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Abstract. Estimation of pollutant releases into the atmo-
sphere is an important problem in the environmental sci-
ences. Itis typically formalized as an inverse problem using a
linear model that can explain observable quantities (e.g., con-
centrations or deposition values) as a product of the source-
receptor sensitivity (SRS) matrix obtained from an atmo-
spheric transport model multiplied by the unknown source-
term vector. Since this problem is typically ill-posed, current
state-of-the-art methods are based on regularization of the
problem and solution of a formulated optimization problem.
This procedure depends on manual settings of uncertainties
that are often very poorly quantified, effectively making them
tuning parameters. We formulate a probabilistic model, that
has the same maximum likelihood solution as the conven-
tional method using pre-specified uncertainties. Replacement
of the maximum likelihood solution by full Bayesian esti-
mation also allows estimation of all tuning parameters from
the measurements. The estimation procedure is based on the
variational Bayes approximation which is evaluated by an it-
erative algorithm. The resulting method is thus very similar
to the conventional approach, but with the possibility to also
estimate all tuning parameters from the observations. The
proposed algorithm is tested and compared with the stan-
dard methods on data from the European Tracer Experiment
(ETEX) where advantages of the new method are demon-
strated. A MATLAB implementation of the proposed algo-
rithm is available for download.

1 Introduction

Estimating the emissions of a substance into the atmosphere
can be done in two alternative ways: The first method, a
bottom-up approach, is based on a (statistical) model describ-
ing the emission process. For greenhouse gases or air pol-
lutants, this is typically based on detailed country statistics
(e.g., about energy use) and some proxy information (e.g.,
population distribution) to spatially disaggregate the emis-
sions. The other method, often called top-down approach
(Nisbet and Weiss, 2010), makes use of ambient measure-
ments of the released substance (e.g., atmospheric concen-
trations) and a model for describing the behavior of the
substance in the atmosphere. The emissions are then con-
strained to values that are compatible with the measured data.
The two approaches are complementary, as the top-down ap-
proach can be used to verify bottom-up estimates, to iden-
tify problems in bottom-up emission inventories, or to im-
prove these inventories (e.g., Lunt et al., 2015). For determin-
ing the emissions of greenhouse gases into the atmosphere,
such an approach has become very common. In particular,
total greenhouse gas emissions are the result of both anthro-
pogenic and natural emissions. Bottom-up inventories for an-
thropogenic emissions should, at least in principle, be quite
accurate but a verification using top-down methods is desir-
able (Stohl et al., 2009; Bergamaschi et al., 2015). Natural
emissions are often poorly constrained with bottom-up meth-
ods and thus the role of top-down methods is even more im-
portant (Tans et al., 1990; Rayner et al., 1999).

For other emissions into the atmosphere, such as releases
by nuclear accidents (Davoine and Bocquet, 2007; Stohl
et al., 2012), nuclear explosions (Issartel and Baverel, 2003),
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or for emissions of volcanic ash during volcanic eruptions
(Kristiansen et al., 2010; Stohl et al., 2011), the problem is
very different. While the emission location is often known
and sometimes the emission period can be estimated, other
bottom-up information on the magnitude of the emissions,
their temporal variations and, occasionally, the emission al-
titude, can be very incomplete or, especially in real time,
nonexistent. In these cases, emission estimates based on the
top-down approach are often the only way to constrain the
so-called source term, which quantifies the emissions of a
point source as a function of time and, sometimes, altitude.
Still, the source term is one of the largest source of errors
in modeling and predicting the pollutant dispersion in the at-
mosphere (Stohl et al., 2012). Since it is key information for
decision making in emergency response situations, any im-
provement of the reliability of the source-term estimation is
important.

The common approach for source-term determination is
to combine data measured in the environment (e.g., radionu-
clide concentrations downwind of the release site) with an
atmospheric transport model in a top-down approach. Agree-
ment between a model with calculated source term and
measurements can be modeled and optimized using various
parameter-estimating methods including the Bayesian ap-
proach (Bocquet, 2008), maximum entropy principle (Boc-
quet, 2005b), or cost function optimization (Eckhardt et al.,
2008). For computational reasons, this problem is typically
formulated as a variant of linear regression. The vector of
measurements is assumed to be explained using a linear
model with a known source-receptor sensitivity (SRS) matrix
determined using an atmospheric dispersion model (Seibert
and Frank, 2004) and an unknown source-term vector. Sim-
ple solution via the ordinary least-squares method typically
yields a poor solution because the problem is often only par-
tially determined and ill-constrained by the available mea-
surement data. Many regularization schemes taking into ac-
count physically plausible ranges of parameter values such
as non-negativity of the emissions, or other a priori infor-
mation, for instance on the duration of release, have been
proposed providing more realistic solutions. However, es-
pecially if the a priori information is incomplete, the reg-
ularization terms can also contain tuning parameters which
are often selected manually and subjectively. The solution
is subsequently highly sensitive to their choice. Therefore,
many authors proposed inversion schemes to reduce the de-
pendency on these parameters. Davoine and Bocquet (2007)
formulated the inversion problem as minimization problem
with Tikhonov regularization term. A similar model was
used by Winiarek et al. (2012), where covariance matrices
of both observation errors and source term are assumed to
be diagonal with identical elements on each diagonal. The
positivity of the source term is enforced using truncation
of negative estimates. Three estimation methods were stud-
ied to infer model parameters: L-curve, Desroziers’ scheme
(Desroziers et al., 2005), and brute force using maximum
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likelihood screening. Diagonal matrices with different diag-
onal entries were considered in the work of Michalak et al.
(2005) where a maximum likelihood method was used to
infer the model parameters. The model was extended by
Berchet et al. (2013) where full covariance matrices were
considered. Desroziers’ scheme and maximum likelihood
were used; however, heuristics need to be used due to di-
vergence of the algorithm after a few iterations. To cope
better with full covariance matrix of measurements, Gane-
san et al. (2014) follow the work of Michalak et al. (2005)
and propose a model for non-diagonal entries using expo-
nential decay with a common autocorrelation timescale pa-
rameter weighted by estimated diagonal entries. A similar
model was then used by Henne et al. (2016) for both co-
variance matrices, measurement and source term, although
with a fixed common autocorrelation timescale parameter for
non-diagonal entries. In this paper, we propose a probabilis-
tic model that estimates such tuning parameters from the data
using a Bayesian approach with hierarchical prior.

Most of the existing regularization techniques are based
on restricted structure of the prior covariance matrix. Various
covariance structures for linear models have been studied ex-
tensively in the statistical literature; see for example reviews
of Pourahmadi (2011) and Daniels (2005). For example, a
model of only diagonal structure of the covariance matrix has
been proposed to favor sparse solutions (Tipping, 2001). It is
possible to use more complex models of the covariance struc-
ture using Cholesky decomposition (Pourahmadi, 2000), its
modifications (Daniels and Pourahmadi, 2002), or more gen-
eral decompositions (Khare and Rajaratnam, 2011). The in-
ference mechanism is usually a variant of Monte Carlo simu-
lations. In this work, we choose the prior covariance structure
to have two main diagonals in modified Cholesky decompo-
sition. The inference of the posterior is achieved using the
variational Bayes method (Smidl and Quinn, 2006) which is
closely related to algorithms used in this application domain.

We will illustrate the proposed approach in comparison
with the commonly used method of Seibert (2001) and Eck-
hardt et al. (2008), state-of-the-art algorithms (Martinez-
Camara et al., 2014), least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996), and the conventional
Tikhonov regularization (Golub et al., 1999). We will show
how the formal Bayesian approach yields an iterative algo-
rithm closely related to that of Eckhardt et al. (2008). Many
heuristic steps in determining regularization parameters will
be replaced by statistical estimates. The most significant ad-
vantage over the reference approach is estimation of the tun-
ing parameters from the data. In effect, the proposed algo-
rithm works without manual intervention. The only entries
of the proposed algorithm are the vector of measurements
and the SRS matrix calculated with a dispersion model. The
MATLAB implementation of the derived algorithm is freely
available for download. The resulting algorithm is tested and
compared using real data from the European Tracer Experi-
ment (ETEX).
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2 Background

In this Section, we review the standard methodology, as de-
scribed, for example, by Eckhardt et al. (2008), which is
commonly used in source-term determination and the varia-
tional Bayes method (§m1’d1 and Quinn, 2006; Miskin, 2000)
which is the key methodology of this work.

2.1 Standard methodology

We choose the work of Eckhardt et al. (2008) as a reference.
It is only an example from a family of optimization meth-
ods based on linear regression such as Seibert (2000), Seib-
ert (2001), Bocquet (2005b), Bocquet (2008), or Tarantola
(2005). The regularization is achieved by formulating a prior
knowledge on the solution and using an iterative algorithm
for removing physically unrealistic values in the posterior
solution. The basic inverse problem is formulated based on
the following linear model,

y=Mx, ey

where y is the vector of measurements (typically observed
concentrations or, sometimes, deposition values), M is a
known SRS matrix (Seibert and Frank, 2004), and x is the
unknown source-term vector. Solution of the problem via the
ordinary least-squares method is not feasible since matrix M
is typically ill-conditioned.

Regularization of the problem proposed in Eckhardt et al.
(2008) is based on minimization of the cost function J =
Ji+ I+ Js:

Ji =0y 2 (Mx —y)" (Mx — y), )
WL =deiag (0;2) X, 3)
J3 =e(Dx) " Dx, )

where the term J; stands for the deviation of the model from
the observation with scalar o( to be a standard error of the
observation; however, note that y and M are prone to errors
and cumulate uncertainties from measurement and the atmo-
spheric transport model used for SRS calculations (including
errors in the meteorological data used to drive the transport
model); J; therefore includes errors in the model M, mapped
into observation space. The term J> penalizes high values
of the solution where the penalty is inversely proportional
to the assumed standard errors of each source-term element
aggregated in vector ¢ ,, where symbol diag() denotes a di-
agonal matrix with an argument vector on its diagonal and
zeros otherwise; the term J3 encourages smooth estimates of
the source term x where D is a tridiagonal differential ma-
trix numerically approximating a Laplacian operator and the
scalar € weights the strength of the smoothness of the solu-
tion relative to the other two terms. Note that we assume the
smoothness in time as it is used in Stohl et al. (2011). This as-
sumption may not be valid in cases such as explosions, which
cause abrupt change in the source term.
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Note that model (1) can be also used for problems with
non-zero prior mean x¢ and known covariance matrix of the
observations, R. Using Cholesky decomposition of the ob-
servation covariance matrix, R = WWT, the original model
can be written in form y = ‘Mx + We, where e is an isotropic
noise and X is assumed to have prior mean x¢. Then, transfor-
mationx =X —xg, M = vpm, y= Wyl (i—Mxo) maps
such a model into form (1) with zero mean prior and isotropic
noise assumption.

This minimization problem leads to a system of linear
equations that is solved for the source term x. Since the so-
lution is assumed to be positive, the optimization problem is
subject to x > O:

(x) = argmin (J1 + J» + J3), subject to x > 0. (®))
X

This restriction is achieved in the iterative algorithm by re-
placing all negative values by an arbitrary small positive
number together with a reduction of their standard errors to
force these values closer to the non-negative prior solution.
This can be formalized by the selection of a stop condition
for the ratio between negative and positive parts of the solu-
g;:ff < 8, where § is a selected threshold. For the es-
timation algorithm, proper values of parameters oy, 0, and
€ need to be preselected manually and potentially changed
repeatedly until an acceptable solution is obtained. The main

ideas of the algorithm are summarized in Algorithm 1.

tion as

Algorithm 1 The main ideas of algorithm from Eckhardt
et al. (2008).

1. Iterate until sufficient solution (x) is obtained:

a. Choose parameters oy, 0 x, €, and §.

(x>neg

o < § or maximum number of iteration
pos

b. Iterate until

is reached:
i. Solve minimization problem given by Egs. (2)—(4).
ii. Change negative parts of x to arbitrary small pos-
itive random numbers, reduce related variances o

for negative parts of solution and increase variance
o for positive parts of solution.

c. Report estimated source term (x).

2.2 Bayesian interpretation of the reference method

The method of Eckhardt et al. (2008) can be interpreted as
a maximum a posteriori probability estimate of a particu-
lar probabilistic model. Specifically, the Gaussian observa-
tion model with truncated Gaussian prior distribution of the
source term
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p(ylx) = N(Mx,0¢1,)

o ex —l “2(Mx — )T —
P\ =30 " Mx—y) (Mx—y)), (6)

p(x|Zy) = tN(0, =) x exp (—%xTExx) x(x;i >0), (7)
%, = (diag (0;2) +eD™D)!, ®)

where A/ (j, £) denotes a multivariate Gaussian distribution
with mean g and covariance matrix X, I, is the n x n iden-
tity matrix, tA (g, 2, (0, 00)) is a truncated Gaussian distri-
bution with parameters p, ¥ and support (domain) of physi-
cally realistic values restricted to positive values of all entries
of the vector x =[x, ..., x,], see Appendix A. The choice of
Gaussian distribution is motivated primarily by tractability of
its inference.

The logarithm of the posterior probability of the unknown
x has the form

1
logp(xly)=—§(11+J2+J3)+y(x)+c, )

where y(x) is the logarithm of the characteristic function
enforcing positivity (see Appendix A), and ¢ aggregates all
terms independent of x. Maximization of the log-likelihood
is then equivalent to minimization of the cost function of the
reference method (5) where y (x) is the barrier function of
the constraint on x. While interpretation of positivity by trun-
cated normal distribution is non-standard, it has the same ef-
fect as the “subject to” constraint. The maximum likelihood
estimate is the value of w if u > 0 and it is zero otherwise
(Fig. 1).

The maximum likelihood solution is the simplest case
of Bayesian inference. Application of full Bayesian infer-
ence (i.e., evaluation of full posterior distribution and their
marginals) can address two important problems:

1. selection of tuning parameters oy, 0, and € which are
considered to be hyper-parameters and estimated from
the data,

2. selection of the appropriate model M via Bayesian
model selection.

We are concerned only with the first problem in this paper
while matrix M is considered fixed. Extension of the pro-
posed methodology to Bayesian model selection is possi-
ble (Bishop, 2006), however it is rather long and its proper
treatment is beyond the scope of this paper. Full Bayesian
treatment of the unknowns og, oy, and € is not analyti-
cally tractable. Approximate inference of o and o, is pos-
sible, however estimation of € represents a challenge since
the determinant of the covariance becomes too complex.
Moreover, common variance of temporal derivative of the
source term may not be realistic, since it is subject to abrupt
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Figure 1. Example of the normal distribution N'(1, 1), blue line,
and the truncated normal distribution tA'(1, 1, [0, oo]), red line.

changes caused, for example, by explosions. Therefore, we
will present results for a different and more complex struc-
ture of the prior variance X that allows stable and reliable
estimation of the source-term vector x via the variational
Bayes method.

3 Probabilistic model with unknown prior covariance

We formulate the probabilistic model to cope with the linear
inverse problem, Eq. (1), and derive an iterative algorithm to
estimate parameters of this model.

3.1 Observation model

The observation model is identical to Eq. (6), i.e., the
isotropic Gaussian noise model!. However, we will consider
the precision (inverse variance) of the observations to be un-

known, parameterized by o= ag,

p(ylx.w) =N, (Mx,ar‘l,,). (10)

Since w is unknown and will be estimated, similarly to Tip-
ping and Bishop (1999), we define its own prior distribution
in the form of the Gamma distribution (which is conjugated
prior for precision of the Gaussian distribution) as

p(w) =G (Do, po), 1)

with chosen prior constants ¥, p09. These constants are
needed for numerical stability; however, they are set as low
as possible to provide a non-informative prior (see Algo-
rithm 2).

Note that the model with different elements on the di-
agonal of the covariance matrix of measurements has also
been studied in the literature; see for example Michalak et al.

! Gaussian noise with an arbitrary known covariance matrix can
be transformed into this form by scaling of the observations and the
SRS matrix.
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(2005). Modification of the proposed algorithm to a diagonal
precision matrix with unknown elements on the main diago-
nal is very simple. However, such a model was found to be
more susceptible to local optima than the presented model.
The presented model was found to be more reliable in prac-
tical tests.

3.2 Prior model

We use the same prior for the source-term vector as in Eq. (7),
with the exception that the prior covariance of x, denoted as
3, is unknown. Note from Eq. (8) that the covariance ma-
trix is a band matrix with predefined structure; tridiagonal
matrix in this case. Relaxing the assumption of the tridiago-
nal structure, we consider the following structure of the prior
covariance:

¥, =LYLT. (12)

It is composed of diagonal matrix Y = diag(v), with
unknown positive diagonal entries forming vector v =
[v1, ..., u,] and zeros otherwise. L is a lower bidiagonal ma-
trix

) 13)

=

—_

-
— O o o

0 0 I,

with unknown off-diagonal elements forming a vector I =
[l Iy-- .l,,,l]. This model preserves the tridiagonal structure
of the covariance matrix X, and allow us to model each di-
agonal separately. The task is to introduce prior models for
vectors v and I whose estimates fully determine the decom-
position in Eq. (12).

The prior model of the vector v is selected as

P(Uj):gvj (ao’ﬂo),\?’j=1,...,n, (14)

where o, By are selected non-informative prior constants
(see Algorithm 2). The prior model of the vector / is selected
in a problem specific way. Note that for /; =0, the model
in Eq. (12) corresponds to Eq. (8) with € =0. For /; = —1,
model in Eq. (12) corresponds to Eq. (8) with € — oco. Since
we expect the result to be within this interval, we define the
prior on /; to be independently Gaussian-distributed with un-
known precision v;:

Pl =N, (1o, v7"). (1)
p(‘/jj) zglﬂ, (CO,WO)’VJZLv”—L (16)

where o, no are selected prior constants. Since we expect
the neighboring values x; and x;4; to be either uncorre-
lated (/; = 0) or correlated (/; = —1) we choose parameters
lo, o, no to cover these extremes with preference for a value

www.geosci-model-dev.net/9/4297/2016/

lp = —1, and precision v; set around this value using selec-
tion o = 1o = 1072. This allows parameter [ to vary in the
range circa —1 4 100 which we consider to be sufficiently
non-informative. Lower values of ¢y and n¢ result in posterior
estimates closer to /. On the other hand, further relaxation of
these parameters to a wider range results in higher sensitivity
to local extremes and potentially numerical instability.
The joint model of the full distribution is then:

p(y.x, v, LY n1,0) =pylx,0)pxlv, L, n1)

n—1
P(vn)Hp(vi)p(lilwz')ﬁ(l//i)- (17
i=1

Estimation of all unknown parameters can be obtained by the
Bayes rule which is, however, computationally intractable.

3.3 Iterative variational Bayes algorithm

Following the variational Bayesian methodology (Smidl and
Quinn, 2006), we seek a posterior distribution in a very spe-
cific form, satisfying posterior conditional independence:

px, v, Y1, a—1,0ly)
~pxIy)p@|y)pdly) p(¥1,.. n-11y) p(@]y). (18)

The best possible approximation is defined as a minimizer
of the Kullback-Leibler divergence (Kullback and Leibler,
1951) between the solution and the hypothetical true poste-
rior. The choice of this form is motivated by simplicity of
evaluation and experience indicates that it is a very good
approximation for linear models (Bishop, 2006; Smidl and
Quinn, 2006).

The necessary conditions of the best approximation
uniquely determine the form of the posterior distributions.
These were identified to be as follows:

p(xly) =Ny (1x, ), (19)
PWily) =Gy, (@j.Bj). Vi=1,....n, (20)
By =N, (1, 51) . Yj=1...n—1, @1
PWily) =Gy, (&j.mj), Vi=1,...n—1, (22)
p(@ly) =G, (D, p). (23)

The shaping parameters of posterior distributions, Egs. (19)-
(23), px, By, aj, By, ;s 21y, 8jomjs U, p, derived according
to the standard variational Bayes procedure (see Smidl and
Quinn (2006)) are given in Appendix B. The shaping pa-
rameters are functions of standard moments of posterior dis-
tributions, e.g., (x), (xxT), and (xTx) for the distribution
p(x|y). Symbol (x) denotes the expected value with re-
spect to the distribution on the variable in the argument. The
shaping parameters and the required moments form a set of
implicit equations which is solved iteratively using Algo-
rithm 2. Good initialization should be considered since con-
vergence only to the local minima is guaranteed (Smidl and

Geosci. Model Dev., 9, 4297-4311, 2016
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Quinn, 2006). We propose to initialize the algorithm by solu-
tion of the ordinary least squares with Tikhonov regulariza-
tion tuned such that the data and the regularization term have
equal scale. It is achieved by choice of the initial value of
the estimate of the precision parameter (w)® = m
Here, superscript (i) is used to denote iteration number of the
algorithm. The algorithm will be called Least Squares with
Adaptive Prior Covariance (LS-APC) and is freely avail-
able for download from http://www.utia.cz/linear_inversion_
methods.

Algorithm 2 Least Square with Adaptive Prior Covariance
(LS-APC) algorithm.

1. Initialization

a. Set prior parameters g, pg, %o, By to non-informative
values of 10~10 (yielding non-informative priors). Val-
ues ¢, 7o are set to physically meaningful values of
1072,

b. Set initial values (denoted by zero iteration number in
superscript ©)y used in computation of the covariance

H . ) _ 1
matrix of the source term, Xy: (w)'"”’ = max (M)
(T)(O) =y, and (L)(O) = I,,. If y is not specified use
y =1

c. Setiteration index i = 1.

2. Iterate until convergence or maximum number of iterations is
reached:

a. Compute estimate of the source term ()@ using least

squares:

» ; —n\~!
I ((w)(l*I)MTM+<LTLT>l ) : (24)
1 =20 (@ DuTy), (25)

using moments of the truncated normal distribution,
Eq. (A).

b. Update estimates of (T)<i) and (L)(i), using Egs. (B2)—
(B4) defined in Appendix B,

c. Compute precision parameter (w)® using Eq. (BS) in
Appendix B.

3. Report estimated source term (x) and its uncertainty Xy.

Note that the algorithm is closely related to Algorithm 1
of the reference method. It also iteratively solves the least
squares problem but with adaptive tuning of its parameters.
The proposed method has the following differences:

1. The algorithm is largely tuning-free, i.e., all hyper-
parameters w, [;, v;, ¥; are estimated from the data. The
results may slightly differ for different choices of the
initial conditions since the variational Bayes solution
may suffer from local minima. The most sensitive initial
value is (Y)© of tuning parameter y. The sensitivity of
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the solution to this initial choice is very low, which will
be discussed in Sect. 5.2.

2. Since estimating the hyper-parameter values requires
the calculation of the variance of the posterior distribu-
tion, the covariance matrix of the least squares problem
needs to be evaluated; the cost of this operation is circa
O (n>*) in each iteration. This implies a slightly higher
computational cost compared to Algorithm 1 where this
matrix is not needed.

3. The method of positivity enforcement is replaced by
moments of the truncated normal distribution.

4 Verification using a synthetic dataset

To test the proposed LS-APC algorithm and to demonstrate
its performance, we design a synthetic dataset before per-
forming a real data experiment. We generate elements of the
matrix M € R?*19 a5 random samples from an uniform dis-
tribution between 0 and 1 and elements less then 0.5 were
cropped to O to reduce the condition number of the matrix M
(which is 6.69 in 12-norm in this dataset). The source term
is generated as xyye = [0,0,0,1,1,1,0,0,0,0] as shown in
Fig. 2, top row, using dashed red line. The vector of mea-
surement data is generated according to the assumed model
in Eq. (1) as y = Mx + e where three sets are generated with
the same matrix M but with different levels of the noise term
e. Each element e; is generated randomly as A (0, c,%) where
the coefficients are set as ¢; = O for the set 1, ¢ = 0.4 for the
set 2, and ¢3 = 0.8 for the set 3. Then, negative elements of
y are cropped to 0. Note that these data are supplied together
with the LS-APC algorithm as a tutorial example.

The results from the LS-APC algorithm for this dataset are
given in Fig. 2. The estimates of the source term are shown
in the uppermost row (solid blue lines) together with the sim-
ulated true source term (dashed red line). The estimated val-
ues of the vector (v), i.e., the diagonal of the matrix ('),
are displayed in the second row. This parameter models the
sparsity of the solution where a higher value signifies higher
confidence that the corresponding element of the solution is
zero. The parameter (/) modeling the smoothness of the so-
lution is shown in Fig. 2, bottom row. Note that at the con-
stant parts of the solution this parameter is approaching —1,
signifying highly correlated neighboring elements, while it
is approaching zero at the time of the step change, indicat-
ing uncorrelated neighbors. The two parameters (v) and ()
can also compensate one another, as is demonstrated on the
falling edge of the source term. Instead of the expected zero
in the smoothness parameter /g, the posterior value is close
to the prior. The difference in the data is compensated by the
sparsity parameter ve which is very low, indicating very low
confidence in this value.

The quality of the reconstruction depends on the noise
level, as demonstrated in individual columns of Fig. 2. As

www.geosci-model-dev.net/9/4297/2016/
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Figure 2. The results of the LS-APC algorithm on synthetically generated dataset with different levels of noise degradation (increasing from
left to right; e; = N0, c,%), where ¢ = 0 for the set Synthetic 1, ¢y = 0.4 for the set Synthetic 2, and c; = 0.8 for the set Synthetic 3). In
the top panel, the true source term is given by the red line while the estimated source term is given by the blue line. The estimated sparsity
parameters, vectors (v), are given in the middle panel using full line while prior values are given using dashed black lines and the estimated
smoothness parameters, vectors (), are given in the bottom panel while prior values are given using dashed black lines.

expected, the source term is reconstructed precisely when
the data are noise-free (Fig. 2, left column). With increas-
ing noise, the reconstruction departs form the ground truth
(Fig. 2, middle column), however, the start and end of the
release is still estimated with sharp rising and falling edges.
The estimate is also sparse, i.e., the estimated values of the
source term outside of the true release window are zero. Note
that this result was achieved with standard deviation of the
noise equal to 40 % of the released quantity. Naturally, with
even higher noise (standard deviation equal to 80 % of the
released quantity, Fig. 2, right column), the estimates also
depart from the ideal shape and yield undesired artifacts.

5 Experimental results for the ETEX data

The European Tracer Experiment (ETEX) took place at
Monterfil in Brittany, France, on 23 October 1994 (Nodop
et al., 1998). Its attractiveness is that it is one of a very
few controlled large-scale tracer release experiments with
a large amount of available information (see https://rem.jrc.
ec.europa.eu/etex/). During ETEX, two release experiments
were made. We use here only the data from the first exper-
iment (ETEX-I), for which atmospheric dispersion models
generally performed much better than for the second experi-
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ment, e.g., Stohl et al. (1998). During ETEX-I, a total amount
of 340kg of perfluoromethylcyclohexane (PMCH) was re-
leased at a constant rate for nearly 12h. PMCH is nearly
inert in the atmosphere and does not experience dry depo-
sition or wet scavenging and is thus suitable for testing how
well transport models can handle atmospheric dispersion. At-
mospheric concentrations of the released PMCH were mon-
itored across Europe by a network of 168 measurement sta-
tions with a sampling interval of 3h over a period of 72h.
The release location and station locations are shown in Fig. 3.
The ETEX dataset has been used previously for testing in-
verse models by, for example, Bocquet (2005a, 2007), Krysta
et al. (2008), and Martinez-Camara et al. (2014).

To construct the SRS matrix M, we used version 8.1 of
the Lagrangian particle dispersion model FLEXPART (Stohl
et al., 2005, 1998). An earlier version of the model was eval-
uated against the first ETEX experiment and revealed rela-
tively good performance compared to other models (Stohl
et al., 1998). We assumed that the release location is known,
and that the release occurred during a 5-day period includ-
ing the true release time but that the source term (i.e., re-
leased amount as a function of time) is not known. Thus,
we performed 120 forward calculations from the release site,
each for a hypothetical unit release during a 1h period. For
each of these unit release simulations, the simulated tracer

Geosci. Model Dev., 9, 4297-4311, 2016
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Figure 3. Domain of the ETEX experiment with source (red trian-
gle) and receptors (blue crosses).

5° W 0° 5°E 10° E ° ° 25° E

concentrations were sampled at all the measurement station
locations and during the exact measurement times (in total,
3102 measurements were made), to construct the SRS matrix
M of the size 3102 x 120. The SRS matrix was used together
with the observation vector, y, of size 3102 x 1, to reconstruct
the source term, vector x, of the size 120 x 1. The recon-
structed source term can then be compared with the known
true source term, to evaluate the skill of the reconstruction.
The same set-up was used by Martinez-Camara et al. (2014)
to test a method to blindly remove outliers.

For running FLEXPART, we have used meteorological
input data from the European Center for Medium-Range
Weather Forecasts (ECMWF). Different datasets are avail-
able from ECMWEF and we have used two different datasets:
(1) Data from the 40-year re-analysis (ERA-40); (2) Data
from the continuously updated ERA-Interim re-analysis. For
both meteorological data sets we have run FLEXPART in two
different configurations:

A. with the model time step in the boundary layer limited to
less than 20 % of the Lagrangian timescale and a max-
imum value of 300s (ERA-40 A and ERA-Interim A),
and

B. with time step only limited by 300 s, which may be cho-
sen for computationally demanding real-time simula-
tions (ERA-40 B and ERA-Interim B).

The Lagrangian time scale depends on the turbulence con-
ditions in the planetary boundary layer and is computed in
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FLEXPART for every particle at every individual time step.
Lagrangian time scales can be very short (an order of sec-
onds) and, thus option A requires very short numerical inte-
gration time steps. Close to a source, this is the only accu-
rate way of ensuring the well-mixed condition and a correct
simulation of near-field dispersion. Over longer transport dis-
tances, such an accurate description of small-scale turbulent
transport is often not necessary as transport errors are domi-
nated by other sources of error (such as errors in large-scale
wind fields). Thus, compromises are often made in numeri-
cal simulations, especially for real-time model applications,
where longer time steps are used. This is explored with con-
figuration B.

While the differences between these simulations are actu-
ally rather small in terms of simulated SRS values, they can
serve as a lower estimate of the uncertainty associated with
the SRS calculations and can still produce quite substantial
differences in the retrieved source terms.

5.1 Source-term estimation using LS-APC algorithm

The task is to estimate the original source term x based only
on the available measurement data. Algorithm 2 was applied
to the selected example data ETEX ERA-Interim B and the
results are presented in Fig. 4. In the top panel of Fig. 4,
the red line denotes the true source term while the blue line
denotes the estimated source term (x) accompanied by the
99 % highest posterior density region, which is denoted by
the gray fill region. The estimated sparsity parameter (v),
i.e., the diagonal of the matrix (Y'), is given in the middle
panel of Fig. 4, and the estimated smoothness parameter (I),
i.e., second diagonal of the matrix (L), is given in the bot-
tom panel. Note that the sparsity parameter is approaching
10'% (value determined by g and Bp) at times when no re-
lease occurred; therefore, the posterior mean value is close
to the prior value, which is zero. The posterior mean value
of the smoothness parameter /; is —1 when the neighboring
values of the solution are close to each other. During periods
of rapid change of the release, the estimate of the smoothness
parameter approaches zero.

While the reconstructed source term does not agree ex-
actly with the known source profile, the true total of the
source term, i.e., 340kg, is on the edge of the 99 % highest
posterior density region which is (120,340) kg. This result is
achieved without any tuning of the internal parameters of the
FLEXPART dispersion model. Also the timing of the release
is well captured, although the reconstructed release shows
some variation during the release period, while the true re-
lease rate was constant. Furthermore, the reconstruction sug-
gests some small release to also occur after the true release
has ended. The quality of the reconstruction is comparable to
or better than previous reconstructions of the ETEX source
term (e.g., Seibert and Stohl, 1999; Bocquet, 2005a, 2007;
Martinez-Camara et al., 2014). Note that these results were
obtained without setting any tuning parameters; all regular-
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Figure 4. The results of the LS-APC algorithm for the ETEX experiment (ETEX ERA-Interim B). In the top panel, the true source term is
given by the red line while the estimated source term is given by the blue line associated with the 99 % highest posterior density region using
gray filled regions. The estimated sparsity parameter, vector (v), is given in the middle panel and the estimated smoothness parameter, vector

(1), is given in the bottom panel.

ization parameters are estimated from the data within the iter-
ative algorithm. The sensitivity of this approach to the initial
values and assumed uncertainties will be studied in compar-
ison with other algorithms.

5.2 Comparison and sensitivity study

We compare results from the proposed LS-APC algorithm,
Algorithm 2, with (i) an algorithm of Eckhardt et al. (2008),
Algorithm 1; (ii) the RegClean algorithm (Martinez-Camara
et al., 2014); (iii) the least absolute shrinkage and selection
operator (LASSO) algorithm (Tibshirani, 1996); and (iv) the
Tikhonov regularization (Golub et al., 1999). Specifically,
we study the ability of the proposed solution to regularize
the problem for different choices of the selected tuning pa-
rameters. It was found that the results of Algorithms 1 and
2 are most sensitive to initial values of the sparsity parame-
ters o x and v, respectively. Similarly, the RegClean, LASSO,
and Tikhonov algorithms also have parameters influencing
preference for penalization of large values of the solution
(e.g., the o parameter of the Tikhonov and LASSO regular-
ization). Thus, we run all five algorithms with this selected
tuning parameter set in points of interval & €< e~13 et7 >
for four ETEX datasets. That is, for the methods with diag-
onal choice, e.g., the reference method in Algorithm 1, we
set 0;2 = o[, For the LS-APC algorithm, this choice influ-
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ences only the initial value of the regularization parameter
viay =«a.

All remaining parameters of the other methods were kept
at their default values (RegClean) or set to best perform-
ing values (Algorithm 1). Evaluation of the results was per-
formed on the metric of mean absolute error (MAE) between
the true and the estimated source term:

1 n
MAE = " ]Zl |x],true x],est1m|- (26)

The computed MAEs between the true source term and the
estimated source term for all methods and for the same range
of the tuning parameter « are displayed in Fig. 5 for ETEX
ERA-40, and in Fig. 6 for ETEX ERA-Interim, top rows. The
estimates of the total released mass for all methods and for
the same range of the tuning parameter « are displayed in the
bottom row of Figs. 5 and 6. Note that all methods achieve
similar results although for different values of the tuning pa-
rameters. This is most obvious in the estimate of the total re-
leased mass, where each method has a range of tuning values
yielding the same estimate. This looks like a plateau on the
curve. The value of the total released mass at this plateau is
very similar for all methods. The exception is the experiment
ERA-Interim A, where the curves of the estimated total re-
leased mass contain two plateaus. Comparison with the true
total released mass of 340 kg is misleading in this case since
the plateau at 180 kg is due to an artifact, as discussed below.

Geosci. Model Dev., 9, 4297-4311, 2016
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Figure 5. Comparison of sensitivity of the tested algorithms to the setting of the selected tuning parameter o measured in terms of the mean
absolute error metric (top row), Eq. (26), and total estimated mass of the source term (bottom row) on data ETEX ERA-40 A and B.
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Figure 7. Comparison of the estimated source term for data ETEX ERA-Interim B for all settings (221 values) of the tuning parameter «
using all algorithms. For LS-APC, all estimates are overlapping; for algorithms sensitive to this choice, lines for different values of the tuning
parameter are plotted next to each other forming an area. The true source term is denoted by the dashed red line.

Examples of results from all algorithms for all settings of
the regularization parameter for ETEX ERA-Interim B are
displayed in Fig. 7 and for the problematic mode of ETEX
ERA-Interim A in Fig. 8. The true source term is denoted by
the dashed red lines and the estimated source terms are de-
noted using blue lines. For LS-APC, all estimates are over-
lapping; for algorithms sensitive to this choice, the lines form
an area. Note that the ETEX ERA-Interim A has a strong ar-
tifact at the first element of the solution since all receptors
have high sensitivity to it (high values in the first column of
the SRS matrix). Thus, non-zero value of the first element of
x can explain a part of the observation.

Note that the LS-APC algorithm provides results that are
almost insensitive to the value of the tuning parameter (used
only as a starting point). Moreover, the results of the LS-
APC algorithm correspond to the results of other methods
with best-tuned parameters. However, the proposed algo-
rithm still suffers form local minima as demonstrated in the
case of ETEX ERA-Interim A. However, the same local min-
ima are visible for the other methods as well. Despite this
non-uniqueness, the algorithm still provides only two possi-
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ble solutions in contrast to the other algorithms that yield a
range of possible solutions for different settings of the tuning
parameters as can be seen in Figs. 7 and 8.

The computational cost of the proposed algorithm is
higher than simple techniques such as LASSO and the
Tikhonov regularization since least-squares fit calculations
are run in each iteration. The convergence is typically
reached in tens of iterations. All experiments were run with
100 iterations where the equilibrium was always reached.
The runtime of the full iterative algorithm is 3.3 s forn = 120
on a conventional PC with Intel Core 17-870 CPU. Scaling of
the algorithm to a higher dimension is dominated by the in-
verse of n x n matrix which scales with O (n2-3%).

6 Conclusions

We present a novel algorithm for the linear inverse problem
which is applied to the problem of source-term determina-
tion for pollutant releases into the atmosphere. It is closely
related to the common optimization based techniques with
regularization. The model is based on a probabilistic formu-
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lation with an unknown prior covariance matrix. Application
of the variational Bayes method to the proposed probabilistic
model results in an iterative algorithm that is closely related
to the existing algorithms. The key difference is that the new
algorithm estimated all hyper-parameters from the data with-
out human interaction.

The proposed algorithm was validated using data from the
ETEX experiment. It was shown that the LS-APC algorithm
provides more consistent estimates of the source term with
very little influence from initialization and with no need of
human interaction. Therefore, the algorithm seems particu-
larly suited for real-time applications where there is no time
for manually setting tuning parameters.
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7 Code availability

The code for the LS-APC algorithm is available upon request
for academic and non-commercial use from the correspond-
ing author or through the following link: http://www.utia.cz/
linear_inversion_methods (Tichy et al., 2016). The imple-
mentation is provided in MATLAB and no additional tool-
boxes are required for the algorithm.
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Appendix A: Truncated normal distribution

Truncated normal distribution, denoted as N, of a scalar
variable x on interval [a; b] is defined as

V2exp((x — 1)?)

tNx(p,0,la,b]) = Jro (erf(B) — erf(a))

la,p](x), (AD)

—au g_ b i i .
where o = NS B = NS function x4 p)(x) is a character
istic function of interval [a, b] defined as xqp(x) =1 if
x € [a,b] and x[4,p)(x) = 0 otherwise. erf() is the error func-
tion defined as erf(¢) = %ﬁfée’”zdu.

The moments of truncated normal distribution are

V2[exp(—B?) — exp(—a?)]

W) == Vo ) —ert@) (A2)
<x2> N \/g\/z[b exp(—p2) —aexp(—a?)] (A3)
o Jaeri(B) —etf@)

For multivariate case, see Smidl and Tichy (2013).
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Appendix B: Shaping parameters of posterior
distributions
%= (() M™M +{LTLT) ",
px = Zy (@) M7y),
1 1
()l:()l()—i—zln,], ﬁ=ﬂ0+§diag(<LTxxTL)),
-1
2y = (<U1)<x12'+1>+(1/fj)) )
iy =Ty (= (vi)(xjxj) +lo{w)))
1 1 )
G=t+3 n=m+5 (007,

p
Y =09+ —,
o—l—2

1 1 1
p=pot e (exT) M) = 22yTM (x) + 23Ty,
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