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Abstract. Reproducibility and reliability are fundamental

principles of scientific research. A compiling setup that in-

cludes a specific compiler version and compiler flags is an es-

sential technical support for Earth system modeling. With the

fast development of computer software and hardware, a com-

piling setup has to be updated frequently, which challenges

the reproducibility and reliability of Earth system modeling.

The existing results of a simulation using an original compil-

ing setup may be irreproducible by a newer compiling setup

because trivial round-off errors introduced by the change in

compiling setup can potentially trigger significant changes in

simulation results. Regarding the reliability, a compiler with

millions of lines of code may have bugs that are easily over-

looked due to the uncertainties or unknowns in Earth sys-

tem modeling. To address these challenges, this study shows

that different compiling setups can achieve exactly the same

(bitwise identical) results in Earth system modeling, and a

set of bitwise identical compiling setups of a model can be

used across different compiler versions and different com-

piler flags. As a result, the original results can be more easily

reproduced; for example, the original results with an older

compiler version can be reproduced exactly with a newer

compiler version. Moreover, this study shows that new test

cases can be generated based on the differences of bitwise

identical compiling setups between different models, which

can help detect software bugs in the codes of models and

compilers and finally improve the reliability of Earth system

modeling.

1 Introduction

Earth system modeling simulates interactions between com-

ponents of the climate system (e.g., atmosphere, oceans, land

surface, sea ice). It plays a critical role in understanding the

past and present climate, and in predicting future climate.

An increasing number of models have sprung up all over

the world, including stand-alone component models and cou-

pled models consisting of multiple component models, such

as climate system models (CSMs) and Earth system models

(ESMs).

The development of models for Earth system modeling

heavily depends on the advancement of computer supports,

not only in terms of hardware (such as high-performance

computers) but also in terms of software such as compil-

ing setups that include compiler versions and compiler flags.

During the continuous evolution of the models, the compiling

setups have to be updated frequently for the compatibility of

newer high-performance computers with new processors and

for better computing performance.

One may think it is easy to update compiling setups, just

by installing new compiler version or changing compiler

flags. However, it is challenging to update compiling setups

for Earth system modeling, because researchers may get sig-

nificantly different results from the same experiment when

using different compiling setups (Liu et al., 2015b). A com-

piler not only translates the code in a high-level programming

language to a low-level language but also tries to improve
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Table 1. Compiler families used for Earth system modeling. They are from the supported compiler lists of several ESMs.

Compiler family Free or commercial Supported hardware platforms Supported programming languages

GNU Free Almost all common platforms Fortran, C, C++, etc.

Intel Commercial x86 and x86-64bit architectures Fortran, C, C++

PGI Commerical x86, x86-64bit, CUDA, and ARM architectures Fortran, C, C++

Lahey Commercial x86 and x86-64bit architectures Fortran

PathScale EKOPath Commercial x86 and x86-64bit architectures Fortran, C, C++

Cray Commercial Cray supercomputer series (x86, x86-64bit, and CUDA architectures) Fortran, C, C++

Table 2. Five latest versions of the Intel compilers.

Compiler version Release date

11.1 23 June 2009

12.1 8 September 2011

13.0 5 September 2012

14.0.1 18 October 2013

15.0.1 30 October 2014

computational performance of the codes with compiler op-

timization schemes. Compilers from different families (for

example, those in Table 1) and different versions from the

same compiler family generally differ in performance opti-

mization schemes as well as the corresponding implementa-

tions. On the other hand, different compiler flags of the same

compiler version enable and disable different sets of perfor-

mance optimization schemes. That is why different compil-

ing setups can lead to different results of the same program.

The updating of compiling setups therefore will introduce at

least two challenges to Earth system modeling. The first chal-

lenge concerns reproducibility of simulation results. Due to

the chaotic nature of the climate system, more and more stud-

ies have shown that trivial round-off errors can trigger sig-

nificant changes in simulation results of Earth system mod-

eling (Hong et al., 2013; Liu et al., 2015b; Song et al., 2012).

Due to the differences of performance optimization schemes

among different compiling setups, a change of compiling se-

tups potentially introduces round-off errors. As a result, the

results of a simulation obtained with a compiling setup may

be irreproducible by another compiling setup.

The second challenge is the reliability of the simulation

results. Compilers are large-scale programs with millions of

lines of code. It is well understood that with more lines of

code there are more potential bugs in the program. There-

fore, although there is generally a large amount of software

testing before releasing a compiler version, there still can be

unknown bugs. Models for Earth system modeling are also

large-scale numerical programs with more and more lines of

code (Easterbrook and Johns, 2009). There are already ESMs

with nearly one million lines of codes (Alexander and East-

erbrook, 2015). Therefore, it is possible that some bugs in a

compiler version may be triggered by some code segments in

a model.

In response to these challenges, several issues about com-

piling setups should be investigated:

1. Can different compiling setups achieve the same (bit-

wise identical) simulation results? If yes, it will be much

easier to reproduce previous simulation results.

2. How can compiler flags be selected to compile the codes

of a model. Since a compiler version always contains

many performance optimization schemes, there are sev-

eral choices of compiler flags.

3. How to determine whether compiler bugs are triggered

in a model simulation. If compiler bugs can be detected,

researchers can modify the code to avoid the compiler

bugs or select a safer compiling setup. Compiler bugs

are very difficult to detect, especially when they do not

lead to a crash of the simulation. There are many un-

certainties and unknowns in Earth system modeling, so

compiler bugs can easily be overlooked due to these un-

certainties or unknowns.

There are already efforts for the abovementioned issues. It

has been demonstrated that with a certain compiler flag, dif-

ferent compiler versions can achieve bitwise identical simu-

lation results for a given model (Liu et al., 2015a). But it is

still not known whether compiling setups with the same com-

piler version but different compiler flags can achieve bitwise

identical simulation results. In this paper, we call the com-

piling setups that can achieve bitwise identical simulation re-

sults bitwise identical compiling setups. It is also unknown

whether the bitwise identical compiling setups of one model

are appropriate for another model. Baker et al. (2015) pro-

posed a new ensemble-based consistency test for the Com-

munity Earth System Model (CESM; Hurrell et al., 2013).

It can effectively verify whether two compiling setups can

achieve consistent simulation results, especially when they

do not achieve bitwise identical simulation results. However,

we cannot be sure whether a compiling setup is right or

wrong. In other words, it cannot help detect compiler bugs.

As a result, it is possible that a compiling setup with com-

piler bugs has been used for the development of a model for

a number of years, while a new compiling setup with bug

fixes cannot be used for the model development due to the

failure in consistency tests.

The results in this paper show that the bitwise identical

compiling setup sets of a model can extend to different com-
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Table 3. Intel compiler optimization options that may impact the precision of floating-point calculation. They are common to the compiler

versions listed in Table 2.

Compiler optimization option Description

-fp-model [fast|precise|strict] [source] Controls the semantics of floating-point calculations:

fast: enables more aggressive optimizations on floating-point data.

precise: enables value-safe optimizations on floating-point data.

strict: enables precise and except, disables contractions, and enables pragma

stdc fenv_access.

Source: rounds intermediate results to source-defined precision and enables

value-safe optimizations.

-fp-speculation fast|safe|strict Tells the compiler the mode in which to speculate on floating-point operations.

fast: tells the compiler to speculate on floating-point operations.

safe: tells the compiler to disable speculation if there is a possibility that the

speculation may cause a floating-point exception.

strict: tells the compiler to disable speculation on floating-point operations.

-mp1 Improves floating-point precision and consistency.

-[no-]vec Enables or disables vectorization.

-[no-]simd Enables or disables the SIMD (Single instruction, multiple data) vectorization

feature of the compiler.

-[no-]fp-port Rounds floating-point results after floating-point operations.

-[no-]ftz Flushes denormal results to zero.

-pc[n] Enables control of floating-point significant precision.

-[no-]prec-div Improves precision of floating-point divides.

-[no-]prec-sqrt Improves precision of square root implementations.

Table 4. Five latest versions of the GCC compilers. The release date

of a given compiler version in the table is the release date of its latest

revision version.

Compiler version Release date

4.6.4 12 April 2013

4.7.4 13 April 2013

4.8.5 23 June 2015

4.9.3 26 June 2015

5.1 22 April 2015

piler versions and different compiler flags. They can facili-

tate the reproduction of original simulation results, assist re-

searchers to determine the compiler flags for model simula-

tions, help researchers build more test cases to detect bugs in

models and compilers, and finally improve the reproducibil-

ity and reliability of Earth system modeling.

The rest of this paper is organized as follows. Section 2

briefly introduces compiler optimizations. Section 3 shows

the bitwise identical compiling setups of three models. Sec-

tion 4 uses examples to show what can be learned from the

comparison of bitwise identical compiling setups between

different models. We conclude this paper with discussion in

Sect. 5.

2 Brief introduction to compiler optimizations

Models for Earth system modeling are generally pro-

grammed in languages such as Fortran, C, and C++. A num-

ber of compilers have been used for Earth system modeling,

such as the compiler families listed in Table 1. In the follow-

ing context, we further introduce the Intel compiler family

and GNU Compiler Collection (GCC) with details.

The Intel compiler family, which is developed by the Intel

Corporation, is a commercial software product. It has been

widely used for Earth system modeling, because most of the

high-performance computers for Earth system modeling are

equipped with the CPUs manufactured by the Intel Corpo-

ration. Table 2 shows the five latest Intel compiler versions

(from version 11.1 released in 2009 to version 15.0.1 re-

leased in 2014). For each compiler version, there are many

compiler optimization options. Table 3 shows several com-

piler optimization options that may impact the precision of

floating-point calculation. They are common to all compiler

versions listed in Table 2. For a compiler flag such as “-fp-

model”, there may be multiple selections of the values.
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Table 5. GCC compiler optimization options that may impact the precision of floating-point calculation. They are common to the compiler

versions listed in Table 4.

Compiler flag Description

-ffloat-store Do not store floating-point variables in registers, and inhibit other options that

might change whether a floating-point value is taken from a register or memory.

-ffast-math Sets -fno-math-errno, -funsafe-math-optimizations, -ffinite-math-only, -fno-

rounding-math, -fno-signaling-nans and -fcx-limited-range.

-f[no-]unsafe-math-optimizations Allow optimizations for floating-point arithmetic that (a) assume that arguments

and results are valid and (b) may violate IEEE or ANSI standards. When used

at link-time, it may include libraries or startup files that change the default FPU

control word or other similar optimizations.

-f[no-]associative-math Allow re-association of operands in series of floating-point operations.

-f[no-]reciprocal-math Allow the reciprocal of a value to be used instead of dividing by the value if this

enables optimizations.

-f[no-]finite-math-only Allow optimizations for floating-point arithmetic that assume that arguments

and results are not NaNs or ± Infs.

-f[no-]rounding-math Disable transformations and optimizations that assume default floating-point

rounding behavior.

-f[no-]cx-limited-range When enabled, this option states that a range reduction step is not needed when

performing complex division. Also, there is no checking whether the result of

a complex multiplication or division is “NaN + I*NaN”, with an attempt to

rescue the situation in that case.

Table 6. Intel compiler flags that are based on the compiler optimization options given in Table 3. The first compiler flag is the strictest one

(which limits compiler optimizations most significantly), while every other compiler flag is derived from the first one through changing only

one compiler optimization option.

No. Compiler flag

1 -fp-model strict -fp-speculation=strict -mp1 -no-vec -no-simd

2 -fp-model precise -fp-speculation=strict -mp1 -no-vec -no-simd

3 -fp-model fast -fp-speculation=strict -mp1 -no-vec -no-simd

4 -fp-model source -fp-speculation=strict -mp1 -no-vec -no-simd

5 -fp-model strict -fp-speculation=safe -mp1 -no-vec -no-simd

6 -fp-model strict -fp-speculation=fast -mp1 -no-vec -no-simd

7 -fp-model strict -fp-speculation=strict -no-vec -no-simd

8 -fp-model strict -fp-speculation=strict -mp1 -vec -no-simd

9 -fp-model strict -fp-speculation=strict -mp1 -no-vec -simd

GCC is the most widely used free compiler family in the

world. Table 4 shows the five latest GCC versions (from ver-

sion 4.6.4 released in 2013 to version 5.1 released in 2015).

For each compiler version, there are also many compiler op-

timization options. Similar to Table 3, the compiler optimiza-

tion options in Table 5 may impact the precision of floating-

point calculation and are common to all GCC versions listed

in Table 4.

3 Bitwise identical compiling setups

In this study, we use three models, namely, Community At-

mosphere Model version 5 (CAM5) (Neale et al., 2010),

Parallel Ocean Program version 2 (POP2) (Smith et al.,

2010), and Flexible Global Ocean- Atmosphere-Land Sys-

tem Model: Grid-point version 2 (FGOALS-g2) (Li et al.,

2013a). To obtain bitwise identical compiling setups of a

given model, we should first design various compiling setups

and then run the model using each of them. In this section, we

will briefly introduce the three models, the compiling setups

and the bitwise identical compiling setups of each model.
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Table 7. GCC compiler flags that are based on the compiler optimization options listed in Table 5. The first compiler flag is the strictest one

(which limits compiler optimizations most significantly), while every other compiler flag is derived from the first one through changing only

one compiler optimization option.

No. Compiler flag

1 -ffloat-store -fno-unsafe-math-optimizations -fno-associative-math -fno-reciprocal-math -fno-finite-math-only -fno-rounding-

math -fno-cx-limited-range

2 -fno-unsafe-math-optimizations -fno-associative-math -fno-reciprocal-math -fno-finite-math-only -fno-rounding-math -fno-cx-

limited-range

3 -ffloat-store -funsafe-math-optimizations -fno-associative-math -fno-reciprocal-math -fno-finite-math-only -fno-rounding-math

-fno-cx-limited-range

4 -ffloat-store -fno-unsafe-math-optimizations -fassociative-math -fno-reciprocal-math -fno-finite-math-only -fno-rounding-math

-fno-cx-limited-range

5 -ffloat-store -fno-unsafe-math-optimizations -fno-associative-math -freciprocal-math -fno-finite-math-only -fno-rounding-math

-fno-cx-limited-range

6 -ffloat-store -fno-unsafe-math-optimizations -fno-associative-math -fno-reciprocal-math -ffinite-math-only -fno-rounding-math

-fno-cx-limited-range

7 -ffloat-store -fno-unsafe-math-optimizations -fno-associative-math -fno-reciprocal-math -fno-finite-math-only -frounding-math

-fno-cx-limited-range

8 -ffloat-store -fno-unsafe-math-optimizations -fno-associative-math -fno-reciprocal-math -fno-finite-math-only -fno-rounding-

math -fcx-limited-range

3.1 Models and simulations

The version of CAM5 used in this study is CAM5.3. It is

released as the atmosphere component of the CESM version

1.2 (CESM1.2). It contains more than 550 000 lines of source

code mainly programmed in Fortran. It can be used as a stan-

dalone model or the atmospheric component of CESM1.2. In

this study, we use CAM5.3 as a standalone model. CAM5.3

supports different dynamic cores and different resolutions.

To run the standalone CAM5.3, we use the default setting

(details can be found at http://www.cesm.ucar.edu/models/

cesm1.2/cam/docs/ug5_3/ug.html), where the dynamic core

is finite volume and the resolution of the horizontal grid is

1.9◦× 2.5◦.

POP2 used in this study is the ocean component of

CESM1.2. It is based on the POP version 2.1 of the Los

Alamos National Laboratory. It contains more than 170 000

lines of source code mainly programmed in Fortran. To run

POP2 as a standalone model, we use the component set

C_NORMAL_YEAR of CESM1.2, which uses POP2 as the

ocean component and the other components as data models.

The horizontal grid selected is marked as T62_gx1v6, while

the other settings of the simulation are default.

FGOALS-g2 is a fully coupled CSM consisting of the at-

mosphere model the Grid-point Atmospheric Model of IAP

LASG version 2 (GAMIL2) (Li et al., 2013b), ocean model

LASG/IAP Climate System Ocean Model Version 2 (LI-

COM2) (Liu et al., 2004), land surface model Community

Land Model Version 3 (CLM3) (Oleson et al., 2004), and

an improved version (Wang et al., 2009; Liu, 2010) of the

sea ice model Los Alamos Sea Ice Model version 4 (CICE4)

(http://oceans11.lanl.gov/trac/CICE). It participated in the

Coupled Model Intercomparison Project Phase 5 (CMIP5)

and is widely used for scientific research. It contains about

240 000 lines of source code mainly programmed in Fortran.

GAMIL2 and CLM3 use the same horizontal grid, whose res-

olution is about 2.8◦, while LICOM2 and CICE4 uses the

same horizontal grid, whose resolution is about 1◦. To run

FGOALS-g2, we use the CMIP5 pre-industry control (pi-

Control) experiment setup.

All simulations of the models are run on the same high-

performance computer named Tansuo100 at Tsinghua Uni-

versity in China, which consists of more than 700 computing

nodes, each of which consists of two Intel Xeon 5670 6-core

CPUs sharing 32 GB main memory. Specifically, we use 16,

16, and 17 processes to run CAM5.3, POP2, and FGOALS-

g2, respectively.

3.2 Compiling setups

By combining different settings of different compiler opti-

mization options listed in Table 3, there are more than 4000

possible compiler flags. Considering there are four major op-

timization levels (O0-O3) in an Intel compiler version, there

are more than 16 000 possible compiler flags for an Intel

compiler version. Similarly, there are more than 1000 pos-

sible compiler flags for a GCC compiler version.

It is impractical for us to investigate all compiling setups. We

www.geosci-model-dev.net/9/731/2016/ Geosci. Model Dev., 9, 731–748, 2016
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Table 8. Simulation results of CAM5 with various compiling setups of Intel compilers. The compiler flags are given in Table 6. Each color

represents a bitwise identical result except for the white. A simulation result that emerges only once is in white color with a unique number.
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Compiler 

optimization level 

No. of compiler 

flag  

Version of Intel compiler 

11 12 13 14 15 
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6      
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9      

-O1 

1      

2      

3 (2) (3) (4) (5) (6) 
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5      
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7      

8      

9      

-O2 

1      

2      

3 (7) (8) (9) (10) (11) 

4      

5      

6      

7      

8      

9      

-O3 

1      

2      

3 (12) (13) (14) (15) (16) 

4      

5      

6      

7      

8      

9      

  4 

decided to use five Intel compiler versions (versions 11.1,

12.1, 13.0, 14.0.1, and 15.0.1) and five GCC compilers ver-

sions (versions 4.6.4, 4.7.4, 4.8.5, 4.9.3, and 5.1) for this

study, and take into consideration four optimization levels

(O0-O3). For a compiler version at an optimization level, we

selected a small number of compiler flags (Table 6 for the

Intel compilers and Table 7 for the GCC compilers).

3.3 Bitwise identical compiling setups of models

To obtain the bitwise identical compiling setups of a model

(CAM5, POP2, or FGOALS-g2), we use each compiling

setup (in Sect. 3.2) to compile the model code and then run

the corresponding model simulation. A short integration is

enough to check bitwise identity of simulation results (East-

erbrook and Johns, 2009). In detail, we use five model days

for each simulation and use the binary formatted data file
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Table 9. Similar to Table 8 except for the simulation results of POP2. Each table cell with “–” means that the compilation of POP2

fails under the corresponding compiling setup, due to issue DPD200178252 of Intel compilers (https://software.intel.com/en-us/articles/

intel-composer-xe-2013-compilers-fixes-list).
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Table 9: Similar to Table 8 except for the simulation results of POP2. Each table cell with “--1 

“ means that the compilation of POP2 fails under the corresponding compiling setup, due to 2 

issue DPD200178252 of Intel compilers (https://software.intel.com/en-us/articles/intel-3 

composer-xe-2013-compilers-fixes-list). 4 

Compiler 

optimization level 

No. of compiler 

flag  

Version of Intel compiler 

11 12 13 14 15 

-O0 1  --    

2      

3 (1)     

4      

5  --    

6  --    

7  --    

8  --    

9  --    

-O1 1  --    

2      

3 (2)   (3) (4) 

4      

5  --    

6  --    

7  --    

8  --    

9  --    

-O2 1  --    

2      

3 (5)   (6) (7) 

4      

5  --    

6  --    

7  --    

8  --    

9  -- (8)   

-O3 

 

1  --    

2      

3 (9) (10) (11) (12) (13) 

4      

5  --    

6  --    

7  --    

8  -- (14)   

9  -- (15)   

  5 

of daily output of fields for bitwise identical comparison.

Tables 8–10 show the bitwise identical compiling setups of

a model when using the Intel compiler versions, while Ta-

bles 11–13 correspond to the GNU compiler versions. In

each table, the compiling setups corresponding to the same

color (except for white) of simulation results constitute a bit-

wise identical compiling setup set of the same model. There

is no bitwise identical compiling setup set across the two

compiler families.

Given the Intel compiler versions, we can see that there

is no bitwise identical compiling setup set between version

11 and any other version. This is because version 11 and

the subsequent versions use different default instructions

to generate the binary code (https://software.intel.com/

en-us/forums/intel-visual-fortran-compiler-for-windows/
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Table 10. Similar to Table 8 except for the simulation results of FGOALS-g2.

 27 
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Compiler 

optimization level 
No. of compiler flag  

Version of Intel compiler 

11 12 13 14 15 

-O0 

1      

2      

3 (1)     

4      

5      

6      

7      

8      

9      
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1      

2      

3 (2) (3) (4) (5) (6) 

4      

5      

6      

7      

8      

9      

-O2 

1      

2      

3 (7) (8) (9) (10) (11) 

4      

5      

6      

7      

8      

9      

-O3 

1      

2      

3 (12) (13) (14) (15) (16) 

4      

5      

6      

7      

8      

9      

  2 

topic/281713), which produces different bitwise

results (https://software.intel.com/en-us/forums/

intel-visual-fortran-compiler-for-windows/topic/279705).

4 Comparison of bitwise identical compiling setup sets

between models

From Tables 8–10 (or Tables 11–13), we can find that, given

the same compiler family, bitwise identical compiling setup

sets of different models are obviously different. What causes

such differences and what can we learn from the differences?

To answer these questions, we take the compiling setups of

Intel compilers as an example. Based on the results in Ta-

bles 8–10, we can generate ideal bitwise identical compil-

ing setup sets (Table 14), following the criterion that if any

model achieves bitwise identical results with two different

compiling setups, these compiling setups belong to the same

ideal bitwise identical compiling setup set. Through compar-

ing Tables 8–10 to 14, we can pose a number of questions;

for example,
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Table 11. Simulation results of CAM5 with various compiling setups of GCC compilers. The compiler flags are given in Table 7. Each color

represents a bitwise identical result except the white. A simulation result that emerges only once is in white color with a unique number.
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Table 11: Simulation results of CAM5 with various compiling setups of GCC compilers. The 1 

compiler flags are given in Table 7. Each color represents a bitwise identical result except the 2 

white. A simulation result that emerges only once is in white color with a unique number. 3 

Compiler 

optimization level 

No. of compiler 

flag  

Version of GCC compiler 

4.6.4 4.7.4 4.8.5 4.9.3 5.1.0 

-O0 

1      

2      

3 (1)     

4      

5 (2)     

6      

7      

8 (3)     

-O1 

1      

2      

3 (4) (5)   (6) 

4      

5 (7) (8)   (9) 

6      

7      

8      

-O2 

1      

2      

3 (10) (11)   (12) 

4      

5 (13) (14) (15) (16) (17) 

6      

7      

8      

-O3 

1      

2      

3 (18) (19)   (20) 

4      

5 (21) (22) (23) (24) (25) 

6      

7      

8  (26)    

  4 

1. Regarding all Intel compiler versions, given compiler

flag 2 (or 4), why does CAM5 obtain different simula-

tion results when changing compiler optimization level

from O0 (or O1) to O2 (or O3)?

2. Regarding Intel compiler version 13, why does POP2

obtain different simulation results when changing the

compiler optimization level from O3 to another level?

3. Regarding Intel compiler version 12, given optimization

level O2, why does POP2 obtain different simulation

results when changing the compiler flag from 2 (or 3) to

1?

4. Regarding Intel compiler version 13, given optimization

level O3, why does POP2 obtain different simulation

results when changing the compiler flag from 8 (or 9) to

1?

5. Regarding Intel compiler versions 13, 14, and 15, why

does POP2 obtain the bitwise identical results when

changing the compiler flag from 1 to 2 (or 4), but CAM5

and FGOALS-g2 do not?

Next, we search for answers to the first two questions,

namely, what causes such differences and what can we learn

from the differences.
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Table 12. Similar to Table 11 except for the simulation results of POP2.
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Table 12: Similar to Table 11 except for the simulation results of POP2. 1 

Compiler 

optimization level 

No. of compiler 

flag  

Version of GCC compiler 

4.6.4 4.7.4 4.8.5 4.9.3 5.1.0 

-O0 

1      

2      

3 (1)     

4      

5      

6      

7      

8      

-O1 

1      

2      

3      

4      

5     (2) 

6      

7      

8      

-O2 

1      

2      

3      

4      

5     (3) 

6      

7      

8      

-O3 

1      

2      

3 (4) (5) (6) (7) (8) 

4      

5     (9) 

6      

7      

8      

  2 

4.1 Methodology

If a code segment can trigger different compiler optimiza-

tions under different compiling setups, it may lead to differ-

ent results in different compiling setups. In the rest of this

paper, we call this kind of a code segment a compilation-

sensitive code segment and call a code file with compilation-

sensitive code segments a compilation-sensitive code file. A

model for Earth system modeling generally contains a large

number of code segments. To reveal why a model does not

achieve bitwise identical results in two different compiling

setups, a straightforward way is to find out all compilation-

sensitive code segments for further analysis. Given two com-

piling setups (donated as CA and CB) that do not achieve

bitwise identical results for a simulation, we propose three

stages for the detection of compilation-sensitive code seg-

ments:

1. Detect the compilation-sensitive code files. A model

generally contains a number of source code files. In the

compiling process of a model, we can use CA to compile

a portion of source code files while use CB to compile

the remaining source code files if the object files can be

linked together. For example, at the first step, we can

using CA to compile all source code files and then run a

simulation to generate a reference result. At the second

step, we can divide the source code files into two parts,

each of which takes about a half, and then use differ-

ent compiling setups to compile the two parts (use CA

to compile the first part and use CB to compile the sec-
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Table 13. Similar to Table 11 except for the simulation results of FGOALS-g2. FGOALS-g2 has not been compiled using the GCC compilers

for simulation runs before. Therefore, a large proportion of simulation runs are failed (marked with “–” in the table). For example, crashes

or deadlocks are encountered under compiler optimization levels O1 to O3.

 30 
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has not been compiled using the GCC compilers for simulation runs before. Therefore a large 2 

proportion of simulation runs are failed (marked with "--" in the table). For example, crashes or 3 

deadlocks are encountered under compiler optimization levels O1 to O3. 4 

Compiler 

optimization level 

No. of compiler 

flag  

Version of GCC compiler 

4.6.4 4.7.4 4.8.5 4.9.3 5.1.0 

-O0 

1      

2      

3 (1)  (2)   

4      

5 (3) (4)    

6      

7      

8      

-O1 

1 -- -- -- -- -- 

2 -- -- -- -- -- 

3 -- -- -- -- -- 

4 -- -- -- -- -- 

5 -- -- -- -- -- 

6 -- -- -- -- -- 

7 -- -- -- -- -- 

8 -- -- -- -- -- 

-O2 

1 -- -- -- -- -- 

2 -- -- -- -- -- 

3 -- -- -- -- -- 

4 -- -- -- -- -- 

5 -- -- -- -- -- 

6 -- -- -- -- -- 

7 -- -- -- -- -- 

8 -- -- -- -- -- 

-O3 

1 -- -- -- -- -- 

2 -- -- -- -- -- 

3 -- -- -- -- -- 

4 -- -- -- -- -- 

5 -- -- -- -- -- 

6 -- -- -- -- -- 

7 -- -- -- -- -- 

8 -- -- -- -- -- 

  5 

ond part, or use CB to compile the first part and use CA

to compile the second part). If the result from the same

simulation is not bitwise identical with the reference re-

sult, the part that is compiled with CB should contain

compilation-sensitive code files, and next we will re-

cursively detect compilation-sensitive code files in that

part.

2. Detect compilation-sensitive code segments in a

compilation-sensitive code file. We propose to log (in

binary format) and then bit-to-bit match the values of

the input variables and output variables of each code

segment in the two compiling setups (CA and CB). A

code segment with bitwise identical inputs but different

outputs is a compilation-sensitive code segment. The

size of a compilation-sensitive code segment should be

as small as possible, in order to facilitate further analy-

sis. For a source file containing many lines of code, we

can either divide it into several new files of smaller size

and then repeat the first and second stages for these new

files, or into several big code segments at the first step

and then recursively repeat the second stage for the code

segments that are compilation-sensitive. The size of a

code segment cannot be too small because the function

calls for logging the values of variables may result in
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Table 14. Ideal bitwise identical compiling setup sets of the three models when using Intel compilers. Each color except the white corresponds

to an ideal bitwise compiling setup set.
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compilers. Each color except the white corresponds to an ideal bitwise compiling setup set. 2 

Compiler 

optimization level 
No. of compiler flag  

Version of Intel compiler 

11 12 13 14 15 

-O0 

1      

2      

3      

4      

5      

6      

7      

8      

9      

-O1 

1      

2      

3      

4      

5      

6      

7      

8      

9      

-O2 

1      

2      

3      

4      

5      

6      

7      

8      

9      

-O3 

1      

2      

3      

4      

5      

6      

7      

8      

9      

 3 

  4 
changes to compiler optimizations so as to change sim-

ulation results. In other words, the splitting of a code file

or the inserting of the functions for logging values must

keep bitwise simulation results.

3. Analyze why a code segment is sensitive. In this stage,

we should read the code to check whether there are

bugs. Sometimes, it is necessary to compare the differ-

ences of assembly codes of the code segment under the

two compiling setups.

Researchers may have to conduct the second and third stages

manually. However, for the first stage, we designed and im-

plemented a software tool named CoSFiD, which stands for

Compilation-Sensitive code File Detection tool; it can auto-

matically detect compilation-sensitive code files (Sect. 4.2).

4.2 The CoSFiD

Figure 1 shows the flowchart of CoSFiD. The inputs include

the two compiling setups (CA and CB), the rules to com-
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Table 15. Examples of different results of the calculation at line 330 of Fig. 2 when changing the compiler optimization level from O1 to

O2. The input of the calculation is the same (bitwise identical) at both compiler optimization levels. The different digits in the results are

highlighted in bold.

Variables Example

No. 1 No. 2 No. 3

Input k 2 3 3

i 9 1 5

ipair 1 1 1

dryvol_t_new(ipair,i,k) 1.245177471001780E-013 1.367964902074264E-013 1.362619492656580E-013

num_t_oldbnd(ipair,i,k) 660367763.850537 673856916.583178 665467981.351062

factoraa(mfrm) 1.41486733199200 1.41486733199200 1.41486733199200

Output dgn_t_new(ipair,i,k) optimization level O1 5.107909846347498E-008 5.235166698430766E-008 5.250216806732902E-008

optimization level O2 5.107909846347492E-008 5.235166698430762E-008 5.250216806732898E-008

Table 16. Assembly codes of the calculation at line 330 in Fig. 2 in two compiler optimization levels (O1 and O2). The most significant

difference of the assembly codes is the calling of different power functions.

Optimization level O1 Optimization level O2

movq %rsi, −40(%rbp)

movq %r8, −32(%rbp)

movq %r9, −24(%rbp)

movsd %xmm8, −16(%rbp)

call pow

movsd %xmm7, −344(%rbp)

movsd %xmm1, −320(%rbp)

movsd %xmm3, −312(%rbp)

movsd %xmm2, −304(%rbp)

call cbrt

Table 17. An example of obvious different results in lines 1923–1932 of Fig. 3 when changing the compiler optimization levels (from O2 to

O3). A manual result calculated by Python is also provided.

Variables Value

Input WORK3(i, j) 0.00000000000000

dz(k) 1000.00000000000

KAPPA_ISOP(i, j, kbt, k, bid) 1.991793396882581E-006

SLX(i, j, ieast, kbt, k, bid) −0.120114394362605

HYX(i, j, bid) 1.32933181234324

TX(i, j, k, n, bid) −0.161989629268646

SLY(i, j, jnorth, kbt, k, bid) −0.13980933 0009777

HXY(i, j, bid) 0.761427260631393

TY(i, j, k, n, bid) 0.152039408683777

SLX(i, j, iwest, kbt, k, bid) −7.344871974748127E-002

HYX(i-1, j, bid) 1.32933181234324

TX(i-1, j, k, n, bid) −0.192202091217041

SLY(i, j, jsouth, kbt, k, bid) −0.112685940441552

TY(i, j-1, k, n, bid) 0.743088001419362

TY(i, j-1, k, n, bid) 0.122525990009308

Output WORK3(i, j) Execution result (at optimization level O2) 3.622331248054413E-005

Execution result (at optimization level O3) 3.571897176404182E-005

Manual result (by Python) 3.62233124805436E-05

pile and run the model, and the rules to compare results at

bitwise identical level. The outputs are a list of compilation-

sensitive code files. CoSFiD first generates a reference re-

sult with the compiling setup CA to compile all code files.

Following the idea of the first stage introduced in Sect. 4.1,

CoSFiD compiles and runs the model many times and alter-

natively changes the compiling setup between CA and CB for

some code files each time.

The biggest challenge to the design and implementation

of CoSFiD is how to control the compilation process of each
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Figure 1. Flowchart of CoSFiD for detecting compilation-sensitive

code files. In each iteration, CoSFiD first checks whether it is neces-

sary to generate a new hybrid compilation scheme (some code files

are compiled with CA and the remaining code files are compiled

with CB). If unnecessary, which means the whole process of the

detection should end, CoSFiD will output all compilation-sensitive

code files. Otherwise, CoSFiD generates a new hybrid compilation

scheme, and then calls the corresponding rule to compile the model

code using the compiler wrapper and run the simulation. If it is the

first run of the simulation, which also means all code files are com-

piled with CA, the simulation result will be recorded as the ref-

erence result. Otherwise, CoSFiD calls the corresponding rule to

compare the simulation result to the reference result and then uses

the conclusion to drive the next iteration.

code file. A straightforward approach is to develop a common

tool that can successfully compile any model. However, this

approach seems impractical because different models may

have different systems to compile the code, for example, us-

ing different ways to specify code files and different ways to

generate header files. We therefore propose to use the origi-

nal compiling system of a model and design a compiler wrap-

per accordingly. The compiler wrapper is some script in CoS-

FiD, which can replace the original compiler commands used

for compiling the model. For example, given that a model

uses the Intel compiler commands (i.e., icc, icpc, and ifort)

to compile the code, users should generate pseudo compiler

commands with the same names (i.e., icc, icpc, and ifort)

under a directory through symbolic linking or copying the

compiler wrapper of CoSFiD, and then add the directory to

the beginning of the corresponding environment variable (for

example, PATH) of the operating system to make the pseudo

compiler commands used for the compilation of the code,

and then replace the compiler flag for compiler optimizations

by a label -DCoSFiD. When compiling a code file, CoSFiD

first gets the name of the file through the compiler wrapper;

it then looks up the current compiling setup for the file before

switching the compiler version to the specified one if neces-

sary and using the specified compiler flag to replace the label

-DCoSFiD; it finally compiles the code file.

4.3 Examples

4.3.1 Example 1

In this example, we search for the answer to the first ques-

tion in Sect. 4 (regarding all Intel compiler versions, given

compiler flags 2 or 4): why does CAM5 obtain different sim-

ulation results when changing compiler optimization level

from O0 or O1 to O2 or O3(as shown in Table 8)? Follow-

ing the methodology in Sect. 4.1, we first generate the two

compiling setups C1 and C2 using the Intel compiler version

13, compiler flag 2 (-fp-model precise -fp-speculation=strict

-mp1 -no-vec -no-simd) and two optimization levels (O1 and

O2); next, we use CoSFiD to find only one compilation-

sensitive code file (modal_aero_rename.F90) from more

than 700 code files of CAM5. For further analysis, we

split modal_aero_rename.F90 into two temporary code

files, each of which contains only one subroutine, and

then use CoSFiD to find that only the first subroutine

(modal_aero_rename_sub) contains compilation-sensitive

code segments. Through logging and then comparing the val-

ues of input and output variables of code segments in the two

compiling setups, we find a compilation-sensitive code seg-

ment, shown in Fig. 2. Given the same input (bitwise identi-

cal), this code segment can generate slightly different results

in different optimization levels (for example, Table 15). This

is due to the differences in assembly codes (Table 16). For

the exponent onethird in Fig. 2, it is defined as 1.0_r8/3.0_r8

in the program. The compiler optimization level O1 will call

function pow to calculate the corresponding power function,

while O2 will intelligently find that the power function is

actually a cube root operation and then call cbrt for the cal-

culation.

After replacing variable onethird with (1.0_r8/3.0_r8)

throughout the code, CAM5 achieves bitwise identical re-

sults with compiler flag 2 or 4 throughout all compiler op-

timization levels, and finally the corresponding bitwise iden-

tical compiler setup sets of CAM5 are enlarged. For example,

the bitwise identical compiling setup set in green color and

the set in blue color in Table 8 are unified into one set.
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Figure 2. Part of the code lines of the compilation-sensitive code segment in the code file modal_aero_rename.F90 of CAM5. It is found

that the code at line 330 can produce different results when different compiling setups are used.

Figure 3. Part of the code lines of the compilation-sensitive code segment in the code file hmix_gm.F90 of POP2. It is found that the code

from line 1923 to line 1932 can produce significantly different results when different compiling setups are used.

4.3.2 Example 2

In this example, we search for the answer to the second ques-

tion in Sect. 4 (regarding Intel compiler version 13): why

does POP2 obtain different simulation results when chang-

ing the compiler optimization level from O3 to another level

(as shown in Table 9)? To generate the two compiling se-

tups C1 and C2, we use the Intel compiler version 13, com-

piler flag 1 (-fp-model strict -fp-speculation=strict -mp1 -

no-vec –no-simd) and two compiler optimization levels (O2

and O3). Using CoSFiD, we find only one compilation-

sensitive code file (hmix_gm.F90) from more than 500 code

files of POP2. hmix_gm.F90 contains about 10 subroutines

and about 4000 code lines. For further analysis, we split

hmix_gm.F90 into 10 temporary code files, each of which

contains only one subroutine, and then use CoSFiD again to

find that only the temporary code file with the second sub-
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Figure 4. Simulation speed (simulated years per day; SYPD) of

CAM5 under two compiler flags (A and B) of Intel compiler version

13 when increasing the number of processes from 6 to 24. The high-

performance computer Tansuo100 is used for this test. Compiler

flag A (-O3 -fp-model strict -fp-speculation=strict -mp1 -no-vec -

no-simd) is from the biggest bitwise identical compiling setup sets

in Table 8. Compiler flag B (-O3 -fp-model fast-fp-speculation=fast

-MP1 -no-vec -simd) should be the compiler flag for fastest simu-

lation speed. Compiler flag -O3 -fp-model fast -fp-speculation=fast

-MP1 -vec -simd should be more aggressive than compiler flag B

in compiler optimizations. It is not used in this test because the

corresponding simulation run of CAM5 crashes. The advantage of

compiler flag B compared to compiler flag A is defined as the per-

formance improvement when compiler flag is changed from A to

B.

routine (hdifft_gm) contains compilation-sensitive code seg-

ments. Based on the binary values of input and output vari-

ables of the code segments with the two compiling setups, we

find a compilation-sensitive code segment in the subroutine

hdifft_gm, shown in Fig. 3. It is curious that given exactly the

same inputs, variable WORK3 obtains significantly different

results in the two compiling setups (for example, Table 17).

A manual result (Table 17) confirms correctness of the result

in the compiling setup with optimization level O2, but indi-

cates that the code segment in Fig. 3 triggers a bug in the

compiler when the compiler optimization level is O3.

It is almost impossible for us to fix a compiler bug. How-

ever, we can try to make the model code not trigger the bug.

Further analysis with assembly codes shows that the com-

piler performs an optimization of loop fusion that merges

four two-level loops at lines 1920–1999 of the code file

hmix_gm.F90 into one loop. We intuitively guess that there

are bugs in the loop fusion optimization. To avoid the loop

fusion optimization, we move the four two-level loops into a

new subroutine. Finally, POP2 achieves bitwise identical re-

sults with compiler flag 1 throughout all compiler optimiza-

tion levels, and the corresponding bitwise identical compil-

ing setup sets of POP2 are enlarged. For example, the bitwise

identical compiling setup set in red and the set in green in Ta-

ble 9 are unified into one set.
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Figure 5. Simulation speed (simulated years per day; SYPD) of

GAMIL2 (Li et al., 2013b) under two compiler flags (A and B)

of Intel compiler version 13 when increasing the number of pro-

cesses from 1 to 24. The high-performance computer Tansuo100

is used for this test. Compiler flag A (-O3 -fp-model strict -fp-

speculation=strict -mp1 -no-vec -no-simd) is the also the compiler

flag A used in Fig. 4. Compiler flag B (-O3 -fp-model fast -fp-

speculation=fast -MP1 -vec -simd) should be the compiler flag for

fastest simulation speed. The advantage of compiler flag B com-

pared to compiler flag A is defined as the performance improvement

when compiler flag is changed from A to B.

5 Discussion and conclusion

This study illustrates that a model can achieve bitwise iden-

tical results under different compiling setups. For a given

model, there are always a number of bitwise identical com-

piling setup sets, some of which can be across not only

different compiler flags but also different versions of the

same compiler family. As a result, the original results with

an older compiler version can be exactly reproduced with a

newer compiler version. Moreover, the examples in this pa-

per reveal that bitwise identical compiling setup sets can be

enlarged through carefully modifying compilation-sensitive

code segments, which will facilitate the exact reproduction

of original simulation results.

During the development of a model, the model codes in-

crease continuously and need to be tested frequently. The

testing can be classified into two categories: scientific test-

ing and technical testing. Scientific testing, which is evalu-

ating the scientific meaning of simulation results, is gener-

ally expensive, because it always requires long simulations

and requires scientists to evaluate a large amount of results.

In contrast, technical testing, which does not depend on the

scientific meaning of simulation results, is generally cheap.

For example, short simulations (such as several model days)

are enough for bitwise identical testing, and bitwise identical

testing can be conducted automatically without any burden

to scientists (Easterbrook and Johns, 2009). Technical test-

ing therefore should be much more frequent than scientific

testing. Since a bitwise identical compiling setup set con-

tains a number of compiling setups that should achieve ex-
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actly the same results for a model simulation, it can bring

more cases for technical testing. For example, given that a

new code version evolves from an old code version with new

modifications, the bitwise identical compiling setup sets of

each code version can be obtained automatically. If the two

code versions do not have the same bitwise identical com-

piling setup sets, new test cases can be generated for check-

ing why this happens, for example, because of bugs in the

codes or compilation-sensitive code segments. If there are

compilation-sensitive code segments in the new modifica-

tions, we advise researchers to make them insensitive, to

make each bitwise identical compiling setup set as big as pos-

sible for further development of the model. The first example

in Sect. 4.3 reveals that a compilation-sensitive code segment

can become insensitive after a slight code modification.

Although the bitwise identical compiling setup sets of dif-

ferent models are generally different, the differences can ef-

fectively bring more test cases to detect software bugs in

model simulations, especially the bugs of compilers. Al-

though scientists of Earth system modeling generally cannot

modify the code of a compiler to fix a bug, they can modify

the code of a model to make sure that the model code will not

trigger a compiler bug again. For example, based on the dif-

ferences of bitwise identical compiling setup sets among dif-

ferent models (CAM5, POP2, and FGOALS-g2), we found

that a code segment of POP2 triggers a bug of the Intel com-

piler version 13, and the compiler bug will not be triggered

again with a slight modification to the code segment.

There are generally a large number of choices of compiler

flags. Researchers may tend to select a compiler flag that can

achieve the best computation performance for a model sim-

ulation. Our performance evaluation shows that the compiler

flag 3 can achieve the best computation performance among

the compiler flags in Table 6. According to Tables 8–10, the

bitwise identical compiling setup set corresponding to com-

piler flag 3 is small. It is already known that climate simu-

lation results can be sensitive to round-off errors. To make

simulation results most easily reproduced, researchers may

be able to use the compiler flag of the best computation

performance in a bigger bitwise identical compiling setup

set for a model simulation, when the change of compiler

flags will not significantly decrease the computation perfor-

mance. For example, researchers can use the compiler flag -

O3 -fp-model strict -fp-speculation=strict -mp1 -no-vec –no-

simd for the simulation of the atmosphere models CAM5 and

GAMIL2 when the Intel compilers are used, because such a

compiler flag does not significantly decrease the computation

performance, especially when the number of processes is big

(Figs. 4 and 5). Please note that any selection of a compiler

flag for a model simulation will not affect the code testing

based on bitwise identical compiling setup sets.

Code availability

The source code of CESM version 1.2 can obtained at http:

//www.cesm.ucar.edu/models/cesm1.2/.

The source code of FGOALS-g2 is currently not publicly

available. You can contract us for more information.

The source code of CoSFiD is available at https://github.

com/liruizhe/CoSFiD.

The compilation-sensitive code files mentioned in

Sect. 4.3 will be included in the Supplement.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-731-2016-supplement.
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