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Abstract. High-resolution Earth system model simulations
generate enormous data volumes, and retaining the data from
these simulations often strains institutional storage resources.
Further, these exceedingly large storage requirements nega-
tively impact science objectives, for example, by forcing re-
ductions in data output frequency, simulation length, or en-
semble size. To lessen data volumes from the Community
Earth System Model (CESM), we advocate the use of lossy
data compression techniques. While lossy data compression
does not exactly preserve the original data (as lossless com-
pression does), lossy techniques have an advantage in terms
of smaller storage requirements. To preserve the integrity of
the scientific simulation data, the effects of lossy data com-
pression on the original data should, at a minimum, not be
statistically distinguishable from the natural variability of
the climate system, and previous preliminary work with data
from CESM has shown this goal to be attainable. However,
to ultimately convince climate scientists that it is acceptable
to use lossy data compression, we provide climate scientists
with access to publicly available climate data that have un-
dergone lossy data compression. In particular, we report on
the results of a lossy data compression experiment with out-
put from the CESM Large Ensemble (CESM-LE) Commu-
nity Project, in which we challenge climate scientists to ex-
amine features of the data relevant to their interests, and at-

tempt to identify which of the ensemble members have been
compressed and reconstructed. We find that while detecting
distinguishing features is certainly possible, the compression
effects noticeable in these features are often unimportant or
disappear in post-processing analyses. In addition, we per-
form several analyses that directly compare the original data
to the reconstructed data to investigate the preservation, or
lack thereof, of specific features critical to climate science.
Overall, we conclude that applying lossy data compression
to climate simulation data is both advantageous in terms of
data reduction and generally acceptable in terms of effects on
scientific results.

1 Introduction

Earth system models are widely used to study and understand
past, present, and future climate states. The tremendous ad-
vances in computational power (i.e., processor speeds) over
the last 25 years have allowed Earth system modelers to use
finer temporal and spatial model resolutions. While finer res-
olutions typically produce more accurate and realistic sim-
ulations, the resulting datasets are often massive and may
severely strain data storage resources. Because supercomput-
ing storage capacities have not increased as rapidly as proces-
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sor speeds over the last 25 years, the cost of storing huge data
volumes is becoming increasingly burdensome and consum-
ing larger and unsustainable percentages of computing center
budgets (e.g., Kunkel et al., 2014).

The Community Earth System Model (CESM) is a popu-
lar and fully coupled climate simulation code (Hurrell et al.,
2013), whose development is led by the National Center
for Atmospheric Research (NCAR). The CESM regularly
produces large datasets resulting from high-resolution runs
and/or long timescales that strain NCAR storage resources.
For example, to participate in the Coupled Model Compari-
son Project Phase 5 (CMIP5, 2013) that led to the Intergov-
ernmental Panel on Climate Change (IPCC, 2016) Assess-
ment Report 5 (AR5) (IPCC, 2013), CESM produced nearly
2.5 PB of raw output data that were post-processed to obtain
the 170 TB of data submitted to CMIP5 (Paul et al., 2015).
Current estimates of the raw data requirements for CESM
for the upcoming CMIP6 project (Meehl et al., 2014) are in
excess of 10 PB (Paul et al., 2015). A second example of a
data-intensive CESM project is the CESM-Large Ensemble
(LE) project (Kay et al., 2015), a large ensemble climate sim-
ulation study. The CESM-LE project is a publicly available
collection of 180-year climate simulations at approximately
1◦ horizontal resolution for studying internal climate vari-
ability. Storage constraints influenced the frequency of data
output and necessitated the deletion of the raw monthly out-
put files. In particular, the initial 30 ensemble member sim-
ulations generated over 300 TB of raw data, and less than
200 TB of processed and raw data combined could be re-
tained due to disk storage constraints. For large climate mod-
eling projects such as CMIP and CESM-LE, reducing data
volumes via data compression would mitigate the data vol-
ume challenges by enabling more (or longer) simulations to
be retained, and hence allow for more comprehensive scien-
tific investigations.

The impact of data compression on climate simulation
data was addressed in Baker et al. (2014). In Baker et al.
(2014), quality metrics were proposed to evaluate whether
errors in the reconstructed CESM data (data that had under-
gone compression) were smaller than the natural variability
in the data induced by the climate model system. The results
of the preliminary study indicated that a compression rate of
5 : 1 was possible without statistically significant changes to
the simulation data. While encouraging, our ultimate goal is
to demonstrate that the effect of compression on the climate
simulation can be viewed similarly to the effect of a small
perturbation in initial conditions or running the exact same
simulation on a different machine. While such minor mod-
ifications lead to data that are not bit-for-bit (BFB) identi-
cal, such modifications should not result in an altered climate
(Baker et al., 2015). With compression in particular, we must
also ensure that nothing systematic (i.e., over-smoothing) has
been introduced. Therefore, to build confidence in data com-
pression techniques and promote acceptance in the climate
community, our aim in this work is to investigate whether

applying lossy compression impacts science results or con-
clusions from a large and publicly available CESM dataset.

To this end, we provided climate scientists with access to
climate data via the CESM-LE project (Kay et al., 2015).
We contributed three additional ensemble members to the
CESM-LE project and compressed and reconstructed an un-
specified subset of the additional three members. To deter-
mine whether the effects of compression could be detected
in the CESM-LE data, we then enlisted several scientists to
attempt to identify which of the new members had under-
gone lossy compression by using an analysis technique of
their choosing (i.e., we did not specify what analysis tech-
nique each should use). In addition, we provided a different
group of scientists with both the original and reconstructed
datasets and asked them to directly compare features par-
ticular to their interests (again, we did not specify how this
analysis should be done) and determine whether the effects
of compressing and reconstructing the data impacted cli-
mate features of interest. Indeed, a significant contribution
of our work was enabling scientists to evaluate the effects
of compression on any features of the data themselves with
their own analysis tools (rather than relying solely on sim-
ple error metrics typically used in compression studies). Note
that while the three additional CESM-LE ensemble members
were generated at NCAR, the scientists participating in the
ensemble data evaluations were from both NCAR and exter-
nal institutions. The author list for this paper reflects both
those who conducted the study as well as those who par-
ticipated in the lossy data evaluations (and whose work is
detailed in this paper). For simplicity, the term “we” in this
paper can indicate any subset of the author list, and in Ap-
pendix A we detail which authors conducted each of the data
evaluations described in this work.

In this paper, we describe several of the analyses done
by scientists and detail the results and the lessons that we
learned from their investigations. We demonstrate the poten-
tial of lossy compression methods to effectively reduce stor-
age requirements with little to no relevant information loss,
and our work sheds light on what remains to be done to pro-
mote widespread acceptance and use of lossy compression
in Earth system modeling. This paper is organized as fol-
lows. We first discuss background information in Sect. 2. In
Sect. 3, we describe our approach to demonstrating the ef-
fects of lossy compression on climate science results. Then,
in Sects. 4 and 5, we present selected results from data anal-
yses evaluating compression effects in the context on the
CESM-LE data. Finally, we summarize the lessons learned
from this study in Sect. 6 and offer concluding thoughts in
Sect. 7.
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2 Background

In this section, we further discuss lossy data compression.
We then provide additional details on the CESM-LE project
datasets.

2.1 Data compression

Compression techniques are classified as either lossless or
lossy. Consider a dataset X that undergoes compression,
resulting in the compressed dataset C (X ⇒ C). When the
data are reconstructed, then C⇒ X̃ . If the compression tech-
nique is lossless, then the original data are exactly preserved:
X = X̃ . Note that the commonly used gzip compression util-
ity is a lossless method. If, on the other hand, the compres-
sion technique is lossy, then X ≈ X̃ ; the data are not exactly
the same (e.g., Sayood, 2012). Lossy compression methods
generally give the user some control over the information
loss via parameters that either control the compression rate,
precision, or absolute or relative error bounds. The effective-
ness of compression is generally measured by a compression
ratio (CR), which is the ratio of the size of the compressed
file to that of the original file (cf. Iverson et al., 2012):

CR(F )=
filesize(C)
filesize(X )

. (1)

While lossless methods are often viewed as “safer” for sci-
entific data, it is well known that lossless data compression of
floating-point simulation data is difficult and often yields lit-
tle benefit (e.g., Lindstrom and Isenburg, 2006; Bicer et al.,
2013; Lakshminarasimhan et al., 2011). The reason for the
relative ineffectiveness of lossless methods on scientific data
(in contrast to image or audio data, for example) is that trail-
ing digits of the fixed-precision floating-point output data are
often essentially random, depending on the data type and the
number of physically significant digits. Random numbers are
a liability for compression, thus giving lossy methods a sig-
nificant advantage. Many recent efforts have focused on ef-
fectively applying or adapting lossy techniques for scientific
datasets (e.g., Lakshminarasimhan et al., 2011; Iverson et al.,
2012; Laney et al., 2013; Gomez and Cappello, 2013; Lind-
strom, 2014). In the climate modeling community in particu-
lar, lossy data compression has been the subject of a number
of recent studies (e.g., Woodring et al., 2011; Hübbe et al.,
2013; Bicer et al., 2013; Baker et al., 2014; Kuhn et al., 2016;
Silver and Zender, 2016; Zender, 2016), though we are not
aware of comparable efforts on evaluating the effects on the
scientific validity of the climate data and results.

A major obstacle inhibiting the adoption of lossy com-
pression by many scientific communities is not technical,
but rather psychological in nature. For example, scientists,
who analyze the climate simulation data, are often (under-
standably) reluctant to lose bits of data in order to achieve
smaller data volumes (hence the continued interest in loss-
less approaches, such as recent work in Huang et al., 2016,

and Liu et al., 2014). In remarkable contrast, meteorologi-
cal communities widely use and trust the World Meteoro-
logical Organization (WMO) accepted GRIB2 (Day et al.,
2007) file format, which encodes data in a lossy manner.
It should be noted, however, that difficulties can arise from
GRIB2’s lossy encoding process, particularly with new vari-
ables with large dynamic ranges or until official GRIB2 spec-
ification tables are released for new model output (see, e.g.,
GFAS, 2015). While the preliminary work in Baker et al.
(2014) indicated that GRIB2 was not as effective as other
compression methods on CESM data, a more extensive in-
vestigation of GRIB2 with climate data should be done in
light of the new techniques in Baker et al. (2015) and this
paper before definitive conclusions are drawn. Nevertheless,
the contrast is notable between the meteorological commu-
nity’s widespread use and acceptance of GRIB2 and the cli-
mate community’s apparent reluctance to adopt lossy meth-
ods, even when proven to be safe, flexible and more effective.
In this context, when applying lossy compression to scien-
tific datasets, determining appropriate levels of precision or
error, which result in only a negligible loss of information, is
critical to acceptance.

In summary, there are several salient points to recognize
in the case for adopting lossy compression for climate sim-
ulation data. First, the least few significant bits of data are
usually noise resulting from the fixed-precision rounding er-
ror and are not physically meaningful. Second, while 32 bit
and 64 bit are meaningful data sizes for hardware, those sizes
have no inherent relevance to a particular climate simulation.
In other words, there is not a compelling reason why 32 bits is
the most accurate representation for a particular variable on
a particular grid resolution (e.g., consider saving fewer bits
from a finer resolution vs. saving more bits from a coarser
resolution). Finally, note that regardless of the precision of
the simulation output data, these data have already been sub-
jected to a lossy process via the chosen output frequency
(e.g., hourly, daily, monthly). Therefore, we argue that apply-
ing lossy compression to climate simulation data should not
be regarded with more suspicion than carefully choosing grid
resolutions, output frequency, and computation precisions.

2.2 The CESM Large Ensemble project dataset

The CESM-LE project (Kay et al., 2015) is a commu-
nity project that includes a publicly available ensemble
of climate model simulations generated for the purpose
of studying internal climate variability. All data are cur-
rently available from the Earth System Grid website (http:
//www.earthsystemgrid.org). The CESM-LE project is an
ideal venue for this evaluation because of its use of climate
ensembles, struggle with storage limitations, and availability
to the broader climate community. The project began with a
set of 30 ensemble members, each of which covers the pe-
riod from 1920 to 2100. All simulations use the fully cou-
pled 1◦ latitude–longitude version of CESM–CAM5 (Com-
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munity Atmosphere Model version 5). Historical forcing is
used for the period 1920–2005 and RCP8.5 radiative forcing
(i.e., forcing that reflects near-past and future climate change;
e.g., Lamarque et al., 2011) thereafter. Ensemble spread is
generated using small round-off level differences in the ini-
tial atmospheric temperature field. Comprehensive details on
the experimental setup can be found in Kay et al. (2015).

CESM outputs raw data in NetCDF-formatted time-slice
files, referred to as “history” files, for post-processing anal-
ysis. Sample rates (daily, monthly, etc.) are determined for
each variable by default, depending on the grid resolution,
though a user can specify a custom frequency if desired.
When the floating-point data are written to these history files,
they are truncated from double precision (64 bits) to sin-
gle precision (32 bits). For the CESM-LE project, monthly,
daily, and 6-hourly history file outputs were converted and
saved as a single-variable time series, requiring approx-
imately 1.2 TB of storage per ensemble member. Com-
plete output variable lists and sampling frequencies for each
model can be found at https://www2.cesm.ucar.edu/models/
experiments/LENS/data-sets. We restrict our attention in this
work to data from the atmospheric model component of
CESM, which is the CAM. CAM output data for the CESM-
LE simulations consists of 159 distinct variables, many of
which are output at multiple frequencies: 136 have monthly
output, 51 have daily output, and 25 have 6-hourly output
(212 total variable outputs). Note that due to storage con-
straints, the 6-hourly data are only available during three time
periods: 1990–2005, 2026–2035, and 2071–2080.

3 Approach

To provide climate scientists with the opportunity to deter-
mine whether the effects of lossy compression are detectable
and to solicit community feedback, we first designed a blind
evaluation study in the context of the CESM-LE project. By
utilizing the CESM-LE project, we were able to question
whether the effects of compression could be distinguished
from model internal variability. Three new simulation runs
were set up identically to the original 30, differing only in
the unique perturbation to the initial atmospheric temperature
field. We then contributed these three new additional ensem-
ble members (labeled 31–33) to the CESM-LE project, first
compressing and reconstructing the atmospheric data output
from two of the new ensemble runs (31 and 33). By not spec-
ifying which of the new ensemble members (or how many)
had been subject to compression, we were able to gather
feedback from scientists in the climate community detailing
which ensemble member(s) they believed to have been com-
pressed and why. In addition, we supplied several scientists
with both the original and reconstructed data for ensemble
members 31 and 33, allowing direct comparison of the two.

Participants were recruited in a number of ways, including
announcements at conferences, advertisement on the CESM-

LE project web page, and direct e-mail to scientists working
with CESM data. Participants in both the blind and not blind
studies were specialists in their fields, and while all partici-
pants were aware that multiple scientists were participating
in the study, their analyses were conducted independently.
Because we did not specify how the data should be analyzed,
participants studied aspects of the data relevant to their inter-
ests, and the analyses described are a mixture of mathemat-
ical and visual approaches. Note that if we determined that
a particular analysis technique would provide more insight
in a not blind context, then that scientist was given both the
original and reconstructed data (e.g., the results in Sect. 5).
The analyses in Sects. 4 and 5 were presented to give the
reader a flavor of the types of post-processing analysis that
occur in practice with CESM data as well as the concerns
that different scientists may have when using a dataset that
has undergone lossy compression.

For this study, we chose the publicly available fpzip algo-
rithm (Lindstrom and Isenburg, 2006) for lossy data com-
pression, based on its superior performance on the climate
data in Baker et al. (2014). The fpzip algorithm is particularly
attractive because it is fast at both compression and recon-
struction, freely available, grid independent, and can be ap-
plied in both lossless and lossy mode. The fpzip method uses
predictive coding, and its lossy mode is invoked by discard-
ing a specified number of least significant bits before loss-
lessly encoding the result, which results in a bounded relative
error.

The diverse nature of climate model data necessitates de-
termining the appropriate amount of compression (i.e., pa-
rameter) on a per-variable basis (Baker et al., 2014). Some
variables can be compressed more aggressively than others,
and the appropriate amount of compression can be influenced
by characteristics of the variable field and properties of the
compression algorithm. For example, relatively smooth fields
are typically easy to compress, whereas fields with jumps
or large dynamic ranges often prove more challenging. Fur-
ther, if the internal variability is large for a particular vari-
able across the ensemble, then more compression error can
be tolerated. With fpzip, controlling the amount of compres-
sion translates to specifying the number of bits of precision
to retain for each variable time series. Note that if a variable
is output at more than one temporal frequency, we do not as-
sume that the same precision will be used across all output
frequencies. Recall that the CAM time series data in CESM-
LE contain single-precision (32 bit) output. While one could
specify that fpzip retains any number of bits (up to 32), we
restrict our choices to 16, 20, 24, 28, and 32, the latter of
which is lossless for single-precision data.

In Baker et al. (2014), the appropriate level of compression
was chosen for each of the CAM variables in the dataset by
selecting the most aggressive (lowest CR) such that a suite
of four quality metrics all passed. The quality metrics in
Baker et al. (2014) are largely based on evaluating the er-
ror in the reconstructed dataset in the context of an ensemble
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of simulations and test the variables for Z score, maximum
pointwise error, bias, and correlation. The ensemble distri-
bution is intended to represent acceptable internal variabil-
ity in the model, and the goal is that the error due to lossy
compression should not be distinguishable from the model
variability as represented by the ensemble distribution. Note
that for some variables, the lossless variant of a compression
algorithm was required to pass the suite of metrics. (In the
case of fpzip, the lossless variant was required for less than
5 % of the variables.) While many of the variables present
in the CAM dataset in Baker et al. (2014) are also present
in the CESM-LE dataset studied here, we did not necessar-
ily use the same fpzip parameter settings for the variables
common to both for several reasons. First, the data in Baker
et al. (2014) were output as annual averages, which we would
expect to be smoother (and easier to compress) than the 6-
hourly, daily, and monthly data from CESM-LE. Also, the
choices of bits to retain with fpzip in Baker et al. (2014) were
limited to 16, 24, and 32, and notably, the CAM variant in
Baker et al. (2014) used the spectral element (SE) dynam-
ical core, whereas the CESM-LE CAM variant uses the fi-
nite volume (FV) dynamical core. The dynamical core dif-
ference affects the dimensionality and layout of the output
data, which impacts the effectiveness of some compression
algorithms. Thus, we started this study with no assumptions
on what level of fpzip compression to use for each variable.

To determine a reasonable level of compression for each
of the 159 CESM-LE CAM variables, we created a test en-
semble of 101 12-month CESM simulations with a similar
(but distinct) setup to the production CESM-LE simulations.
Unlike the test ensemble in Baker et al. (2014), which only
produced annual averages, we output daily, 6-hourly, and
monthly data for the simulation year and created ensembles
for each frequency of output for each variable (212 total).
We then used the size 101 test ensemble to chose the fpzip pa-
rameters that yielded the lowest CR such that the suite of four
quality metrics proposed in Baker et al. (2014) all passed. We
did not use CESM-LE members 1–30 for guidance when set-
ting the fpzip precision parameters for compressing the two
new ensemble runs, but based all selections on the variabil-
ity of the size 101 test ensemble. (Note that an ensemble
with 101 has more variability than one with 30 members.)
Finally, we mention that several variables occasionally con-
tain “missing” values (i.e., there is no data value at a grid
point). While “fill” values (i.e., a defined fixed value to rep-
resent missing data) can be handled by fpzip, it cannot pro-
cess the locations with missing data (which would need to be
either populated with a fill value or masked out in a prepro-
cessing step). Therefore the following CESM-LE variables
are not compressed at all: TOT_CLD_VISTAU, ABSORB,
EXTINCT, PHIS, SOLIN, AODDUST2, LANDFRAC, and
SFCO2_FFF.

The first two rows in Table 1 list the compression ratios for
each of the output frequencies for both fpzip and the lossless
compression that is part of the NetCDF-4 library (zlib). Note

Table 1. Impact in terms of compression ratios (CR) of lossy com-
pression with fpzip, lossless compression with NetCDF-4, and sim-
ple truncation for a CESM-LE ensemble member.

Method Monthly Daily 6-hourly Average

fpzip .15 .22 .18 .18
NetCDF-4 .51 .70 .63 .62
Truncation .61 .58 .60 .69

Table 2. The number of variables that used each fpzip compression
level (in terms of number of bits retained). Note that NC means “not
compressed” due to missing values.

Number of bits retained 16 20 24 28 32 NC

Monthly variable 75 31 15 1 6 8
Daily variables 29 11 11 0 0 0
6-hourly variables 12 8 4 0 0 1

Total 116 50 30 1 6 9

that when applying the customized-by-variable fpzip param-
eters to a single CESM-LE ensemble member (180 simula-
tion years) yielded an average CR of 0.18 (more than a 5 : 1
reduction), which is a 3.5 times reduction over the lossless
NetCDF4 library compression. The third row in Table 1, la-
beled “truncation”, indicates the compression ratios possi-
ble with simple truncation if each variable was truncated to
the same precision as specified for fpzip. (Table 2 lists how
many variables out of the 212 total used each level of fpzip
compression). Therefore, the differences between the com-
pression ratios for fpzip and truncation in Table 1 highlight
the added value of fpzip’s predictor and encoder in reducing
data volumes over simple truncation. Note that Table 2 shows
that the majority of the variables were able to use the most
aggressive compression, fpzip-16.

4 Ensemble data evaluations

In this section, we describe selected analyses performed
on the CESM-LE data that were conducted without prior
knowledge of which of the new ensemble members (31–
33) had been subjected to lossy compression. These exper-
iments were designed to identify which new ensemble mem-
bers had been compressed and reconstructed and to deter-
mine whether the compression-induced effects were signifi-
cant. Note that because fpzip truncates values (and is there-
fore biased towards zero), one could trivially compare the
raw data files directly to determine which ensemble mem-
bers had undergone compression and reconstruction. How-
ever, analyses in this section and the next look for data dis-
crepancies via various methods typically applied in climate
analysis.
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Figure 1. CVDP-generated global maps of historical (1920–2012) annual surface air temperature trends for the 30 original individual CESM-
LE ensembles member, the three new members (31–33), and the reconstructed data from new members 31 and 33 (contained in the lower
right box).

4.1 CVDP

We first discuss results from the Climate Variability Diag-
nostic Package (CVDP) (Phillips et al., 2014), a publicly
available analysis tool for examining major modes of cli-
mate variability. In particular, the CVDP outputs a vari-
ety of key climate metrics, which are immediately viewable
via a website of images (means, standard deviations, cou-
pled modes of variability, atmospheric modes of variabil-
ity, global trend maps, AMOC (Atlantic Meridional Over-
turning Circulation), time series data, etc.). The CVDP was
used to document the climate simulated by each mem-
ber of the CESM-LE, and complete CVDP diagnostic data
and images from several time periods are available on the
CESM-LE project diagnostics page (http://www.cesm.ucar.
edu/experiments/cesm1.1/LE/). Global trend maps are one
of the key metrics in the CVDP, and in Fig. 1, we show
the CVDP-generated global trend map for annual air sur-

face temperature (TAS) for historical simulation data (1920–
2012). Note that this figure is comparable to Fig. 4 from Kay
et al. (2015), but for annual data of a longer historical period.
The three additional ensemble members (31–33) are shown
in Fig. 1 as well. Also included are the reconstructed versions
of 31 and 33, labeled 31-C and 33-C, respectively. Note that
there is no discernible difference between 31 and 31-C or 33
and 33-C in this figure. This result is not unexpected as the
types of calculations that the CVDP conducts are unlikely
to identify compression effects. For that reason, all of the
CVDP diagnostic data available on the CESM-LE project di-
agnostics page at present include the reconstructed variants
of 31 and 33 (i.e., 31-C and 33-C in our figure) instead of
the original uncompressed data (31 and 33 in our figure). No
anomalies or differences have been reported for any of the
CVDP diagnostic data for the CESM-LE project that include
the reconstructed members 31 and 33.
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4.2 Climate characteristics

We now describe an analysis aimed at determining whether
the effects of the lossy compression could be distinguished
from the internal variability inherent in the climate model
as illustrated by the CESM-LE project ensemble member
spread. The CESM-LE historical simulation (1920–2005)
data are examined for ensemble members 2–33 (member 1 is
excluded due to a technicality related to its different starting
date). Multiple characteristics of interest across the ensemble
are examined: surface temperature, top-of-the-atmosphere
(TOA) model radiation, surface energy balance, precipitation
and evaporation, and differenced temperature fields. The ef-
fects of compression are discernable in several characteris-
tics.

4.2.1 Surface temperature

First, we plot the global mean annual surface temperature
evolution in Fig. 2. Because the three additional members
(31–33) are within the range of internal variability, this plot
does not indicate which new member(s) has been compressed
and reconstructed. Second, we examine the extreme values
for surface temperature due to the often cited concern that
applying compression to scientific data could dampen the
extremes. We calculate the difference between the maxi-
mum monthly average and minimum monthly average sur-
face temperature in 3-year segments. While the temperature
difference was the lowest for member 32 (which was not
compressed) in the first 6 years, this trend did not continue
through the remaining 80 years. In fact, none of the members
31–33 show any detectable surface temperature anomalies as
compared to the rest of the ensemble members.

4.2.2 Top-of-the-atmosphere model radiation

Examining the TOA model radiation balance is of interest as
compression could potentially violate conservation of mass,
energy or momentum. TOA imbalance is calculated as net
shortwave (SW) radiation minus the net longwave (LW) ra-
diation. We found no discernable difference in the TOA ra-
diation imbalance due to compression (that could be distin-
guished from the ensemble variability) when we looked at
members 1–33 in the time period 1920–2005 or the shorter
period from 1920 to 1940, shown in Fig. 3. Furthermore, the
TOA radiation imbalance time series in Fig. 4 also indicates
that internal variability is masking any possible effects due
to compression. Note that we also examined the top of the
model net LW and net SW radiation independently and that
data did not indicate any anomalies in the new members ei-
ther.

4.2.3 Surface energy balance

Surface energy balance is another popular climate model
characteristic that is commonly calculated in climate model

Figure 2. Annual global mean surface temperature evolution for
1920–2005. CESM-LE members 2–30 are indicted in gray and the
three new members (31–33) are designated in the legend. Note that
members 31 and 33 have been subjected to lossy compression.

Figure 3. Global mean of top-of-model energy imbalance from
1920 to 1940 for CESM-LE members 2–30 and the three new mem-
bers (31–33). Note that members 31 and 33 have been subjected to
lossy compression.

diagnostics. The energy balance at the Earth’s surface indi-
cates the heat storage in the climate system and is calculated
as the sum of the net solar flux at the surface (FSNS), the
net longwave flux at the surface (FLNS), the surface latent
heat flux (LHFLX), and surface sensible heat flux (SHFLX)
(e.g., see Raschke and Ohmura, 2005). We calculated the
imbalance in the surface energy for each month using the
monthly average output of variables FSNS, FLNS, LHFLX,
and SHFLX. Figure 5 shows the mean imbalance over the
period from 1920 to 2005. Note that members 31 and 33
(both of which were compressed) fall far outside the range

www.geosci-model-dev.net/9/4381/2016/ Geosci. Model Dev., 9, 4381–4403, 2016



4388 A. H. Baker et al.: Evaluating lossy data compression on climate simulation data

Figure 4. Top-of-model energy imbalance from 1920 to 2005.
CESM-LE members 2–30 are indicted in gray and the three new
members (31–33) are designated in the legend. Note that mem-
bers 31 and 33 have been subjected to lossy compression.

Figure 5. Mean surface energy imbalance from 1920 to 2005 for
CESM-LE members 2–30 and new members 31–33. Note that
members 31 and 33 have been subjected to lossy compression.

of internal variability. We found that the difference in surface
energy balance for 31 and 33 is attributable to lower levels of
the LHFLX for the reconstructed members, as seen in Fig. 6.
We note that this larger surface energy imbalance persists in
the later CESM-LE sets from 2006 to 2080.

We examined the four CESM-LE variables involved in the
surface energy balance calculation. We found that LHFLX
was compressed more aggressively than the other three vari-
ables (fpzip-16 vs. fpzip-24). Therefore, we repeated the sur-
face energy balance calculation with LHFLX subjected to
fpzip-24 (instead of fpzip-16) and found that the surface en-

Figure 6. Mean surface latent heat flux (LHFLX) from 1920 to 2005
for CESM-LE members 2–30 and new members 31–33. Note that
members 31 and 33 have been subjected to lossy compression.

Figure 7. Mean surface energy imbalance from 1920 to 2005 for
CESM-LE members 2–30 and new members 31–33 with adjusted
compression level (fpzip-24) for LHFLX. Note that members 31 and
33 have been subjected to lossy compression.

ergy balance anomalies for members 31 and 33 disappear.
Figure 7 shows the new result. Clearly relationships between
variables can be important when determining an appropriate
amount of compression to apply, especially in the context of
derived variables. We further discuss this lesson in Sect. 6.

4.2.4 Precipitation and evaporation

Next we evaluated precipitation (the sum of variables
PRECC and PRECL) across the ensemble, shown in Fig. 8,
supposing that precipitation levels could be lower in 31 and
33 due to reduced LHFLX; however, members 31 and 33 do
not stand out in the context of precipitation. Evaporation, on
the other hand, is directly calculated from latent heat flux
(LHFLX) via a constant conversion factor (accounting for
water density and latent heat of evaporation) that we deter-
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Figure 8. Mean precipitation from 1920 to 2005 for CESM-LE
members 2–30 and new members 31–33. Note that members 31 and
33 have been subjected to lossy compression.

Figure 9. The balance between precipitation and evaporation from
1920 to 2005 for CESM-LE members 2–30 and new members 31–
33. Note that the compression level for LHFLX is fpzip-16 (in con-
trast to Fig. 10). Also, members 31 and 33 have been subjected to
lossy compression.

mined from the first ensemble member (such that precipita-
tion and evaporation were equal). A look at the evaporation
across the ensemble showed lower levels of evaporation cor-
responding to members 31 and 33, resulting in the precipita-
tion/evaporation imbalance shown in Fig. 9.

Both PRECC and PRECL were compressed with fpzip-
24, whereas LHFLX used fpzip-16. As with the previously
discussed surface energy balance calculation, the size of
the anomalies in Fig. 9 points to the issue of a derived
variable calculated from variables with differing levels of
compression-induced error. Therefore, if we redo the pre-
cipitation/evaporation imbalance using LHFLX compressed
with fpzip-24, the discrepancy between members 31 and 33
and the rest of the ensemble disappears, e.g., Fig. 10.

Figure 10. The balance between precipitation and evaporation from
1920 to 2005 for CESM-LE members 2–30 and new members 31–
33 with adjusted compression level for LHFLX (fpzip-24). Note the
difference in scale between this plot and that in Fig. 9. Also, mem-
bers 31 and 33 have been subjected to lossy compression.

4.2.5 Differenced temperature field

Difference fields are useful for indicating whether key fea-
tures of the field have been preserved (e.g., gradients). For
each of the ensemble members, we calculate the difference
field for the near-surface air temperature (TREFHT) field
monthly mean for October 1920. In particular, we calculate
the difference in near-surface air temperature between pairs
of neighboring grid points first in the longitudinal direction
and then in the latitudinal direction. Looking at the distri-
bution of all these differences for each member via mean,
median, interquartile range (IQR), and skewness, we found
that reconstructed members were outliers only in terms of
the IQR. The IQR is the third (upper) quartile minus the
first (lower) quartile and indicates the spread of the distri-
bution. Reconstructed members 31 and 33 have an IQR near
0.25, which is larger than that of any of the other ensem-
ble members, which are all close to 0.1. Note that the me-
dian of the two reconstructed member’s difference distribu-
tions is exactly zero. In fact, of all the differences calculated
for each member, the value zero occurs less than 1/10 of a
percent among the original members, but it occurs in about
one-third of the reconstructed ensemble members 31 and 33.
This result means that neighboring values are often the same
after compression, whereas they were not exactly the same
originally. This detectable effect with a lossy method is ex-
pected as some precision has been lost. However, the differ-
ence is not necessarily relevant for analysis. For example,
for temperature, one could argue that the last several digits
were likely simulation noise and were, therefore, unimpor-
tant in terms of scientific conclusions. However, if compres-
sion dampens the minimum and maximum values that oc-
cur in the neighbor-differences temperature field, this effect
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would be problematic. We calculated the difference between
the minimum and maximum values in the differenced tem-
perature field for each ensemble member for every month
from 1920 to 2005. This calculation characterizes the largest
temperature gradients that occur for each month. We show
the October 1920 results in Fig. 11, which indicate that noth-
ing is amiss with members 31 and 33 (which was also the
case for all of the other months from 1920 to 2005).

In general, though, determining whether compression
caused an overall smoothing effect on the data is perhaps bet-
ter viewed by examining spatial contrast plots showing the
north–south and east–west differences for the near-surface
air temperature for the ensemble members. For ensemble
member 31, Fig. 12 shows both the original (labeled “mem-
ber 31”) and reconstructed (labeled “member 31-C”) data
from October of 1920. Note that the scale of the color bar
would need to be greater than±10◦ to represent all gradients,
but at that scale differentiating the smaller gradients is diffi-
cult and no compression effects can be detected. Therefore,
the rightmost plots in Fig. 12 have a color bar scale tightly re-
stricted to ±0.5◦. At this restricted scale, one can notice the
effects of lossy compression largely over the ocean in areas
where the original gradient was quite small already. How-
ever, when the color scale is slightly expanded to ±1.5◦ (in
the leftmost plots), it is difficult to discern any differences be-
tween 31 and 31-C, and the larger gradients over land coast-
lines and ridges dominate, as expected.

4.3 Ensemble variability patterns

The idea behind the following analysis was to deter-
mine whether lossy compression would introduce detectable
small-scale variability patterns into the climate data. To this
end, we reconstructed each large ensemble member (1–33)
from a basis set derived from the variability from each
other member of the large ensemble, with the idea that the
complete basis set derived from the compressed members
would be able to explain less variance in the other simula-
tions (because some of the higher modes would not be well-
represented).

In particular, we followed the following procedure. For
each ensemble member (1–33), we did a singular value de-
composition (SVD) analysis to determine the EOFs (empir-
ical orthogonal functions) in the spatial dimension on the
monthly temperature field for 900 months. Note that we ex-
amined a subset of the grid cells to reduce computational
costs. We then projected each of the remaining 32 ensem-
ble members onto the resulting EOF basis and calculated the
unexplained variance. Figure 13 provides the sum of the un-
explained variance (mean squared error) in temperature for
each ensemble member (note that the expectation value has
been subtracted for clarity). Figure 13 indicates that mem-
bers 31 and 33 are outliers, meaning that their set of EOFs
is less appropriate as a basis set to describe the variability in
the other ensemble members; this is due to loss of precision

Figure 11. Difference between maximum and minimum values oc-
curring in the neighbor-differences surface temperature field (TRE-
FHT) for each ensemble member for October 1920. Note that mem-
bers 31 and 33 have been subjected to lossy compression.

induced by lossy compression (which primarily affects the
high-frequency modes).

Figure 14 shows the same result in an alternative way.
Each subplot uses a set of EOFs (900 total) derived from
a member of the large ensemble (subplots are only shown
for members 21–33, as 1–20 share similar characteristics to
the other members not subject to compression). The remain-
ing 32 members are projected onto the EOF basis set, and
we calculate the variance of the principal components in the
rest of the ensemble (900× 32 samples). The anomaly of this
curve relative to the ensemble mean case is plotted in the sub-
plots in Fig. 14. The subplot x axes represent the 900 EOFs,
and the y axes indicates the magnitude of the temperature
variance. The subplots for ensemble members 31 and 33 in-
dicate that when the rest of the ensemble members projected
onto their EOFs, those modes of rank 500 or greater exhibit
lower than expected variance. Again, the reconstructed mem-
bers do not contain the high-frequency information present
in the rest of the ensemble. Of note is that when we alterna-
tively first derived EOFs in members 1–30 and then projected
members 31 and 33 onto that basis set, no differences were
detected as expected. Given that the differences are only no-
ticeable in the higher EOFs (which are not typically exam-
ined), it appears that the compressed members are not (no-
ticeably) under-representing any of the true modes of vari-
ability.

A natural question is whether the detected differences in
variances for members 31 and 33 could impact science re-
sults. Clearly the large-scale patterns of variability, long-term
trends, and regionally averaged properties would all be unaf-
fected because they can be represented with a fraction of this
number of EOF modes (i.e., many fewer than 500). Analyses
that could potentially be affected by the truncation of EOF
modes greater than 500 include such features as point-scale
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Figure 12. A comparison of the difference maps (i.e., gradients) for the surface temperature field (TREFHT) for ensemble members 31
(original) and 31-C (reconstructed) for October 1920. Note that the color scale for the left maps has a smaller range than for the right maps.

Figure 13. The sum of the mean squared error in temperature field
when the other ensemble members’ variance is projected onto a sin-
gle member’s EOF basis. Note that members 31 and 33 have been
subjected to lossy compression.

extreme temperatures or precipitation. We partially address
this issue in Sect. 5.1 by investigating the extremes. However,
in future work we will further explore whether compression-
induced damping of high-frequency elements (spatially or
temporally) has relevant effects that exceed the noise stem-
ming from the model’s floating-point calculations.

4.4 Coherent structures

4.4.1 Overview of proper orthogonal decomposition

Proper orthogonal decomposition (POD) is used for the ex-
traction of coherent structures, or the study of recurring pat-
terns in spatiotemporal fields. The POD technique was first
introduced in the context of fluid turbulence by Lumley
(1967) in order to analyze the velocity field of fluid flows.
POD has since been adapted for use within a number of
different disciplines, such as oceanography, chemistry, and
model-order reduction (Carbone et al., 2011). The aim of
POD is to provide an optimal basis set to represent the dy-
namics of a spatiotemporal field, which allows for the iden-
tification of the essential information contained in the signal
by means of relatively few basis elements (modes).

In particular, given a spatiotemporal field I (x, t), POD
calculates a set of modes8 in a certain Hilbert space adapted
to the field I (x, t) such that

I (x, t)=

∞∑
i=1

ai(t)φi(x), (2)

where ai(t) is a time-varying coefficient. From a mathemati-
cal point of view, POD permits the maximization of the pro-
jection of the field I (x, t) on 8:

Maxφi
〈(I (x, t),φi(x))〉

(φi(x),φi(x))
. (3)

This defines a constrained Euler–Lagrange maximization
problem, the solution of which is a Fredholm integral equa-
tion of the first kind:∫
�

〈(I (x, t),I (x′, t))〉φi(x
′)dx′ = λiφi(x), (4)
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Figure 14. The subplot x axes represent the 900 EOFs. The y axes indicate the magnitude of the temperature variance. The ensemble member
number is indicated in each subplot title, and members 31 and 33 have been subjected to lossy compression.

where (a,b) is the inner product, angle brackets indicate the
time average, � is the spatial domain, φi(x) is an eigenfunc-
tion, and λi is a real positive eigenvalue. If the spatial domain
� is bound, this decomposition provides a countable, infinite,
set of sorted eigenvalues λi (with λ1 ≥ λ2 ≥ λ3 ≥ ...). Then
the field “energy”, by the analogy with the fluid turbulence
application, can be written as

〈I (x, t)〉 =

∞∑
n=1

λi, (5)

where λi represents the average energy of the system pro-
jected onto the axis φi(x) in the eigenfunction space. In gen-
eral, the eigenfunction φi(x) does not depend on the func-
tions of the linearized problem, but emerges directly from the
observations of the field I (x, t). When the sum in Eq. (2) is
truncated to N terms, it contains the largest possible energy
with respect to any other linear decomposition belonging to
the family of EOFs (i.e., PCA, SVD) of the same truncation
order (Lumley, 1967).

4.4.2 Application to ensemble data

For this study, we utilize POD to investigate whether lossy
compression introduced any detectable artifacts that could
indicate which ensemble member(s) of the new set 31–33
had been compressed and to determine whether any such ar-
tifacts were acceptable or not (i.e., in terms of impact on the
physics of the problem). We examined the monthly averaged
output of four variables: Z3 (geopotential height above sea
level), CCN3 (cloud condensation nuclei concentration), U
(zonal wind), and FSDSC (clear-sky downwelling solar flux
at surface). For each variable and for each ensemble member
(1–33), POD was applied to a period of 25 years (300 time
slices beginning with January 2006) to obtain the modes and
the energy associated with each mode. This methodology en-
ables the identification of any perturbations introduced by the
compression method into the dynamics of the field. In addi-
tion, we can characterize the impact of the compression, if

any, with respect to the inherent variability within the en-
semble.

To illustrate this process, the “energy” fraction λ as a func-
tion of the mode number N is reported in Fig. 15 for variable
Z3 from ensemble member 28. Note that the distribution of λ
is composed of different branches (groups of modes) charac-
terized by a power-law behavior. The first branches (a, b, and
c) represent the dominant scales (structures) in the field and
contain the greater part of the energy of the original field.
These structures can be considered mother structures, and,
analogously to the fluid turbulence case, they represent the
“energy injection” point for the smaller structures. In other
words, the large-scale structures transfer energy to smaller-
and-smaller-scale structures. When a break is found in the
distribution, the energy transfer is stopped, and a new cas-
cade begins that is unrelated to the previous one. For the
highest modes (∼ scale of the resolution) the energy is quite
low, and the modes have a minimal impact on the “physics”.
Beyond this point the modes can be considered uncorrelated
noise, which is generally associated with the thermal noise
of the floating-point calculations, rather than anything phys-
ically meaningful. Therefore, by comparing the energy dis-
tribution of the decomposition modes of the new ensemble
members 31–33 with their inherent variability, it should be
possible to both identify the presence of any perturbations
due to the compression algorithm as well as the scale at
which the perturbations are significant.

The four plots in Fig. 16 correspond to each of the four
variables analyzed. First, Fig. 16a shows the energy distri-
bution of the modes of the POD of new ensemble mem-
bers 31–33, superimposed on the median of the original en-
semble members (1–30). To highlight the differences of the
energy distributions of the modes of the decomposition of
members 31–33 with respect to the median of the original en-
semble members, their relative errors are reported in Fig. 16b
together with the natural variability observed within the orig-
inal ensemble. Finally, Fig. 16c reports the distribution of the
root mean square Z (RMSZ) score of the energy distribution
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Figure 15. Energy distribution of the modes of the POD for variable
Z3 for ensemble member 28. Superimposed power laws indicate the
“energy cascades” in correlated modes, and three principal scales
are present: a, b, and c. The limit of the cascade is labeled z, and the
shaded area indicates modes associated with noise.

for the original ensemble members together with the RMSZ
of the energy distribution of members 31–33. The plot cor-
responding to variable Z3 in Fig. 16 clearly shows that the
RMSZ values for members 31 and 33 are outliers in Fig. 16c,
suggesting that there are some artifacts in the distribution en-
ergy of the modes of their relative PODs, potentially caused
by lossy compression. However, when comparing these er-
rors with the natural variability observed within the original
ensemble, it appears clear that such anomalies are mainly
visible in the lowest energy modes (> 150). Since the low-
est energy modes are generally attributed to thermal noise in
floating-point calculations, if these artifacts are due to lossy
compression, they do not affect any coherent structures at-
tributable to the physics of the problem (i.e., the climate).
Note that ensemble members 31 and 33 for variables U and
FSDSC exhibit errors in the energy distribution that in a few
instances exceed the natural variability within the ensemble
as shown in Fig. 16b, but the exceedance is not great enough
to clearly indicate them as outliers in Fig. 16c. (Recall that
ensemble member 32 was not compressed.) Finally, the er-
rors in the energy distribution of the modes of the decompo-
sition for ensemble members 31–33 for variable CCN3 are
well within the variation explained by the natural variability
of the original ensemble members, and therefore no outliers
were observed.

This analysis performed on a limited number of variables
shows that the compression of the ensemble members has
either no effect if compared with the natural variability ob-
served within the ensemble, or (for Z3) affects only the low-
est energy modes. We note that the outcome of this analy-
sis could potentially be different if applied to higher tempo-
ral resolution output data as lossy compression could impact
finer scale patterns differently.

5 The original and reconstructed data

In this section, we describe analyses performed on the
CESM-LE data that were conducted with the knowledge that
members 31 and 33 had been compressed and reconstructed.
In addition, we provided both the original and reconstructed
versions of 31 and 33 for these experiments.

5.1 Climate extremes

5.1.1 Overview of extreme value theory

Extreme value theory, as the name implies, focuses on ex-
tremes, more precisely on the upper tail distributional fea-
tures. For extremes, the Gaussian paradigm is not applicable.
To see this, suppose that we are interested in annual max-
ima of daily precipitation. In this case, the probability density
function (pdf) is skewed, bound by zero on the left side, and
very large values (greater than two standard deviations) can
be frequently observed. These three features cannot be cap-
tured by a normal distribution and other statistical modeling
tools are needed.

One classical approach is to study block maxima, e.g., the
largest annual value of daily temperatures. In this example,
the block size is 365 days. The statistical analysis of block
maxima is based on the well-developed extreme value theory
(EVT), originating from the pioneering work of Fisher and
Tippett (1928) and regularly improved upon during the last
decades (e.g., De Haan and Ferreira, 2005). This theory indi-
cates that the generalized extreme value (GEV) distribution
represents the ideal candidate for modeling the marginal dis-
tribution of block maxima. This probabilistic framework is
frequently applied in climate and hydrological studies deal-
ing with extremes (e.g., Zwiers et al., 2013; Katz et al., 2002).
Presently, more complex statistical models, such as the mul-
tivariate EVT (e.g., De Haan and Ferreira, 2005; Beirlant
et al., 2004; Embrechts et al., 1997), also provide a theo-
retical blueprint to represent dependencies among maxima
recorded at different locations. For this work, however, we
will not address the question of spatial dependencies for ex-
tremes. We assume that every grid point can be treated inde-
pendently and a GEV can be fitted at each location.

Mathematically, the GEV is defined by its three-parameter
cumulative distribution function (cdf):

G(y)= exp

(
−

(
1+ ξ

y−µ

σ

)−1/ξ

+

)
, (6)

where µ, σ > 0 and ξ are called the location, scale and shape
parameter with the constraint that 1+ ξ y−µ

σ
> 0. The ξ pa-

rameter defines the tail behavior with three possible types:
ξ = 0 (Gumbel), ξ > 0 (Fréchet) and ξ < 0 (Weibull). Tem-
perature extremes often follow a Weibull distribution (e.g.,
Zwiers et al., 2013). In particular, a negative shape param-
eter implies a finite upper bound given by µ− σ

ξ
. For other

examples in environmental area, the Gumbel family is used
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Figure 16. For each of the four variables studied, we show the following: (a) energy distribution of the modes of the POD for ensemble
members 31–33, superimposed on the median of the original ensemble members (1–30); (b) relative errors of the energy distributions of
the modes of the POD for new ensemble members 31–33 and the median of the original ensemble together with the natural variability
observed within the uncompressed ensemble; (c) RMSZ distribution of the energy distribution for the 30 members of the original ensemble
together with the RMSZ score of the energy distribution of new members 31–33. Note that members 31 and 33 have been subjected to lossy
compression.

to model daily maxima of methane (Toulemonde et al., 2013)
and precipitation maxima are often described by a Fréchet
distribution (see, e.g., Cooley et al., 2007). In terms of risk
analysis, the scalar ξ is the most important parameter of the

GEV parameters. For this reason, most of our analysis will be
based on assessing if and how ξ changes with compression.
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Figure 17. GEV shape parameter ξ variability; see Eq. (6). The left, middle, and right panels correspond to the pdf of ξ , its range among
compressed runs, and its difference between a compressed and uncompressed run, respectively. The four variables shown are TSMN (min-
imum surface temperature), TSMX (maximum surface temperature), PRECT (average convective and large-scale precipitation rate), and
PRECTMX (maximum convective and large-scale precipitation rate).

5.1.2 Application to ensemble data

We focus our analysis on four variables from the ensemble
data: average convective and large-scale precipitation rate
(PRECT) over the output period, maximum convective and
large-scale precipitation rate (PRECTMX), minimum sur-

face temperature over output period (TSMN), and maxi-
mum surface temperature over output period (TSMX). We
study TSMX, PRECTMX, and PRECT using annual block
maxima, and TSMN using annual block minima (the GEVs
can be applied by multiplying by −1). Concerning the in-
ference of the GEV parameters, most classical approaches,

www.geosci-model-dev.net/9/4381/2016/ Geosci. Model Dev., 9, 4381–4403, 2016



4396 A. H. Baker et al.: Evaluating lossy data compression on climate simulation data

including MLE (maximum likelihood estimation), MOM
(method of moments), and Bayesian methods, can be used.
As the shape parameter for precipitation and temperatures
extremes is classically between −0.5 and 0.5, we opt for
the probability-weighted moments (PWMs) (e.g., Ana and
de Haan, 2015), which has a long tradition in statistical hy-
drology (e.g., Landwehr et al., 1979; Hosking and Wallis,
1987) and has been applied in various settings (e.g., Toreti
et al., 2014). Besides its simplicity, the PWMs approach usu-
ally performs reasonably well compared to other estimation
procedures (e.g., Caeiro and Gomes, 2011). Additional argu-
ments in favor of PWMs are that they are typically quickly
computed, an important feature in our setup, and do not pro-
vide aberrant values for negative ξ like the MLE. To apply
this estimation technique to temperature min and max, global
warming trends have to be removed. This was done by re-
moving the trend with a local non-parametric regression (us-
ing the loess function in R).

Figure 17 summarizes our findings concerning the shape
parameter ξ . Each row represents a variable of interest. We
only show results for one of the two compressed ensem-
ble members as the results are practically identical. The his-
tograms correspond to the empirical pdf obtained from all
uncompressed runs. This can be compared to the blue pdf of
the compressed run. For our four atmospheric variables, one
cannot make the distinction between the compressed and un-
compressed runs, which indicates that compression did not
systematically change the distribution of the shape parame-
ters. The middle panels display the range of the estimated ξ at
each grid point from the ensemble of 31 uncompressed runs.
This gives us information on the variability among the 31 un-
compressed runs, which can be compared to the difference
between a compressed run and its uncompressed counterpart
(the right panels). As indicated by the dark blue color (mean-
ing low values), the ensemble variability is much higher than
the variability due to compression. In summary, this analy-
sis indicates that compression does not cause any systematic
change in the distribution of the estimated shape parame-
ters and that the changes introduced by compression fall well
within the variability of the ensemble.

5.2 Causal signatures

The goal of causal discovery in this context is to identify
potential cause–effect relationships from a dataset to better
understand or discover the dynamic processes at work in a
system. Causal discovery tools have been developed from
probabilistic graphical models (e.g., detailed in Pearl, 1988
and Spirtes et al., 2000), which are a graphical represen-
tation of probable dependencies between variables in high-
dimensional space. In particular, causal discovery methods
reveal more than simply correlation, but rather the patterns
of information flow and interactions. To determine the flow
of information, the initial assumption is made that every vari-
able (graph node) is causally connected to every other vari-

able. Then conditional independence tests (e.g., testing for
vanishing partial correlations) are used to disprove causal
connections, resulting in a remaining “interaction map” of
causal connections (that may or may not be given direction
through additional techniques). Such tools were initially ap-
plied in the fields of social sciences and economics, but have
more recently been applied successfully to climate science
data (e.g., Chu et al., 2005; Ebert-Uphoff and Deng, 2012a,
b; Zerenner et al., 2014). For example, for atmospheric data,
one could imagine using causal discovery methods to under-
stand large-scale atmospheric processes in terms of informa-
tion flow around the earth.

Of interest here is determining whether compressing the
climate data in the CESM-LE dataset affected the flow of
information. Using causal discovery for this purpose is pro-
posed in Hammerling et al. (2015), where interaction maps
were generated for both the original and reconstructed data.
We call these interaction maps causal signatures. This type of
analysis is unique to this compression study as it is aimed at
inter-variable relationships. Recall that the number of daily
variables contained in the CESM-LE datasets is 51. To sim-
plify the analysis, we created a subset of 15 daily variables.
The subset was chosen such that only one variable was kept
from each like-variable group. For example, eight of the
51 total daily variables report temperature in some form:
at several defined pressure surfaces, at the surface, and at a
near-surface reference height (TREFHT); therefore, we only
include the temperature variable TREFHT in the subset. We
then developed temporal interaction maps for the 15 daily
variables that show interactions across different lag times be-
tween variables. We performed this analysis for several dif-
ferent temporal scales, i.e., we identified separate signatures
considering lag times between variables that are multiples
of 1, 5, 10, 20, 30, or 60 days, in order to capture interac-
tions for example on a daily (1 day) or monthly (30 days)
scale. Recall that these interaction maps are highlighting po-
tential cause–effect relationships. Figure 18 contains the in-
teraction map for the daily timescale (lag times are multiples
of 1 day) for the original data for CESM-LE member 31,
and the 15 variables are indicated in the ovals. Note that
only the weak connection between SHFLX (surface sensible
heat flux) and FSNTOA (net solar flux at top of atmosphere),
which is indicated by a dotted line, is missing in the map
corresponding to the reconstructed data. In general, the maps
for all of the lagged times only indicated tiny differences be-
tween the initial and reconstructed datasets. This result in-
dicates that compressing and reconstructing the climate data
has not negatively impacted the flow of information in terms
of detectable cause–effect relationships in the data.

5.3 AMWG diagnostics package

The publicly available and popular AMWG (Atmosphere
Working Group) Diagnostics Package (AMWG-DP) com-
putes climatological means of CESM simulation data from
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Figure 18. Causal signature interaction map for CESM-LE member 31. Blue lines delineate instantaneous connections and red lines indicate
connections with a time lag. The number(s) next to each line give the number of days from potential cause to potential effect. The single
dotted line between SHFLX and FSNTOA indicates a very weak instantaneous connection. Note that the causal signature for reconstructed
CESM-LE member 31C is identical to this figure, except that the weak connection between SHFLX and FSNTOA is no longer present.

CAM and produces plots and tables of the mean climate in
a variety of formats. The AMWG-DP uses monthly output
to evaluate climate characteristics such as seasonal cycles,
intraseasonal variability, Madden–Julian Oscillation (MJO),
El Niño–Southern Oscillation (ENSO), and the diurnal cy-
cle. The AMWG-DP can be used to compare model simula-
tion output of observational and reanalysis data or to compare
output from two simulations. Therefore, comparing the com-
pressed and reconstructed CESM-LE ensemble members via
the AMWG-DP is a natural choice. Note that the AMWG-DP
is available at https://www2.cesm.ucar.edu/working-groups/
amwg/amwg-diagnostics-package.

Because the AMWG-DP produces over 600 tables and
plots, we just highlight a couple of results here. First we show
vertical contour plots produced by the AMWG-DP (from
diagnostics set 4) comparing the original and reconstructed
variants of ensemble member 31 for relative humidity (REL-
HUM) in Fig. 19. We chose to look at RELHUM because
it was compressed aggressively with fpzip-16, yielding a CR
of 0.09. While the max values are not identical (101.66 vs.
101.86), the contour plots certainly appear very similar at this
scale.

Now we show surface pressure (PS), as it is a “popu-
lar” variable to view with the AMWG-DP. Variable PS was
compressed with fpzip-20, yielding a CR of 0.13. Figure 20
compares the original and reconstructed variants of ensem-
ble member 31 via horizontal contour plots (from diagnos-
tics set 5). Note that while the mean, max, and min values
differ slightly, the plots themselves are indistinguishable and
similar conclusions could be drawn.

Finally, we look at a portion of one of the AMWG-
DP tables for global annual means for the 2006–2099 data

Figure 19. Vertical contour plot of DJF (December–January–
February) zonal means for relative humidity (RELHUM) from 2006
to 2099 for ensemble member 31. The data in the left subplot have
undergone lossy compression (i.e., 31-C) and the right subplot con-
tains the original data.

(from diagnostics set 1) shown in Table 3. In particular,
the AMWG-DP-derived variables RESTOM and RESSURF
are important diagnostics as they indicate the top-of-model
residual energy balance and the surface residual energy bal-
ance, respectively, and Table 3 indicates that their computed
values for the compressed and original cases are identical (to
the precision used by AMWG-DP). Recall that top of the
model energy imbalance was examined in Sect. 4.2.2 and
is simply the difference between the net solar flux (short-
wave radiation) at the top of the model (FSNT) and the net
longwave flux at the top of the model (FLNT). Monthly vari-
ables FSNT and FLNT were both compressed by fpzip-24.
The AMWG-DP results for RESTOM agree with the find-
ings in Sect. 4.2.2 that indicate that the compression error
cannot be distinguished from the ensemble variability. How-
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Figure 20. Horizontal contour plot of DJF (December–January–
February) means for surface pressure (PS) from 2006 to 2099 for
ensemble member 31. The data in the top subplot have undergone
lossy compression (i.e., 31-C) and the bottom subplot contains the
original data.

Table 3. Subset of AMWG diagnostics set 1: annual means global.
RESTOM and RESSURF are AMWG-DP-derived variables for the
top-of-model residual energy balance and the surface residual en-
ergy balance, respectively. RMSE indicates the root mean squared
error. Units are W m−2.

Variable Compressed Original Difference RMSE
case case

RESTOM 2.016 2.016 0.000 0.001
RESSURF 1.984 1.984 0.000 0.000

ever, this simple diagnostic calculation warrants further dis-
cussion. We note that compressing FSNT with fpzip-16 and
FLNT with fpzip-20 was acceptable in terms of passing the
four quality metrics used to determine compression levels
(see discussion in Sect. 3). However, because we knew in ad-
vance of applying compression that calculating the top of the
model balance (FSNT−FSLT) is a key diagnostic check for
climate scientists, we preemptively used less aggressive com-
pression for both variables (as subtracting like-sized quanti-
ties would magnify the error due to compression). For exam-
ple, had we instead used FSNT with fpzip-16 and FLNT with
fpzip-20, this would have resulted in relative errors of 0.3 and
0.02 % for FSNT and FLNT, respectively, but in a relative er-
ror for the derived quantity RESTOM of 8.0 %, which is no-
ticeably larger (corresponding to RESTOM values of 7.553
and 8.211 W m−2).

The AMWG-DP-derived quantity RESSURF for surface
residual energy balance in Table 3 is notably on target in the

compressed data. In contrast, when the surface energy bal-
ance was investigated in Sect. 4.2.3, Fig. 5 indicated that
the effects of compression were noticeable in the surface
energy calculation (due to aggressive compression of the
surface latent heat flux, LHFLX). In both Sect. 4.2.3 and
AMWG-DP, the surface energy balance was calculated as
(FSNS−FLNS−SHFLX−LHFLX). However, the differ-
ence is that the AMWG-DP does not use the LHFLX vari-
able from the output data, but instead calculates surface latent
heat flux via surface water flux (QFLX) and four precipita-
tion variables (PRECC, PRECL, PRECSC, and PRECSL).
As a result, compression of variable LHFLX did not affect
the AMWG-DP’s calculation of surface energy balance.

6 Lessons learned

By providing climate scientists with access to data that had
undergone lossy compression, we received valuable feed-
back and insights into the practicalities of applying data com-
pression to a large climate dataset. Here we summarize the
underlying themes or lessons that we learned from this lossy
compression evaluation activity.

6.1 Relationships between variables

When determining appropriate levels of compression, rela-
tionships between variables can be an important considera-
tion, particularly in the context of derived variables. As an
example, we refer to the surface energy balance anomaly de-
tected and discussed in Sect. 4.2.3. Had all four variables
been compressed to the same precision, the surface energy
balance in the reconstructed members would not have stood
out (i.e., Fig. 5 vs. Fig. 7). Derived variables are quite popu-
lar in post-processing analysis, and it is unrealistic to expect
to know how the output data will be used at the time it is
generated (and compressed). However, many derived vari-
able calculations are quite standard (surface energy balance,
TOA energy balance, etc.), and these often-computed derived
variables should be considered when determining appropri-
ate levels of compression for variables used in their calcula-
tions.

6.2 Detectable vs. consequential

A skilled researcher would likely be able to detect effects of
lossy compression on data. However, the fact that the com-
pression effects are detectable does not mean that they are
also relevant and/or important. Recall that CESM model cal-
culations happen in 64 bit precision, but the history files for
post-processing analysis are output in 32 bit precision. Cer-
tainly there is no reason to believe that 32 bits are of conse-
quence for every variable, and for many variables the trail-
ing digits are model noise that would not impact scientific
conclusions drawn from the data. For example, one would
not expect to need 32 bits of precision to look at temperature
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and detect a warming trend. On the other hand, one may not
want to study high-frequency scale events such as precipita-
tion with data that have undergone aggressive compression.
In general, understanding the precision and limitations of the
data being used is critical to any post-processing analysis.

6.3 Individual treatment of variables

We confirmed the assertion in Baker et al. (2014) that de-
termining the appropriate amount of compression must be
done on a variable-by-variable basis. In particular, there is
not a “one-size-fits-all” approach to compressing climate
simulation variables, and it does not make sense to assume
that 32 bits is the right precision for every variable. Fur-
ther, customizing compression per variable could also in-
clude applying other types of compression algorithms to dif-
ferent variables as well (e.g., transform-based methods such
as wavelets), which is a topic of future study. Knowing what
precision is needed for each variable for CESM, or even more
generally for CMIP (discussed in Sect. 1), would clearly fa-
cilitate applying lossy compression. We note that defining
such a standard is non-trivial and would need to be fluid
enough to accommodate new variables and time/space res-
olutions.

6.4 Implications for compression algorithms

Achieving the best compression ratio without negatively im-
pacting the climate simulation data benefits from a thorough
understanding how a particular algorithm achieves compres-
sion. For example, we are aware that the type of loss in-
troduced by fpzip is of the exact same kind that is already
applied to the original double-precision (64 bit) data when
truncating (or, more commonly, rounding) to single precision
(32 bit) for the CESM history file. Because of its truncation
approach, fpzip is much less likely to affect extreme values
or have a smoothing effect on the data, as opposed to, for
example, a transform-based approach.

Further, Fig. 6 illustrates that naive truncation is not
ideal. An improvement would be to inject random bits or at
least round rather than truncate the values (i.e., append bits
100. . .0 instead of bits 000. . .0 to the truncated floats). Both
of these modifications could be done as a post-processing
step after the data have been reconstructed. Although the
temperature gradients (as shown in Fig. 11) are not problem-
atic in this study, injecting random bits would also reduce the
number of zero gradients. On a related note, a compression
algorithm that provides information about the compression
error at each grid point could potentially be very useful in
terms of customizing how aggressively to compress particu-
lar climate simulation variables.

Finally, an important issue for climate data is the need
for compression algorithms to seamlessly handle both miss-
ing values and fill values. As mentioned previously, vari-
ables that occasionally have no value at all (i.e., missing)

at seemingly random grid points require special handling by
the compression algorithm itself or in a pre- and/or post-
processing step. Similarly, the non-regular presence of large-
magnitude fill values (typically O(1035) in CESM) can be
problematic as well.

7 Concluding remarks

In general, lossy data compression can effectively reduce
climate simulation data volumes without negatively impact-
ing scientific conclusions. However, by providing climate re-
searchers with access to a large dataset that had undergone
compression (and soliciting feedback), we now better appre-
ciate the complexity of this task. All of the lessons detailed
in the previous section highlight the importance of being data
and science aware when applying data compression and per-
forming data analysis. To reap the most benefit in terms of
achieving low compression ratios without introducing sta-
tistically significant data effects requires an understanding
of the characteristics of the data, their science use, and the
properties (i.e., strengths and weaknesses) of the compres-
sion algorithm. In fact, many considerations for applying
lossy compression to climate simulation data align with those
needed to carefully choose grid resolution, data output fre-
quency, and computation precision, all of which effect the
validity of the resulting simulation data. Further, our com-
pression research thus far has focused on evaluating individ-
ual variables, and this study highlights that issues can arise
when compressing multiple variables or using derived vari-
ables. Our ongoing research on compression methods will
focus on incorporating the multivariate aspects of compres-
sion and ultimately developing a tool to auto-determine ap-
propriate compression (and therefore acceptable precision)
for a given variable.

8 Code and data availability

All data for the CESM-LE project (including compressed
and reconstructed members 31 an 33) are available via the
Earth System Grid (http://www.earthsystemgrid.org; Earth
System Grid, 2016). Also see http://www.cesm.ucar.edu/
projects/community-projects/LENS/ for more detailed infor-
mation on the CESM-LE data (Large Ensemble Community
Project, 2016). The CESM software is available from http:
//www.cesm.ucar.edu/models/current.html (CESM, 2016),
and CESM-LE data were generated with the CAM5 configu-
ration described in Kay et al. (2015). The fpzip compression
utility is available from http://computation.llnl.gov/projects/
floating-point-compression (zfp & fpzip, 2016).
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Appendix A: Lossy compression evaluations

Table A1 lists which co-authors conducted the ensemble data
evaluations described in Sects. 4 and 5.

Table A1. A list of co-authors and their corresponding evaluations.

Section Type of evaluation Author(s)

4.1 CVDP Sheri A. Mickelson, Jennifer E. Kay
4.2 Climate characteristics Martin B. Stolpe
4.3 Ensemble variability patterns Ben Sanderson
4.4 Coherent structures Francesco De Simone, Francesco Carbone, Christian N. Gencarelli
5.1 Climate extremes Phillipe Naveau
5.2 Causal signatures Imme Ebert-Uphoff, Savini Samarasinghe
5.3 AMWG diagnostics package Haiying Xu
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