fcov of all valid satellite

pixels in the model grid cell as the ratio of the area covered

by all n valid pixels to the complete area covered by the grid

cell Acell:

fcov =

∑n
i=1Ai

Acell

. (A1)

Given the fractional coverage fcov, the horizontal represen-

tativeness error can be read off from Fig. 1 for models with

3◦× 2◦ and 0.5◦× 0.5◦ resolution. Figure 1b of Miyazaki et

al. (2012) provides a similar figure for a model resolution

of 2.5◦× 2.5◦. For example, a 0.6 fractional coverage for a

3◦× 2◦ model grid cell corresponds to a horizontal repre-

sentativeness error of ∼ 10 %. 0.6 coverage for a 0.5◦× 0.5◦

model corresponds to a representativeness error of ∼ 15 %.

Note that the recipe laid out above provides a horizontal

representativeness error that is at the high end of the possible

range. The variability in the complete ensemble of pixels will

often be much smaller than the variability in the ensemble

of pixels from Fig. 1 (over New York City) or Fig. 1b from

Miyazaki et al. (2012) (which excluded situations with small

NO2 columns).

 33 
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3 A simple distance calculation between two latitude, longitude pairs (lat1, lon1) and (lat2, lon2) is provided by 
the following Fortran90 pseudo-code: 
  
 real, intent(in) :: lat1, lon1  ! coordinates of pixel 1 
 real, intent(in) :: lat2, lon2  ! coordinates of pixel 2 

real, parameter  :: dtkm = 111.32 ! at equator 1deg equals 111.32 km 
 
 deg_to_rad = acos(-1.)/180. 

angle1 = 0.5 * (lat1-lat2)*deg_to_rad 
angle2 = 0.5 * (lon1-lon2)*deg_to_rad 
arg = (sin(angle1))2 + cos(lat1*deg_to_rad)*cos(lat2*deg_to_rad) + (sin(angle2))2 
y = dtkm * 2. * asin(sqrt(arg))*180./acos(-1.) 

Figure A1. A simple distance calculation between two latitude, longitude pairs (lat1, lon1) and (lat2, lon2) is provided by the above Fortran90

pseudo-code.

Appendix B: Derivation of the superobservation error

If the retrieval errors within a superobservation grid cell have

some degree of correlation, we cannot simply take the area-

weighted average retrieval error σ (calculated as

∑n
i=1wiσi∑n
i=1wi

) as

representative for the superobservation error. The error ex-

pectation value for the ensemble of pixels composing a su-

perobservation is written as

〈ε2
N 〉 =

∑
ij

wiwj 〈εiεj 〉 (B1)

with εi the individual retrieval error in pixel i, the area

weights now normalized (
∑
i

wi = 1) to facilitate notation.

Now, for a partly correlated error between pixels i and j ,

we write

〈εiεj 〉 =

{
σ 2
i for i = j

cσiσj for i 6= j
(B2)

so that the superobservation error σ 2
N can be written as fol-

lows:

σ 2
N = 〈ε

2
N 〉 = (1− c)

∑
i

w2
i σ

2
i + c

(∑
i

wiσi

)2

. (B3)

For σi = σ , and wi =
1
n

this reduces to Eq. (6): σN =

σ

√
1−c
n
+ c.
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Appendix C: Calculating CTM-simulated effective

cloud fractions

We can express the modelled cloud properties into a quan-

tity that is comparable to the effective cloud fraction pro-

vided by the OMI O2–O2 cloud retrieval, and defined as the

radiometric equivalent fraction of a viewing scene covered

by a Lambertian reflector with an albedo of 0.8 (correspond-

ing to a cloud with an optical thickness of ∼ 40) (Stammes

et al., 2008). Some data products use cloud information re-

trieved with different approaches, but many UV–Vis trace

gas retrievals use the effective cloud fraction approach. The

TM5 cloud information (geometric cloud cover, and cloud

optical thickness) was converted into an effective cloud frac-

tion in a two-step approach. In the first step the maximum-

random overlap assumption is used to calculate the one

column-representative geometrical cloud cover ftm5,geo fol-

lowing practical guidelines for similar model evaluations

with MODIS clouds by Quaas (2011). The maximum-

random overlap assumption implies maximum overlap for

cloud cover in adjacent layers (one cloud layer is exactly on

top of the other), and random overlap for (layers of) cloud

cover fl separated by at least one clear-sky layer:

ftm5,geo =

L∏
l=1

1−max(fl,fl−1)

1−min(fl−1,1− εf )
, (C1)

where εf (here 0.001) is the threshold value for which a layer

is considered to be cloud-free. In the second step the albedo

of the cloud is determined based on the cloud optical thick-

ness and the sensitivity of cloud spherical albedo to cloud

optical thickness modelled by Buriez et al. (2005) for a liq-

uid water cloud3. The final step to obtain the effective (OMI

equivalent) TM5 cloud fraction ftm5,eff from the geometrical

cloud fraction and the obtained cloud albedo ac proceeds as

ftm5,eff = ftm5,geo

ac

0.8
. (C2)

3A sixth-order polynomial fitted in close approximation to the

relationship between cloud albedo ac and cloud optical thick-

ness τc in Fig. 2 of Buriez et al. (2005) was used for the

conversion: ac =

6∑
i=0

ciτ
i with c0 = 0.00808, c1 = 0.11153, c2 =

−0.09734, c3 = 0.00052, c4 =−0.0000154, c5 = 0.00000029, and

c6 =−0.0000000013.

Appendix D: Alternatives to the application of the

averaging kernel

In a satellite–model comparison, the vertical sensitivity

needs to be taken into account, and this can be done alter-

natively by replacing the a priori profile xa from the CTM

used in the retrieval, by the profile xm from the CTM used

by the modeller, i.e. by re-calculating the air mass factors as

follows:

M ′ (xm)=M(xa)

L∑
l=1

Alxm,l

L∑
l=1

xm,l

(D1)

with M(xa) the original tropospheric air mass factor used

in the retrieval, and Al the elements of the averaging ker-

nel. The new air mass factors (M ′(xm)) need to be applied

on the retrieved slant column densities (instead of M(xa)),

to generate modified columns ŷ′o. These modified columns

can be directly compared to the model column x̂m, without

the need to explicitly apply the averaging kernel. Such ap-

proaches have been shown to improve the consistency of the

comparison considerably – for instance by 10–20 % in the

case of tropospheric NO2, see Lamsal et al. (2010, 2014) and

Vinken et al. (2014).

The modified averaging kernels associated with ŷ′o re-

trieved with the new a priori profiles xm become

A′ =
M(xa)

M ′(xm)
A. (D2)
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