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Abstract. Vector quantities, e.g., vector winds, play an ex-
tremely important role in climate systems. The energy and
water exchanges between different regions are strongly dom-
inated by wind, which in turn shapes the regional climate.
Thus, how well climate models can simulate vector fields
directly affects model performance in reproducing the na-
ture of a regional climate. This paper devises a new diagram,
termed the vector field evaluation (VFE) diagram, which is
a generalized Taylor diagram and able to provide a concise
evaluation of model performance in simulating vector fields.
The diagram can measure how well two vector fields match
each other in terms of three statistical variables, i.e., the vec-
tor similarity coefficient, root mean square length (RMSL),
and root mean square vector difference (RMSVD). Similar
to the Taylor diagram, the VFE diagram is especially useful
for evaluating climate models. The pattern similarity of two
vector fields is measured by a vector similarity coefficient
(VSC) that is defined by the arithmetic mean of the inner
product of normalized vector pairs. Examples are provided,
showing that VSC can identify how close one vector field re-
sembles another. Note that VSC can only describe the pattern
similarity, and it does not reflect the systematic difference in
the mean vector length between two vector fields. To mea-
sure the vector length, RMSL is included in the diagram. The
third variable, RMSVD, is used to identify the magnitude of
the overall difference between two vector fields. Examples
show that the VFE diagram can clearly illustrate the extent
to which the overall RMSVD is attributed to the systematic
difference in RMSL and how much is due to the poor pattern
similarity.

1 Introduction

Vector quantities play a very important role in climate sys-
tems. It is well known that atmospheric circulation transfers
mass, energy, and water vapor between different parts of the
world, which is an extremely crucial factor for shaping re-
gional climates. The monsoon climate is a typical example
of one that is strongly dominated by atmospheric circula-
tion. A strong Asian summer monsoon circulation usually
brings more precipitation, and vice versa. Therefore, the sim-
ulated precipitation is strongly determined by how well cli-
mate models can simulate atmospheric circulation (Twardosz
et al., 2011; Sperber et al., 2013; Zhou et al., 2016; Wei et
al., 2016). Ocean surface wind stress is another important
vector quantity that reflects the momentum flux between the
ocean and atmosphere, serving as one of the major factors for
oceanic circulation (Lee et al., 2012). The wind stress errors
can cause large uncertainties in ocean circulation in the sub-
tropical and subpolar regions (Chaudhuri et al., 2013). Thus,
the evaluation of vector fields, e.g., vector winds and wind
stress, would also help in understanding the causes of model
errors.

The Taylor diagram (Taylor, 2001) is very useful in eval-
uating climate models, and it has been widely used in model
intercomparison and evaluation studies over the past several
years (e.g., Hellström and Chen, 2003; Martin et al., 2011;
Giorgi and Gutowski, 2015; Jiang et al., 2015; Katragkou et
al., 2015). However, the Taylor diagram was constructed for
evaluating scalar quantities, such as temperature and precip-
itation. The statistical variables used in the Taylor diagram,
i.e., the Pearson correlation coefficient, standard deviation,
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and centered root mean square error (RMSE), do not ap-
ply to vector quantities. No such diagram is yet available
for evaluating vector quantities such as vector winds, wind
stress, temperature gradients, and vorticity. Previous studies
have usually assessed model performance in reproducing a
vector field by evaluating its x and y components with the
Taylor diagram (e.g., Martin et al., 2011; Chaudhuri et al.,
2013). Although such an evaluation can also help to exam-
ine the modeled vector field, it suffers from some deficien-
cies. (1) A good correlation in the x and y components of
the vector between the model and observation may not nec-
essarily indicate that the modeled vector field resembles the
observed one. For example, assuming we have two identical
two-dimensional vector fields A and B their correlation coef-
ficients are 1 for both the x and y components. If the x com-
ponent of vector field A adds a constant value, the correlation
coefficients for both the x and y components do not change,
but the direction and length of vector A change, which sug-
gests that the pattern of two vector fields are no longer identi-
cal. Thus, computing the correlation coefficients for the x and
y components of a vector field is not well suited for examin-
ing the pattern similarity of two vector fields. (2) It is hard to
determine the improvement of model performance. For ex-
ample, should one conclude that the model performance is
improved if the RMSE (or correlation coefficient) is reduced
for the y component but increased for the x component of a
vector field? Given these reasons and the importance of vec-
tor quantities in a climate system, we have developed a new
diagram, termed the vector field evaluation (VFE) diagram,
to measure multiple aspects of model performance in simu-
lating vector fields.

To construct the VFE diagram, one crucial issue is quan-
tifying the pattern similarity of two vector fields. Over the
past several decades, many vector correlation coefficients
have been developed by different approaches. For example,
some vector correlation coefficients are constructed by com-
bining Pearson’s correlation coefficient of the x and y com-
ponents of the vector (Charles, 1959; Lamberth, 1966). Some
vector correlation coefficients are devised based on orthogo-
nal decomposition (Stephens, 1979; Jupp and Mardia, 1980;
Crosby et al., 1993) or the regression relationship of two vec-
tor fields (Ellison, 1954; Kundu, 1976; Hanson et al., 1992).
These vector correlation coefficients usually do not change
when one vector field is uniformly rotated or reflected to a
certain angle. This is a reasonable and necessary property
for the vector correlation coefficient when one detects the re-
lationship of two vector fields. However, in terms of model
evaluation, we expect the simulated vectors to resemble the
observed ones in both direction and length with no rotation
permitted. Thus, previous vector correlation coefficients are
not well suited for the purpose of climate model intercom-
parisons and evaluation.

To measure how well the patterns of two vector fields re-
semble each other, a vector similarity coefficient (VSC) is
introduced in Sect. 2 and interpreted in Sect. 3. Section 4

constructs the VFE diagram with three statistical variables
to evaluate multiple aspects of simulated vector fields. Sec-
tion 5 illustrates the use of the diagram in evaluating cli-
mate model performance. Methods for indicating observa-
tional uncertainty are suggested in Sect. 6. A discussion and
conclusion are provided in Sect. 7.

2 Definition of vector similarity coefficient

Consider two vector fields A and B (Fig. 1a). Without loss
of generality, vector fields A and B can be written as a pair
of vector sequences.

Ai = (xai,yai); i = 1,2, . . .,N

Bi = (xbi,ybi) ; i = 1,2, . . .,N

Each vector sequence is composed of N vectors. To mea-
sure the similarity between vector fields A and B, a vector
similarity coefficient (VSC) should be able to recognize to
what degree the vectors are in the same direction and how
much the vector lengths are proportional to each other. Thus,
VSC is defined as follows:

Rv =

N∑
i=1

Ai •Bi√
N∑
i=1
|Ai |

2

√
N∑
i=1
|Bi |

2

, (1)

where || represents the length of a vector. The • symbol rep-
resents the inner product.

We define a normalized vector as follows:

A∗i =
Ai√

1
N

N∑
i=1
|Ai |

2

=
Ai

LA
(2)

and

B∗i =
Bi√

1
N

N∑
i=1
|Bi |

2

=
Bi

LB
, (3)

respectively, where

LA =

√√√√ 1
N

N∑
i=1

|Ai |
2 (4)

and

LB =

√√√√ 1
N

N∑
i=1

|Bi |
2 (5)

are the quadratic mean of the length or root mean square
length (RMSL) of a vector field which measures the mean

Geosci. Model Dev., 9, 4365–4380, 2016 www.geosci-model-dev.net/9/4365/2016/



Z. Xu et al.: A diagram for evaluating multiple aspects of model-simulated vector fields 4367

(a) Original vectors (b) Normalized vectors 

Figure 1. Schematic illustration of two vector sequences. Panel (a) original vectors and (b) normalized vectors. The length of vector se-
quence Ai is systematically greater than that of vector sequence Bi . The normalization only alters the lengths of vectors without changes in
directions.

and variance of vector lengths (Eq. A1). Based on Eqs. (2)
and (3), we have

N∑
i=1

∣∣A∗i ∣∣2 = N∑
i=1

∣∣B∗i ∣∣2 =N. (6)

Clearly, the normalization of a vector field only scales the
vector lengths without changing their directions (Fig. 1b).

With the aid of Eqs. (2) and (3), Eq. (1) can be rewritten as

Rv =
1
N

N∑
i=1

A∗i •B
∗

i

=
1
N

N∑
i=1

∣∣A∗i ∣∣ ∣∣B∗i ∣∣cosαi

=
1
N

N∑
i=1

∣∣A∗i ∣∣2+ ∣∣B∗i ∣∣2− ∣∣C∗i ∣∣2
2

= 1−
1

2N

N∑
i=1

∣∣C∗i ∣∣2
= 1−

1
2

MSDNV

, (7)

where C∗i is the difference between the normalized A and B

(Fig. 1b). MSDNV is the mean square difference of the nor-
malized vectors (Shukla and Saha, 1974, with minor modifi-
cation) between two normalized vector sequences:

MSDNV=
1
N

N∑
i=1

∣∣A∗i −B∗i
∣∣2 = 1

N

N∑
i=1

∣∣C∗i ∣∣2. (8)

Given the triangle inequality, 0≤
∣∣C∗i ∣∣≤ ∣∣A∗i ∣∣+ ∣∣B∗i ∣∣, we

have

0≤
∣∣C∗i ∣∣2 ≤ (∣∣A∗i ∣∣+ ∣∣B∗i ∣∣)2 ≤ 2

∣∣A∗i ∣∣2+ 2
∣∣B∗i ∣∣2. (9)

With the aid of Eqs. (6), (7), (8), and (9), we obtain

0≤MSDNV≤ 4, and− 1≤ Rv ≤ 1.

Rv reaches its maximum value of 1 when MSDNV= 0,
i.e., A∗i = B∗i for all i (1≤ i ≤N ). Rv reaches its minimum

value of −1 when MSDNV= 4, i.e., A∗i =−B∗i for all i
(1≤ i ≤N ). Thus, the vector similarity coefficient, Rv, al-
ways takes values in the intervals [−1, 1] and is determined

by MSDNV, namely 1
N

N∑
i=1

∣∣C∗i ∣∣2. Clearly,
∣∣C∗i ∣∣ is determined

by the differences in both vector lengths and angles between
A∗i and B∗i (Fig. 1b). A smaller

∣∣C∗i ∣∣ suggests that A∗i is
closer to B∗i , and vice versa. To better understand Rv, some
special cases are discussed as follows.

For all i (1≤ i ≤N ):

– If A∗i = B∗i , then
∣∣C∗i ∣∣= 0. We obtain Rv = 1 when

each pair of normalized vectors is exactly the same
length and direction.

– If A∗i =−B∗i , then
∣∣A∗i ∣∣= ∣∣B∗i ∣∣= ∣∣C∗i ∣∣/2. We obtain

Rv =−1 when each pair of normalized vectors is ex-
actly the same length but goes in opposite directions.

– If A∗i ⊥ B∗i , then
∣∣A∗i ∣∣2+ ∣∣B∗i ∣∣2 = ∣∣C∗i ∣∣2. We obtain

Rv = 0 when each pair of normalized vectors is orthog-
onal to each other.

– If
∣∣C∗i ∣∣2 < ∣∣A∗i ∣∣2+ ∣∣B∗i ∣∣2, we obtain 0<Rv < 1 when

the angles between A∗i and B∗i are acute angles.

– If
∣∣C∗i ∣∣2 > ∣∣A∗i ∣∣2+∣∣B∗i ∣∣2, we obtain−1<Rv < 0 when

the angles between A∗i and B∗i are obtuse angles.

Thus, a positive (negative) Rv indicates that the angles be-
tween A∗i and B∗i are generally smaller (larger) than 90◦,
which suggests that the patterns between A∗i and B∗i are sim-
ilar (opposite) to each other. A greater Rv indicates a higher
similarity between two vector fields. Based on Eqs. (2), (3),
and (7), Rv does not change when A or B is multiplied by
a positive constant, which is analogous to the property of
Pearson’s correlation coefficient. Thus, Rv can measure the
pattern similarity of two vector fields but cannot determine
whether two vector fields have the same amplitude in terms
of the length of vectors. However, we can use the scalar vari-
able RMSL (Eqs. 4 and 5) to measure the length of a vector
field.
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3 Interpreting VSC

In this section, we present three cases to explain why VSC
can reasonably measure the pattern similarity of two vector
fields. To facilitate the interpretation, we define the mean dif-
ference of angles (MDA) between paired vectors as follows:

MDA= ᾱ =
1
N

N∑
i=1

αi =
1
N

N∑
i=1

acos
(

Ai •Bi

|Ai ||Bi |

)
, (10)

where the vector fields A and B are the same as those in
the Eq. (1). αi is the included angle between paired vectors.
MDA takes values in intervals [0, π ] and measures how close
the corresponding vector directions of two vector fields are to
each other. A mean square difference (MSD) of normalized
vector lengths is defined as follows:

MSD=
1
N

N∑
i=1

(∣∣A∗i ∣∣− ∣∣B∗i ∣∣)2
=

1
N

N∑
i=1

(∣∣A∗i ∣∣2+ ∣∣B∗i ∣∣2− 2
∣∣A∗i ∣∣ ∣∣B∗i ∣∣)

= 2−
2
N

N∑
i=1

∣∣A∗i ∣∣ ∣∣B∗i ∣∣
. (11)

Given Eq. (6) and the Cauchy–Schwarz inequality,(
N∑
i=1

∣∣A∗i ∣∣ ∣∣B∗i ∣∣
)2

≤

N∑
i=1

∣∣A∗i ∣∣2 N∑
i=1

∣∣B∗i ∣∣2 ,
we find that MSD takes on values in intervals [0, 2].

For all i (1≤ i ≤N ), if
∣∣A∗i ∣∣= ∣∣B∗i ∣∣, we have MSD= 0.

For all i (1≤ i ≤N ), if
∣∣A∗i ∣∣ ∣∣B∗i ∣∣= 0, we have MSD= 2.

MSD measures how close the paired vector lengths of two
normalized vector fields are to each other. Based on the def-
inition of Rv (Eq. 7), the VSC is determined by both differ-
ences in vector lengths and angles between two groups of
vectors. To interpret the nature of VSC, we will discuss how
VSC will change with MSD and MDA in Sect. 3.1 and 3.2,
respectively.

3.1 Interpreting VSC based on its equation

VSC can be written as follows:

Rv =
1
N

N∑
i=1

A∗i •B
∗

i

=
1
N

N∑
i=1

∣∣A∗i ∣∣ ∣∣B∗i ∣∣cosαi

=
1
N

N∑
i=1


(∣∣A∗i ∣∣2+ ∣∣B∗i ∣∣2)− (∣∣A∗i ∣∣− ∣∣B∗i ∣∣)2

2

cosαi

.

To examine the relationship of VSC with MSD, we assume
each corresponding angle between paired vectors αi = α =
const (i = [1,N ]). With the support of Eqs. (6) and (11), we
obtain

Rv =

[
1−

1
2N

N∑
i=1

(∣∣A∗i ∣∣− ∣∣B∗i ∣∣)2
]

cosα

=

[
1−

MSD
2

]
cosα

. (12)

Thus, Rv varies between 0 and cosα due to the difference
in the normalized vector length when α is a constant angle.
Rv equals 0 when α equals 90◦ regardless of the value of
MSD. MSD plays an increasingly important role in determin-
ing Rv when α approaches 0 or 180◦. Rv is inversely propor-
tional to MSD, which suggests that two vector fields show a
higher similarity when their corresponding normalized vec-
tor lengths are closer to each other, and vice versa. On the
other hand, Rv is proportional to cosα, suggesting a higher
VSC when the directions of paired vectors are closer to each
other. This indicates that VSC can reasonably describe how
close the normalized vector fields are by taking both vec-
tor lengths and directions into consideration simultaneously
(Eq. 12).

3.2 Interpreting VSC based on random generated
samples

In the previous section, the interpretation of VSC is based
on the assumption that the paired vectors have a constant in-
cluded angle. In this section, we will examine how VSC is
affected by the difference of included angles in a more gen-
eral case. Firstly, we construct a reference vector sequence,
A, comprising 30 vectors, i.e., i = [1,30]. The lengths of 30
vectors follow a normal distribution, and the arguments of
30 vectors follow a uniform distribution between 0 and 360◦.
Secondly, we produced a new vector sequence B by rotating
each individual vector of A by a certain angle randomly be-
tween 0 and 180◦ without changes in vector lengths. Such
a random generation of B was repeated 1× 106 times to
produce sufficient random samples of vector sequences. The
vector similarity coefficient Rv is computed between A and
the 1× 106 sets of randomly produced vector sequences, re-
spectively. As shown in Fig. 2,Rv generally shows a negative
relationship with MDA, i.e., a smaller MDA generally corre-
sponds to a larger Rv, and vice versa. A smaller MDA in-
dicates smaller differences in the directions of paired vectors
and hence a higher similarity between the vector fields A and
B, suggesting that VSC can reasonably describe how close
the vector directions between two vector fields are. Mean-
while, it is also noted that Rv varies within a large range for
the same MDA. For example, when MDA equals 90◦, Rv
can vary from approximately −0.5 to 0.5 depending on the
relationship between the paired vector lengths and the corre-
sponding included angles (Fig. 2). A positive (negative)Rv is
observed when the 30 vector lengths and included angles are
negatively (positively) correlated. This means that the pat-
terns of two vector fields are closer (opposite) to each other
when the included angles between the long vectors are small
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Figure 2. Scatterplot between the vector similarity coefficient (Rv)
and mean difference of angle (MDA) derived from the reference
vector field A and randomly generated vector field B. There are
106 random vector fields B included in the statistics. The colors
denote the correlation coefficients between the vector length and
the included angle between two vector sequences.

(large). Specifically, the rotation of shorter vectors may not
undermine Rv too much as long as the longer vectors remain
unchanged. In contrast, Rv would be strongly undermined
with the rotation of longer vectors. Simply put, the longer
vectors generally play a more important role than the shorter
vectors in determining Rv.

3.3 Application of VSC to 850 hPa vector winds

In this section, we compute theRv of the climatological mean
850 hPa vector winds in January with that in each month
in the Asian–Australian monsoon region (10◦ S–40◦ N, 40–
140◦ E). The purpose of this analysis is to further illustrate
whether or not Rv can measure the similarity of two vector
fields with observational data. The wind data used are NCEP-
DOE Reanalysis 2 data (Kanamitsu et al., 2002). The cli-
matological mean 850 hPa vector winds show a clear winter
monsoon circulation characterized by northerly winds over
the tropical and subtropical Asian regions in January and
February (Fig. 3a, b). The spatial pattern of vector winds in
January is very close to that in February, which corresponds
to a very high Rv (0.97). The spatial pattern of vector winds
in January is less similar to that in April and October, which
corresponds to a weak Rv of 0.48 and−0.11, respectively. In
August, the spatial pattern of 850 hPa winds is generally op-
posite of that in January, which corresponds to a negative Rv
(−0.64). The VSCs of 850 hPa vector winds between clima-
tological January and each climatological month show a clear
annual cycle characterized by a positive Rv in the cold sea-
son (November–April) and a negative Rv in the warm season
(June–September) in the Asian–Australian monsoon region

(Fig. 3f, solid line). Figure 3 illustrates that VSC can rea-
sonably measure the pattern similarity of two vector fields.
We also computed the VSCs of 850 hPa vector winds be-
tween climatological January and each individual month dur-
ing the period from 1979 to 2005, respectively. The VSCs
show a smaller spread in winter (January, February, and De-
cember) and summer (June, July, and August) months than
during the transitional months such as April, May, and Octo-
ber (Fig. 3f). This indicates that the spatial patterns of vector
winds have smaller interannual variation in summer and win-
ter monsoon seasons than during the transitional seasons.

4 Construction of the VFE diagram

To measure the differences in two vector fields, a root
mean square vector difference (RMSVD) is defined follow-
ing Shukla and Saha (1974) with a minor modification:

RMSVD=

[
1
N

N∑
i=1

|Ai −Bi |
2

] 1
2

,

where Ai and Bi are the original vectors. The RMSVD ap-
proaches zero when two vector fields become more alike in
both vector length and direction. The square of RMSVD can
be written as

RMSVD2
=

1
N

N∑
i=1

|Ai −Bi |
2

=
1
N

N∑
i=1

(
|Ai |

2
+ |Bi |

2
− 2 |Ai •Bi |

)
=

1
N

N∑
i=1

|Ai |
2
+

1
N

N∑
i=1

|Bi |
2
−

2
N
Rv

•

√
N∑
i=1
|Ai |

2
N∑
i=1
|Bi |

2

=
1
N

N∑
i=1

|Ai |
2
+

1
N

N∑
i=1

|Bi |
2
− 2Rv

•

√√√√ 1
N

N∑
i=1

|Ai |
2

√√√√ 1
N

N∑
i=1

|Bi |
2

.

With the support of Eqs. (4), (5), and (7), we obtain

RMSVD2
= L2

A+L
2
B − 2Rv •LALB . (13)

The geometric relationship between RMSVD, LA, LB ,
and Rv is shown in Fig. 4, which is analogous to Fig. 1
in Taylor (2001) but constructed by different quantities. It
should be noted that RMSVD is computed from the two orig-
inal sets of vectors. However, the MSDNV in Sect. 2 is com-
puted using normalized vectors.

With the above definitions and relationships, we can con-
struct a diagram that statistically quantifies how close two
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Figure 3. Climatological mean 850 hPa vector wind in (a) January, (b) February, (c) April, (d) August, and (e) October. (f) The vector
similarity coefficients of 850 hPa vector winds between climatological mean January and 12 climatological months (solid line). The “+”
represents the VSC between the climatological mean vector winds in January and the vector winds in each individual month over the period
of 1979–2014, respectively. There are 432 (12× 36) “+” symbols. Monthly NCEP-NCAR Reanalysis 2 data were used to produce this
figure.

cos-1 Rv

LA

LB

RMSVD

Figure 4. Geometric relationship among the vector similarity coef-
ficientRv, the RMS lengthsLA andLB , and RMS vector difference
(RMSVD).

vector fields are to each other in terms of theRv ,LA,LB , and
RMSVD. LA and LB measure the mean and variance of the
length of the vector fields A and B, respectively (Eqs. A1,
A2). In contrast, RMSVD describes the magnitude of the

overall difference between vector fields A and B. Vector field
B can be called the reference field, usually representing some
observed state. Vector field A can be regarded as a test field,
typically a model-simulated field. The quantities in Eq. (13)
are shown in Fig. 5. The half circle represents the reference
field, and the asterisk represents the test field. The radial dis-
tances from the origin to the points represent RMSL (LA and
LB), which is shown as dotted circles (Fig. 5). The azimuthal
positions provide the vector similarity coefficient (Rv). The
dashed lines measure the distance from the reference point,
which represents the RMSVD. Both the Taylor diagram and
the VFE diagram are constructed based on the law of cosine.
The differences between the two diagrams are summarized in
Table 1. Indeed, the Taylor diagram can be regarded as a spe-
cific case of the VFE diagram, which is further interpreted in
Appendix A.

Geosci. Model Dev., 9, 4365–4380, 2016 www.geosci-model-dev.net/9/4365/2016/
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Table 1. Summary of the difference between the Taylor diagram and the VFE diagram.

Taylor diagram VFE diagram

Purpose Evaluating scalar fields Evaluating vector fields

Composition Correlation coefficient (R), standard deviation
(SD), centered RMSE

Vector similarity coefficient (Rv), RMS vector
length (RMSL), RMSVD

R vs. Rv R: measuring the pattern similarity of scalar
fields

Rv: measuring the pattern similarity of vector
fields by considering vector length and direction
simultaneously

SD vs. RMSL SD: measuring the variance of a scalar field RMSL: measuring the mean and variance of
vector lengths

RMSE vs. RMSVD Centered RMSE: aggregating the magnitude of
the errors between the simulated and observed
anomaly fields

RMSVD: aggregating the magnitude of the
overall difference between the simulated and
observed vector fields

Figure 5. Diagram for displaying pattern statistics. The vector sim-
ilarity coefficient between vector fields is given by the azimuthal
position of the test field. The radial distance from the origin is pro-
portional to the RMS length. The RMSVD between the test and ref-
erence field is proportional to their distance apart (dashed contours
in the same units as the RMS length).

5 Applications of the VFE diagram

5.1 Evaluating vector winds simulated by multiple
models

A common application of the VFE diagram is to com-
pare multimodel simulations against observations in terms
of the patterns of vector fields. As an example, we assess
the pattern statistics of climatological mean 850 hPa vec-
tor winds derived from the historical experiments by 19
CMIP5 models (Taylor et al., 2012) compared with the
NCEP-DOE Reanalysis 2 data during the period from 1979
to 2005. The evaluation was based on the monthly mean
datasets from the first ensemble run of CMIP5 historical
simulations and all datasets were regridded to a common
grid of 2.5◦× 2.5◦. A box-averaging (bi-linear interpolation)

method was used to regrid the reanalysis data and model data
to a coarse (finer) resolution. The RMSVD and RMSL (LA
and LB) were normalized by the observed RMSL (LB), i.e.,
RMSVD′ =RMSVD /LB , L′A = LA/LB , and L′B = 1. This
leaves VSC unchanged and yields a normalized diagram as
shown in Fig. 6. The normalized diagram removes the units
of variables and thus allows different variables to be shown
in the same plot. The VSCs vary from 0.8 to 0.96 among 19
models, clearly indicating which model-simulated patterns
of vector winds resemble observations well and which do
not. The diagram also clearly shows which models overes-
timate or underestimate the RMS wind speed (Fig. 6). For
example, in comparison with the reanalysis data, some mod-
els (e.g., 12, 19, 13, and 15) underestimate RMS wind speed
characterized by smaller normalized RMSLs over the Asian–
Australian monsoon region in summer. In contrast, some
models (e.g., 6 and 10) overestimate wind speed (Fig. 6a).
In winter, most models overestimate the 850 hPa RMS wind
speed characterized greater normalized RMSLs (Fig. 6b).

To illustrate the performance of the VFE diagram in
model evaluation, Fig. 7 shows the spatial patterns of the
climatological mean 850 hPa vector winds over the Asian–
Australian monsoon region derived from the NCEP2 reanal-
ysis and three climate models. Models 1 and 4 show a spatial
pattern of vector winds that is very similar to the reanaly-
sis data in summer, and Rv reaches 0.96 and 0.95, respec-
tively (Fig. 7a, c, e). In contrast, the spatial pattern of the
vector winds simulated by model 12 is less similar to the re-
analysis data (Fig. 7a, g). For example, the reanalysis-based
vector winds show stronger southwesterly winds over the
southwestern Arabian Sea than the Bay of Bengal (Fig. 7a).
However, an opposite spatial pattern is found in the same
areas in model 12. More precisely, the southwesterly winds
are weaker over the southwestern Arabian Sea than over the
Bay of Bengal (Fig. 7g). Rv reasonably gives expression
to the lower similarity of the spatial pattern in the vector
winds characterized by a smaller Rv (0.86) in model 12 that
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Figure 6. Normalized pattern statistics of climatological mean 850 hPa vector winds in the Asian–Australian monsoon region (10◦ S–40◦ N,
40–140◦ E) in summer (June–July–August) and winter (December–January–February) among 19 CMIP5 models compared with the NCEP
Reanalysis 2 data during the period from 1979 to 2005. The RMS length and the RMSVD have been normalized by the RMS length derived
from NCEP2. The data were excluded from the statistics in areas with a topography higher than 1500 m.

is clearly lower than that (0.96) in model 1. Figure 6 sug-
gests that model 12 underestimates RMS wind speed (nor-
malized RMS wind speed is 0.78) in summer. In contrast,
model 4 overestimates RMS wind speed (normalized RMS
wind speed is 1.35) in winter. These biases in wind speed
can be identified in Fig. 7. For example, model 12 generally
underestimates the 850 hPa wind speed, especially over the
Somali region in summer, compared with the reanalysis data
(Fig. 7a, g). Model 4 overestimates the strength of easterly
winds between 5 and 20◦ N and westerly winds between the
Equator and 10◦ S in winter (Fig. 7b, f).

5.2 Other potential applications

Similar to the Taylor diagram (Taylor, 2001), the VFE dia-
gram can be applied to the following aspects.

5.2.1 Tracking changes in model performance

To summarize the changes in the performance of a model,
the points on the VFE diagram can be linked with arrows.
For example, similar to Fig. 5 in Taylor (2001) the tails of
the arrows represent the statistics for the older version, and
the arrowheads point to the statistic for the newer version
of the model. By doing so, the multiple statistical changes
from the old version to the new version of the model can be
clearly shown in the VFE diagram. The VFE diagram can
also be combined with the Taylor diagram to show the statis-
tics for both scalar and vector variables in one diagram by
plotting double coordinates because both diagrams are con-
structed based on the law of cosine.

5.2.2 Indicating the statistical significance of
differences in model performance

As presented in Taylor (2001), one can qualitatively assess
whether or not there are apparent differences in model per-
formance by comparing ensemble simulations obtained from
different models. The performance of two models can have
a significant difference if the statistics from two groups of
ensemble simulations are clearly separated from each other,
and vice versa. As an illustration of this point, Fig. 8 shows
the normalized pattern statistics of the climatological mean
850 hPa vector winds derived from CMIP5 historical experi-
ments during the period from 1979 to 2005. Models 12, 13,
and 14 include 5, 6, and 9 ensemble runs, respectively. For
a given model, all ensemble members of historical runs are
forced in the same way, but each is initiated from a differ-
ent point in the preindustrial control run (Taylor et al., 2012).
Thus, the differences between ensemble runs from the same
model result from the sampling variability. In contrast, the
differences between ensemble runs from different models are
caused by both the sampling variability and model formula-
tion differences. In Fig. 8, the symbols representing the same
model show a close clustering, signifying that the sampling
variability has less impact on the statistics of climatologi-
cal mean vector winds. On the other hand, the symbols rep-
resenting different models are clearly separated from each
other. This suggests that the differences between models are
much larger than the random sampling variability of indi-
vidual models. Thus, the differences between models 12, 13,
and 14 are likely to be significant. Models 12 and 13 are dif-
ferent versions of the same model. Compared with model
12, model 13 shows a similar RMSL but higher VSCs and
smaller RMSVDs, which suggests that the improvement of
model 13 beyond 12 is primarily due to the improvement of
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Figure 7. Climatological mean 850 hPa vector winds in summer and winter for the NCEP Reanalysis 2 data and the results of historical
simulations obtained from three CMIP5 models during the period from 1979 to 2005. The vector similarity coefficient (Rv), normalized
RMSL, and normalized RMSVD are also shown at the top of each panel. The vectors are set to a missing value in the areas with a topography
higher than 1500 m.

the spatial pattern of vector winds (Fig. 8). The ensemble
member involved here is less than 10 and the statistics be-
tween models 12 and 13 are separated from each other by
only a small distance on the VFE diagram, which may not be
sufficient to conclude a significant difference between mod-
els 12 and 13. This is a shortcoming of this method, i.e., lack-
ing quantitative evaluation on the significance of difference
in model performance, and warrants further study. Specif-
ically, it may hard to determine the significance when the
pattern statistics of two groups of simulations are not clearly
separated from each other.

5.2.3 Evaluating model skill

The VFE diagram provides a concise evaluation of model
performance. However, it should be noted that, for a given
VSC at relatively low value, the RMSVD does not decrease
monotonically when the RMSL approaches the observed
value (Fig. 5). Thus, a smaller RMSVD may not necessarily
indicate a better model skill. To measure model skill in simu-
lating vector fields, we developed two skill scores following
the definition of model skill scores in Taylor (2001):
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Figure 8. Normalized pattern statistics for climatological mean
850 hPa vector winds over the Asian–Australian monsoon region
(10◦ S–40◦ N, 40–140◦ E) in summer (June–July–August) derived
from each independent ensemble member by models 12, 13, and 14.
The datasets used and regridding method are the same as those in
Fig. 6, except only three models are included here. Models 12, 13,
and 14 include 5, 6, and 9 ensemble simulations which are obtained
from CMIP5 historical experiments during the period from 1979 to
2005, respectively. The same type of symbols show a close cluster-
ing, and different types of symbols are clearly separated from each
other, which suggests that the differences between different models
are likely to be significant.

Sv1 =
4(1+Rv)

(LA/LB +LB/LA)2(1+R0)
(14)

Sv2 =
4(1+Rv)

4

(LA/LB +LB/LA)2(1+R0)4
, (15)

where R0 is the maximum VSC attainable. LA and LB are
the modeled and observed RMSL, respectively. Sv1 or Sv2
take values between 0 (least skillful) and 1 (most skillful).
Both skill scores can be shown as isolines in the VFE dia-
gram, similar to Figs. 10 and 11 in Taylor (2001). For a given
LA/LB , the skill increases linearly with Rv. For a given Rv,
the skill is proportional (inversely proportional) to LA when
LA is smaller (greater) than LB . Both skill scores, Sv1 and
Sv2, take the VSC and the RMSL into account. However,
Sv1 places more emphasis on the correct simulation of the
vector length, whereas Sv2 pays more attention to the pat-
tern similarity of the vector fields. Which statistical variable
is more important depends on the application. For example,
wind speed (measured by RMSL) may be the primary con-
cern of model evaluation if one evaluates models for the pur-
pose of wind power projection. In contrast, the pattern of
vector winds (measured by VSC) may be the major concern

Figure 9. Normalized pattern statistics of climatological mean
850 hPa vector winds in the Asian–Australian monsoon region
(10◦ S–40◦ N, 40–140◦ E) among 19 CMIP5 models compared with
the reanalysis data in summer (June–July–August). The climato-
logical means were computed from the monthly data derived from
CMIP5 historical simulations and reanalysis datasets during the pe-
riod from 1979 to 2005, except for the ERA-40 reanalysis with a
time span from 1979 to 2002. Each CMIP5 model was compared
with six reanalysis data, respectively. The symbols with same type
of mark and color represent the statistics of an individual CMIP5
model compared with various reanalysis winds.

if one evaluates model performance in simulating monsoon
climate. The users should define or select appropriate skill
scores based on their own applications because no skill score
would be universally considered most appropriate.

6 The impact of observational uncertainty on model
evaluation

It is known that observation data are uncertain due to many
reasons, such as instrumental or sampling errors. Thus, it
is necessary to evaluate the impact of observational uncer-
tainties on the result of model evaluation. Taylor (2001) pre-
sented a good approach to measure the observational uncer-
tainty by showing the statistics of models relative to various
observations on the Taylor diagram. Such an approach can
also be applied here to assess the impact of observational
uncertainty on the evaluation of simulated vector fields. For
example, we can compute the normalized pattern statistics
describing the climatological mean 850 hPa vector winds
derived from CMIP5 models compared with six reanaly-
sis datasets, respectively (Fig. 9). We assumed six reanaly-
sis datasets, i.e., NECP/NCAR Reanalysis 1 (Kalnay et al.,
1996), NCEP-DOE Reanalysis 2 (Kanamitsu et al., 2002),
ERA-40 (Uppala et al., 2005), ERA-Interim (Dee et al.,
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Figure 10. Normalized pattern statistics of climatological mean 850 hPa vector winds in the Asian–Australian monsoon region (10◦ S–40◦ N,
40–140◦ E) derived from the historical simulations of 19 CMIP5 models (red circles) and 6 reanalysis datasets (blue crosses) compared with
the multi-reanalysis mean during the period from 1979 to 2005. The RMSL and the RMSVD have been normalized by the RMSL derived
from multi-reanalysis mean data. The data were excluded from the statistics in areas with topography higher than 1500 m. Six reanalysis
datasets (NNRP, NCEP2, ERA-40, ERA-Interim, JRA25, and JRA55) were included in the statistics.

2011), JRA25 (Onogi et al., 2007), and JRA55 (Kobayashi
et al., 2015; Harada et al., 2016) are observational data
here. The modeled pattern statistics against various reanal-
ysis datasets are similar to each other, indicating that the ob-
servational uncertainty in vector winds has a minor impact
on the evaluation of simulated climatological mean 850 hPa
vector winds.

Note that the pattern statistics are less discriminable in
Fig. 9 due to the overlapping of many symbols, although we
use different symbols and colors to distinguish them from
each other. To make the pattern statistics more clear, we pro-
pose an alternative way to show the observational uncertainty
by comparing each model and observation with the mean of
multiple observational estimates. If we assume various ob-
servational estimates are obtained independently and contain
random noises, these noises can contaminate the observa-
tional estimate. The random noises in various observational
estimates could cancel out each other to a certain degree.
Thus, the mean of multiple observational estimates may be
closer to the true value than the individual observational esti-
mate. We therefore take the ensemble mean of six reanalysis
datasets as reference data and compute the pattern statistics
of various models compared with the reference data to assess
the model performance. Likewise, we can also measure the
observational uncertainty by computing the pattern statistics
of individual observational estimates relative to the reference
data. The pattern statistics derived from models and individ-
ual observations can be shown on the VFE diagram with dif-
ferent symbols (Fig. 10). By doing so, one can roughly esti-
mate the impacts of observational uncertainty on the evalu-
ation of model performance. For example, the six reanalysis
datasets show very close pattern statistics in summer charac-
terized by high VSCs (0.986–0.994) and almost same RM-

SLs (0.986–1.021) as the reference data, which indicate a
small observational uncertainty. Consequently, the observa-
tional uncertainty should have less impact on the evaluation
of model performance. This is further supported by the com-
parison of Fig. 10 with Fig. 6. For example, the pattern statis-
tics of CMIP5 models only show some minor changes when
we replace the referenced NCEP-DOE Reanalysis 2 datasets
with the ensemble mean of six reanalysis datasets (Figs. 6,
10).

7 Discussion and conclusions

In this study, we devised a vector field evaluation (VFE)
diagram based on the geometric relationship between three
scalar variables, i.e., the vector similarity coefficient (VSC),
root mean square length (RMSL), and root mean square vec-
tor difference (RMSVD). The three statistical variables in the
VFE diagram are meaningful and easy to compute. VSC is
defined by the arithmetic mean of the inner product of nor-
malized vector pairs to measure the pattern similarity be-
tween two vector fields. Our results suggest that VSC can de-
scribe the pattern similarity of two vector fields well. RMSL
measures the mean and variance of vector lengths (Eq. A1).
RMSVD measures the overall difference between two vector
fields. The VFE diagram can clearly illustrate how much the
overall RMSVD is attributed to the systematic difference in
vector length vs. how much is due to poor pattern similarity.

As discussed in Appendix A, three statistical variables can
be computed with full vector fields (including both the mean
and anomaly) or vector anomaly fields. One can compute
three statistical variables using full vector fields if the statis-
tics in both the mean state and anomaly need to be evalu-
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ated (Figs. 6, 8). Alternatively, one can compute three sta-
tistical variables using vector anomaly fields if the statistics
in the anomaly are the primary concern. Under certain cir-
cumstance, e.g., if the pattern of vector fields is highly ho-
mogeneous, the statistics of full vector fields could largely
be dominated by the mean vector fields with a minor contri-
bution from the anomaly fields (Eqs. A1–A4). Consequently,
the statistics derived from different models may be very sim-
ilar and difficult to separate from each other. In this case,
one may want to assess the mean and anomaly fields, re-
spectively. By doing so, the model performance in simulating
vector anomaly fields can be better identified on the VFE di-
agram. The VFE diagram is devised to compare the statistics
between two vector fields, e.g., vector winds usually com-
prise two- or three-dimensional vectors. One-dimensional
vector fields can be regarded as scalar fields. In terms of
the one-dimensional case, the VSC, RMSL, and RMSVD
computed by anomaly fields become the correlation coeffi-
cient, standard deviation, and centered RMSE, respectively,
and they are the statistical variables in the Taylor diagram.
Thus, the Taylor diagram is a specific case of the VFE dia-
gram. The Taylor diagram compares the statistics of scalar
anomaly fields. The VFE diagram is a generalized Taylor di-
agram that can compare the statistics of full vector fields or
vector anomaly fields.

In practice, one may want to take latitudinal weight into
account in the evaluation of spatial patterns of vector fields.
This can be easily done by weighting the modeled and ob-
served vector fields before computing VSC, RMSL, and
RMSVD. Note that weighting should not be used during the
computations of VSC, RMSL, and RMSVD to maintain their
cosine relationship (Eq. 13). The VFE diagram can also be
easily applied to the evaluation of three-dimensional vectors;
however, we only considered two-dimensional vectors in this
paper. If the vertical scale of a three-dimensional vector vari-
able is much smaller than its horizontal scale, e.g., vector
winds, one may consider multiplying the vertical component
by 50 or 100 to accentuate its importance. In addition, as with
the Taylor diagram, the VFE diagram can also be applied
to track changes in model performance, indicate the signifi-
cance of the differences in model performance, and evaluate
model skills. More applications of the VFE diagram could be
developed based on different research aims in the future.

8 Code availability

The code used in the production of Figs. 2 and 6a is available
in the Supplement to the article.
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Appendix A: The relationship between the VFE
diagram and the Taylor diagram

A and B:

Ai = (xai,yai); i = 1,2, . . .,N

Bi = (xbi,ybi) ; i = 1,2, . . .,N.

Ai and Bi are two-dimensional vectors. Each full vector field
includes N vectors and can be broken down into the mean
and anomaly:

Ai =A+A′i =
(
xa + x

′

ai,ya + y
′

ai

)
; i = 1,2, . . .,N

Bi = B +B ′i =
(
xb+ x

′

bi, yb+ y
′

bi

)
; i = 1,2, . . .,N,

where xa =
1
N

N∑
i=1
xai,ya =

1
N

N∑
i=1
yai,xb =

1
N

N∑
i=1
xbi,yb =

1
N

N∑
i=1
ybi,Ā=

(
xa, ya

)
, B̄ =

(
xb, yb

)
,A′i =(

x′ai, y
′

ai

)
,B ′i =

(
x′bi, y

′

bi

)
.

The standard deviation of the x and y components of vec-
tors Ai and Bi can be written as follows:

σax =

√√√√ 1
N

N∑
i=1

(xai − xa)
2
=

√√√√ 1
N

N∑
i=1

x′ai
2
,

σay =

√√√√ 1
N

N∑
i=1

(
yai − ya

)2
=

√√√√ 1
N

N∑
i=1

y′ai
2

σbx =

√√√√ 1
N

N∑
i=1

(xbi − xb)
2
=

√√√√ 1
N

N∑
i=1

x′bi
2
,

σby =

√√√√ 1
N

N∑
i=1

(
ybi − yb

)2
=

√√√√ 1
N

N∑
i=1

y′bi
2
.

The RMSL of vector field A is written as follows:

L2
A =

1
N

N∑
i=1

|Ai |
2

=
1
N

N∑
i=1

((
xa + x

′

ai

)2
+
(
ya + y

′

ai

)2)
=

1
N

N∑
i=1

(
x2
a + ya

2
)
+

1
N

N∑
i=1

(
x′ai

2
+ y′ai

2
)

+
1
N

N∑
i=1

(
2xax′ai + 2yay

′

ai

)
.

Given
N∑
i=1
x′ai =

N∑
i=1
y′ai = 0, L2

A can be written as

L2
A =

1
N

N∑
i=1

∣∣Ai

∣∣2+ 1
N

N∑
i=1

∣∣A′i∣∣2
= L2

A
+L2

A′

, (A1)

where L2
A
=

1
N

N∑
i=1

∣∣Ā∣∣2 , L2
A′
=

1
N

N∑
i=1

∣∣A′i∣∣2.

Similarly, we have

L2
B = L

2
B
+L2

B ′ . (A2)

The VSC between vector fields A and B is

Rv =
1√

N∑
i=1
|Ai |

2

√
N∑
i=1
|Bi |

2

N∑
i=1

Ai •Bi

=
1

NLALB

N∑
i=1

((
xa + x

′

ai

)(
xb+ x

′

bi

)
+
(
ȳa + y

′

ai

)(
ȳb+ y

′

bi

)).

Given
N∑
i=1
x′ai =

N∑
i=1
y′ai = 0, we obtain

Rv =
1

NLALB

N∑
i=1

(
(x̄a x̄b+ ȳa ȳb)+

(
x′aix

′

bi + y
′

aiy
′

bi

))
=

1
NLALB

(
N∑
i=1

A •B +

N∑
i=1

A′i •B
′

i

)

=
LALB

LALB
Rv +

LA′LB ′

LALB
Rv′ ,

(A3)

where Rv =
1

NLALB

N∑
i=1

A •B = A•B
LALB

=
A•B∣∣A∣∣∣∣B∣∣ equals the

cosine of the included angle between two mean vectors.

Rv′ =
1

NLA′LB′

N∑
i=1

A′i •B
′

i is the VSC between two vector

anomaly fields.
The RMSVD2 between vector fields A and B is

RMSVD2
=

1
N

N∑
i=1

|Ai −Bi |
2

=
1
N

N∑
i=1

((
x̄a + x

′

ai − x̄b− x
′

bi

)2
+
(
ȳa + y

′

ai − ȳb− y
′

bi

)2)
=

1
N

N∑
i=1

(
(x̄a − x̄b)

2
+ (ȳa − ȳb)

2
+
(
x′ai − x

′

bi

)2
+
(
y′ai − y

′

bi

)2)
=

1
N

N∑
i=1

∣∣A−B
∣∣2+ 1

N

N∑
i=1

∣∣A′i −B ′i
∣∣2 .

(A4)

Based on Eqs. (A1), (A2), and (A4), we can conclude that
the LA, LB , and RMSVD2 derived from the full vector fields
are equal to those derived from the mean vector fields plus
those derived from the vector anomaly fields. The Rv com-
puted by two full vector fields is also determined by that de-
rived from the mean state and anomaly (Eq. A3). This in-
dicates that the VFE diagram derived from the full vector
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fields takes the statistics in both the mean state and anomaly
of the vector fields into account. The VFE diagram derived
from the full vector fields is recommended for use if both
the statistics in the mean state and anomaly are of great con-
cern. On the other hand, the VFE diagram derived from vec-
tor anomaly fields can be used if the statistics in the anomaly
are the primary concern. In this case, anomalous LA, LB ,Rv,
and RMSVD2 can be written, respectively, as follows:

L2
A′ =

1
N

N∑
i=1

∣∣A′i∣∣2 = 1
N

N∑
i=1
(x′ai

2
+ y′ai

2
) (A5)

L2
B ′ =

1
N

N∑
i=1

∣∣B ′i∣∣2 = 1
N

N∑
i=1
(x′bi

2
+ y′bi

2
) (A6)

Rv′ =
1√

N∑
i=1

∣∣A′i∣∣2
√

N∑
i=1

∣∣B ′i∣∣2
N∑
i=1

A′i •B
′

i

=
1√

N∑
i=1

(
x′ai

2
+ y′ai

2
)√ N∑

i=1

(
x′bi

2
+ y′bi

2
) N∑
i=1
(x′aix

′

bi + y
′

aiy
′

bi)

(A7)

RMSVD2
v′ =

1
N

N∑
i=1

∣∣A′i −B ′i
∣∣2

=
1
N

N∑
i=1

((
x′ai − x

′

bi

)2
+
(
y′ai − y

′

bi

)2)
. (A8)

The vector fields A and B can be regarded as two scalar
fields if we further assume that the y component of both vec-
tor fields is equal to 0. Under this circumstance, Eqs. (A5)–
(A8) can be written as follows:

L2
A′ =

1
N

N∑
i=1

x′ai
2
= σ 2

ax

L2
B ′ =

1
N

N∑
i=1

x′bi
2
= σ 2

bx

Rv′ =
1√

N∑
i=1
x′ai

2

√
N∑
i=1
x′bi

2

N∑
i=1

x′aix
′

bi

RMSVD2
v′ =

1
N

N∑
i=1

(
x′ai − x

′

bi

)2
.

LA′ and LB ′ are equal to the standard deviation of the
x component of vector fields A and B, respectively. R′v is the
Pearson’s correlation coefficient between the x component of
vector fields A and B, and RMSVD2

v′
is the centered RMS

difference between the x component of vector fields A and
B. The Taylor diagram is constructed using the standard de-
viation, correlation coefficient, and centered RMS difference
(Taylor, 2001). Thus, the Taylor diagram can be regarded as
a specific case of the VFE diagram (i.e., for one-dimensional
anomaly fields). The VFE diagram is a generalized Taylor
diagram which can be applied to multidimensional variables.
In addition, the VFE diagram can evaluate model perfor-
mance in terms of full vector fields or vector anomaly fields.
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