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Abstract. This paper presents a free and open-source pro-

gram called PyXRD (short for Python X-ray diffraction) to

improve the quantification of complex, poly-phasic mixed-

layer phyllosilicate assemblages. The validity of the program

was checked by comparing its output with Sybilla v2.2.2,

which shares the same mathematical formalism. The novelty

of this program is the ab initio incorporation of the multi-

specimen method, making it possible to share phases and

(a selection of) their parameters across multiple specimens.

PyXRD thus allows for modelling multiple specimens side

by side, and this approach speeds up the manual refinement

process significantly. To check the hypothesis that this multi-

specimen set-up – as it effectively reduces the number of pa-

rameters and increases the number of observations – can also

improve automatic parameter refinements, we calculated X-

ray diffraction patterns for four theoretical mineral assem-

blages. These patterns were then used as input for one re-

finement employing the multi-specimen set-up and one em-

ploying the single-pattern set-ups. For all of the assemblages,

PyXRD was able to reproduce or approximate the input pa-

rameters with the multi-specimen approach. Diverging solu-

tions only occurred in single-pattern set-ups, which do not

contain enough information to discern all minerals present

(e.g. patterns of heated samples). Assuming a correct qual-

itative interpretation was made and a single pattern exists

in which all phases are sufficiently discernible, the obtained

results indicate a good quantification can often be obtained

with just that pattern. However, these results from theoreti-

cal experiments cannot automatically be extrapolated to all

real-life experiments. In any case, PyXRD has proven to be

useful when X-ray diffraction patterns are modelled for com-

plex mineral assemblages containing mixed-layer phyllosili-

cates with a multi-specimen approach.

1 Introduction

Clay minerals (i.e. phyllosilicates) are among the most diffi-

cult minerals to study in detail due to their inherent chemi-

cal and structural variability (Środoń, 2006; Velde and Meu-

nier, 2008; Hubert et al., 2012). Nonetheless, these minerals

are one of the most abundant constituents of the Earth’s up-

per crust, and have an important influence on various phys-

ical (e.g. plasticity, shear strength, porosity) and chemical

(e.g. buffering and exchange capacities, pH, electrical con-

ductivity) properties (Agbenin and Tiessen, 1995; Vernik and

Liu, 1997; Righi et al., 1999; Wen and Aydin, 2003; Lado

and Ben-Hur, 2004; Caner et al., 2010). Phyllosilicates are

also very reactive phases responding quickly to changes in

their environment (Pai et al., 2004; Meunier, 2007; Velde and

Meunier, 2008; Cornelis et al., 2014).

Therefore, quantitative information on the mineralogical

composition of clay-bearing samples is an important step

in characterizing and understanding them. Different tech-

niques can be used to quantify clay minerals, but those us-

ing X-ray diffraction are the most abundant and have proven

to be the most reliable (Plançon, 1981; Reynolds Jr., 1985;

Drits and Tchoubar, 1990; Righi et al., 1999; Sakharov et al.,

1999a; Środoń, 2006; Hubert et al., 2009, 2012; Ufer et al.,

2012a, b; Viennet et al., 2015). Programs calculating X-ray

diffraction patterns usually provide the highest level of de-

tail because the input for such models can be considered an
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approximation of the real structure of the minerals (e.g. layer

structures, composition, stacking parameters, interlayer com-

position, orientation). As such, this approach yields not only

quantitative data but also structural and compositional infor-

mation. However, this also means a large number of variables

are involved, some of which are very difficult to predict or

estimate in advance. In combination with the complex, poly-

phasic nature of many natural samples, it is a challenge to

create software that allows for the quantification of clay min-

erals.

Two complementary methods exist to analyse clay min-

erals using X-ray diffraction. One uses powder samples, for

which the orientation of crystallites is considered to be ap-

proximately random, and the other uses oriented samples,

in which the orientation of crystallites occurs mainly along

a plane of preferred orientation. Originally, powder X-ray

diffraction was and still is used to determine crystal struc-

tures for unknown phases (not just phyllosilicates), which

then developed into quantitative analysis. However, for dis-

ordered structures like mixed-layered clay minerals, powder

patterns are often difficult to interpret. In such cases oriented

patterns can be used to focus on the stacking (dis)order along

the c* axis. Since the 1970s, several computer programs

have been developed to calculate X-ray diffraction pat-

terns for (disordered) clay minerals (Kakinoki and Komura,

1965; Reynolds, 1967; Ergun, 1970; Sakharov and Drits,

1973; Drits and Sakharov, 1976; Plançon, 1981). Examples

of commonly used programs are the NEWMOD© family

(Reynolds Jr., 1985; Pevear and Schuette, 1993; Reynolds Jr.

and Reynolds III, 1996; Yuan and Bish, 2010), MLM2C/3C

and derivatives (Plançon and Drits, 2000), Sybilla (Aplin et

al., 2006; D. McCarty, personal communication, 2015), DIF-

FaX (Treacy et al., 1991), and BGMN (Ufer et al., 2012a,

b). Some of these programs (e.g. DIFFaX, BGMN, Wild-

fire, Sybilla 3-D) are able to calculate X-ray diffraction pat-

terns for random powder diffraction patterns, while others

(NEWMOD©, MLM2C, MLM3C, Sybilla) focus only on

calculating one-dimensional (00l) patterns.

Another aspect to consider is the ability of these programs

to automatically refine parameters. For instance, the last ver-

sion of NEWMOD© uses a simple linear least-squares algo-

rithm, Sybilla makes use of a genetic algorithm, and BGMN

has a custom least-squares algorithm. In essence, all of these

algorithms try to find a solution by minimizing a target func-

tion, usually a measure for the difference between the cal-

culated and observed data. This difference is usually defined

as the sum of the squares of the errors or as the pattern’s

Rp factor (Toby, 2006). A linear or ordinary least-squares

algorithm works well when there is a well-defined global

minimum and the target function is relatively smooth. How-

ever, for more complex cases this is often not the case, and

as a result an ordinary least-squares might not converge at

all. Algorithms using a more stochastic approach, like ge-

netic algorithms, can partly overcome problems related to

target function smoothness or poorly defined minima (also

see Sect. 2.4). Nonetheless, any algorithm will require some

guidance, e.g., by not releasing all parameters for automatic

refinement at once, by adjusting some parameters manually,

by setting upper and lower limits or by choosing starting val-

ues close enough to the actual solution. The reason is that

models describing X-ray diffraction by disordered layered

minerals can not always be constrained adequately, and a

successful quantification is still very dependent on the skill

of the individual modeller. As a result, most published quan-

tifications of complex mixed-layer assemblages employ a

time-consuming trial-and-error approach at some point in the

modelling process.

Several authors used a multi-specimen approach to further

constrain their models (Drits, 1997; Sakharov et al., 1999a,

b; Hubert et al., 2012, and references therein). This approach

involves recording multiple “specimens” or patterns (e.g. air-

dried, glycolated, heat treatments) of the same sample and

creating a structural model that can explain the observed

features for all patterns. The reason for doing this is that

swelling layers (like smectite and vermiculite layers) will ex-

pand or contract in response to these treatments. The level of

expansion or contraction can be related to layer charges, and

helps in discerning the different swelling phases present and

understanding their stacking (dis)order (Ferrage et al., 2005a,

b, 2007; Michot et al., 2005; Dazas et al., 2015). In short, this

approach allows one to determine the structure and type of

(mixed-layer) clay minerals present in the sample with higher

certainty. However, today not a single program allows for a

side-by-side calculation of these patterns. Because of this,

modellers are still forced to refine their model parameters on

one specimen and then check if the solution also explains the

other observations. As long as a manual trial-and-error re-

finement process is used, this does not pose too many practi-

cal problems aside from the time needed. In theory, however,

a program able to integrate all the observations and calculate

patterns for them could lead to better automatic parameter re-

finements, a hypothesis tested in this paper using theoretical

assemblages.

The program presented in this paper, called PyXRD (short

for Python X-ray Diffraction), was designed with this multi-

specimen approach in mind. It (selectively) shares phase pa-

rameters across specimens and keeps phase quantities iden-

tical in each specimen, thus reducing the number of param-

eters while at the same time increasing the number of ob-

servations. Other design goals for PyXRD were (i) to have

an easy-to-use interface, (ii) to be an open program allow-

ing as many aspects of the input to be changed as possible,

(iii) to provide a means for automatic parameter refinement,

and (iv) to provide an open-source program for others, allow-

ing them to use the software freely and make improvements

where they see fit.

This paper illustrates the general structure of this program

and presents the results from a comparison between PyXRD

and Sybilla v2.2.2 and between automatic parameter refine-

ments for several theoretical mineral assemblages, with and
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Figure 1. Schematic overview of the most important objects in

PyXRD and their relations. Arrows indicate “is referenced x times

by” relations and the numbers indicate the multiplicity of that rela-

tion (e.g. Project holds 0 or more references to AtomTypee).

without the use of the multi-specimen approach. The soft-

ware manual contains more detailed information about the

numerical solutions used for calculating the X-ray diffrac-

tion patterns and a guided example on how to create projects

using the graphical user interface (GUI).

2 Materials and methods

2.1 Model implementation and licence

PyXRD is written in Python 2.7 and uses a number of open-

source third-party modules. The graphical user interface

(GUI) utilizes PyGTK as widget toolkit and has an internal

model-view-controller framework. To improve calculation

speed, PyXRD makes use of the NumPy and SciPy libraries.

NumPy provides multi-dimensional array objects and many

related routines for manipulating them, while SciPy provides

more complex mathematical and scientific algorithms built

on top of NumPy (Jones et al., 2001; van der Walt et al.,

2011). The Matplotlib library is used for plotting patterns

and data (Hunter, 2007). Finally, the Distributed Evolution-

ary Algorithms for Python (DEAP) library is used to harness

to power of evolutionary algorithms to automatically refine

parameters (Fortin et al., 2012).

PyXRD is released under a BSD (Berkeley Software

Distribution) licence, except for the model-view-controller

(mvc) module, which, as it is a derived work from the gtkmvc

project, is licensed as GNU Lesser General Public License

(LGPL) v2.

2.2 Program data structure

PyXRD is implemented according to a mvc paradigm sepa-

rating data and calculations from GUI-related aspects. In the

following section, an overview is given of the most important

objects found in the data layer and their associations. More

details can also be found in the manual and the source code

documentation.

2.2.1 Project object

The user interface of PyXRD can create (or load) a sin-

gle Project object. It is a container object grouping lists of

AtomType, Phase, Specimen, and Mixture objects together.

These are the four top-level objects, which are used to calcu-

late X-ray diffraction patterns. Their associations are shown

schematically in Fig. 1. The purpose of each of them will be

explained in more detail below.

2.2.2 Atom type object

The AtomType object is the most basic building block. This

object bundles all the physical constants (e.g. charge, atomic

weight, scattering factors) for a single ion (e.g. Fe2+, Fe3+)

or for a molecule (e.g. H2O and ethylene glycol) small

enough to be considered having a spherical electron cloud.

When a new Project is created, a default list of these Atom-

Type objects is loaded, using the atomic scattering factors as

published by Waasmaier and Kirfel (1995).

2.2.3 Phase and component objects

Phase objects contain all the information needed to calcu-

late a one-dimensional X-ray diffraction pattern of a (mixed-

layer) mineral. A Phase combines (i) a Probability object,

(ii) an object describing the coherent scattering domain size

(CSDS), and (iii) one or more Component objects, which

contain information about the structure of the different types

of layers in the phase.

The Probability object describes how these layers are

stacked by means of Markovian statistics and the Reichweite

concept (Drits and Tchoubar, 1990). Currently PyXRD has

implemented probability models for R values ranging from

0 to 3. For each combination of Reichweite and number of

components there are a number of independent parameters

required to calculated the remaining parameters, which de-

scribe the stacking order or disorder. The values of these in-

dependent parameters can be based on another phase with the

same combination of Reichweite and number of components.

For example, this means it is possible to share the illite con-

tent in an illite–smectite mixed layer across its AD and EG

phase, but have different weight fractions (or junction prob-

abilities) for the different types of smectite in those phases.

For a complete explanation on how these calculations work

and which parameters were chosen to be independent we re-

fer to the manual.

The CSDS object describes what type of coherent scat-

tering domain size distribution should be used and contains

the necessary parameter values to describe this distribution

(e.g. average CSDS). Two types of CSDS distributions are

currently implemented: a generic log-normal distribution and

a log-normal distribution in which the distribution constants

published in Drits et al. (1997) are employed and the av-

erage CSDS is the only remaining unknown variable. Each
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Figure 2. Screenshot showing the “Edit mixtures” dialog where a

user can link different phases (kaolinite, illite, ISS R0 Ca-AD, etc.)

with the corresponding specimens (S1AD.dat, S1EG.dat, etc.

phase also has a σ* factor, which makes it possible to cor-

rect for incomplete preferred orientation (Reynolds Jr., 1986;

Dohrmann et al., 2009).

The Component object describes the size, structure, com-

position, and (variation in) basal spacing of a single layer

type in that phase. A Component contains two lists that com-

bine an AtomType from the project with its (projected) co-

ordinate along the c* axis (also known as the z coordinate)

and the number of projected ions of that type at that coordi-

nate. The first list involves atoms in the silicate lattice, while

the other list describes the (variable) interlayer space. With

this approach, the silicate structure can be shared between

different phases (e.g. AD and EG states), while the interlayer

contents may still be different.

2.2.4 Specimen objects

Specimen objects provide all the information regarding the

experimental data (the actual measurements, sample size,

etc.) and the Goniometer set-up (radius, slit sizes, etc.). They

do not hold a direct reference to phases, but are linked with

them through Mixture objects.

2.2.5 Mixture objects

Mixture objects are the starting point for the actual calcula-

tions as they link phases and specimens together. In the user

interface, a table can be created by adding just as many rows

as there are phases and just as many columns as there are

Specimens. In the column headers, there are slots where the

user can select the Specimen. Similarly, the user can select

the corresponding Phase in each cell of the table. This en-

ables the user to select different states of smectite for an AD

(air dry) and an EG (ethylene glycol) specimen (see Fig. 2 for

a screenshot of the GUI), while keeping unaffected phases

(e.g. kaolinites, micas, and chlorites) unchanged.

Once a Mixture is created in this way, a number of parame-

ters are available for automatic refinement (e.g. weight frac-

tions from the Probability object, the average CSDS, etc.).

In a refinement dialog, the user can select which parameters

she/he would like to improve and the minimum and max-

imum values between which the ideal value should lie. A

number of different refinement methods are also available –

some of them more complex or specialized than others. Yet,

as a complete description of all methods is beyond the scope

of this article, only the algorithm used for the refinements

will be explained in detail below.

2.3 Numerical calculations

The X-ray diffraction patterns are calculated using the matrix

formalism, for which a very good summary can be found in

Drits and Tchoubar (1990). Later developments incorporated

can be found in Drits et al. (1997) and Plançon (2001). Since

the complete mathematical deduction followed for PyXRD

is rather long, in itself does not contain new developments,

and is not the aim of this paper it is not included here. How-

ever, an overview of the mathematical deductions and cal-

culations, as they are implemented in the calculations mod-

ule, can be found in the online manual (http://users.ugent.be/

~madumon/pyxrd/Manual.pdf) or in the manual included in

this article’s Supplement.

To improve calculation speed, programs can make use of

multi-threading, spreading the load from the different threads

evenly over the different cores in a multi-core CPU. How-

ever, multi-threading is not very effective in Python because

of the global interpreter lock (GIL). This lock can only be

obtained by a single active thread, while the others have to

wait for it to be released again. So instead of multi-threading,

PyXRD uses multi-processing, which creates a new python

interpreter for each process, circumventing the GIL problem.

The downside is that processes, unlike threads, do not share

memory. Therefore, each process needs to be given all the

data required to run the calculation. This is achieved by iso-

lating the calculation functions from objects and by extract-

ing the required data from the objects described in the pre-

vious section. As a result, the data exchanged between pro-

cesses are reduced to a minimum.

This approach also makes it possible to run PyXRD re-

finements effectively on high-performance computing (HPC)

clusters. The experiments presented in this paper were run on

the HPC clusters of the Stevin Supercomputer Infrastructure

at Ghent University. The main reason to run these experi-

ments on an HPC cluster was the large number of replicates

(50) involved in this work and the practical aspect of not hav-

ing to dedicate a separate PC. This does not mean refine-

ments take too long on a regular PC; e.g. a refinement with

a dozen parameters finishes in less then 15 min on a 64-bit

quad-core 3.10 GHz Intel® Core i5-2400 system. The set-up

on an HPC cluster is also more cumbersome as it requires

the user to get PyXRD to work on the cluster and submit a
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Table 1. Overview of the discrete phases used to compare the output from PyXRD with the output of Sybilla (R is Reichweite, G is the

number of components, N is the average CSDS, AD is air dry, EG is ethylene glycol, relevant probability (P ) and weight (W ) factors are

given, Rp and Rwp are the unweighted, and weighted residual errors of the patterns respectively).

Phase R G State N P and W factors Rp Rwp

1 Kaolinite – 1 – 20 – 0.7 0.9

2 Illite – 1 – 20 – 0.9 1.3

3 Talc – 1 – 20 – 0.8 1.0

4 Chlorite – 1 – 20 – 0.8 1.0

5 Illite–smectite 0 2 AD 4 W1 = 0.5 1.0 1.6

6 Illite–smectite 1 2 AD 4 W1 = 0.6 1.0 1.6

P22 = 0.5

6b Illite–smectite 1 2 AD 15 W1 = 0.6 0.7 1.5

P22 = 0.0

7 Illite–smectite 2 2 AD 4 W1 = 0.6 P112 = 0.5 1.4 2.1

P21 = 1.0 P221 = 0.0

7b Illite–smectite 2 2 AD 15 W1 = 0.6 P112 = 1.0 0.7 1.5

P21 = 1.0 P221 = 0.0

8 Illite–smectite 3 2 AD 4 W1 = 0.9 P22 = 0 1.9 2.3

P2112 = 0.5 P212 = 0

8b Illite–smectite 3 2 AD 15 W1 = 0.9 P22 = 0 0.5 1.0

P2112 = 0.0 P212 = 0

9 Illite–smectite 0 3 AD 4 W1 = 0.33 1.1 1.7

W2/(W2+W3)= 0.5

10 Illite–smectite 1 3 AD 4 W1 = 0.5 P11 = 0.85 W22/(W22+W23)= 0.8 1.1 1.7

W2/(W2+W3)= 0.8 (W22+W23)/(W22+W23+W32+W33)= 0.85 W32/(W32+W33)= 0.7

10b Illite–smectite 1 3 AD 15 W1 = 0.5 P11 = 0.0 W22/(W22+W23)= 0.8 1.0 1.7

W2/(W2+W3)= 0.8 (W22+W23)/(W22+W23+W32+W33)= 0.85 W32/(W32+W33)= 0.7

11 Illite–smectite 2 3 AD 4 W1 = 0.8 Px1x = 0.5 W212/(W212+W213)= 0.5 1.7 2.2

W2/(W2+W3)= 0.5 (W212+W213)/(W212+W213+W312+W313)= 0.5 W312/(W312+W313)= 0.5

11b Illite–smectite 2 3 AD 15 W1 = 0.8 Px1x = 0.0 W212/(W212+W213)= 0.5 0.5 1.0

W2/(W2+W3)= 0.5 (W212+W213)/(W212+W213+W312+W313)= 0.5 W312/(W312+W313)= 0.5

12 Smectite 0 2 AD 4 W1 = 0.7 1.3 1.7

13 Smectite 0 2 EG 4 W1 = 0.7 1.0 1.2

working job script for her/his refinement from a command

line. Running a refinement on a local PC is much easier as

the refinement algorithm (see below) and its parameters can

be selected and run from the GUI itself.

2.4 Refinement algorithm

PyXRD supports several refinement algorithms, but for more

complex problems involving several parameters, the genetic

algorithms or evolutionary strategies are found to be most

reliable. PyXRD implements several evolutionary strategies,

among which are a covariance matrix adaptation evolution-

ary strategy (Hansen and Ostermeier, 2001) and a (multiple)

particle swarm optimization (Blackwell et al., 2008). While

the particle swarm optimization is effective at searching the

parameter space for minima, being able to escape local min-

ima easily, it can take a lot of function calls for it to converge.

On the other hand, the covariance matrix adaptation evolu-

tionary strategy is much more effective for local searches,

but does get stuck in local minima more easily. Therefore,

PyXRD also implements a particle swarm covariance ma-

trix adaptation evolutionary strategy algorithm, which ex-

tends the covariance matrix adaptation evolutionary strategy

with collaborative concepts from a particle swarm optimiza-

tion (Muller et al., 2009), making it the more robust choice.

This particle swarm covariance matrix adaptation evolution-

ary strategy was also used for the experiments presented be-

low.

3 Results

In the following sections, PyXRD’s output is compared with

Sybilla’s output. In the first section, single phases are tested

to check the implementation of the model. In the second sec-

tion a number of assemblages are tested to check if the ob-

tained weight fractions are correct. In the last section a com-

parison is made between single- vs. multi-specimen refine-

ments.

3.1 Comparison between Sybilla and PyXRD results:

calculated 00l reflections for single discrete and

mixed-layer phyllosilicates

In total, 13 phases were tested. An overview of these phases

with their most important structural parameters are given in

Table 1. The original Sybilla projects, the produced patterns,

and the PyXRD projects used can be found in this paper’s

Supplement. All patterns were calculated using a fixed σ*

value of 12, a sample length of 1.25 cm, a goniometer radius

of 17.3 cm, a divergence slit of 0.5◦, Soller slits of 2.3◦, and

an angular range of 2–52◦ 2 θ with 1000 steps (step size of

0.05◦ 2 θ). The z* coordinates of the atoms were set to match

with those in Sybilla, as were the scattering factors, the unit

www.geosci-model-dev.net/9/41/2016/ Geosci. Model Dev., 9, 41–57, 2016
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Table 2. Overview of the test mixtures used to compare the weight fraction output from PyXRD with the output of Sybilla, with details for

the different phases (R is Reichweite, N is the average CSDS, d001 is the basal spacing, relevant probability (P ), and weight (W ) factors are

given).

Mixture Rp Rwp Phases PyXRD wt% Sybilla wt% Phase characteristics

1 0.8 1.0 Kaolinite 70.0 69.9 As in Table 1

Illite 30.0 30.1 As in Table 1

2 1.1 1.5 Kaolinite 20.0 20.0 As in Table 1

Illite 30.0 30.1 As in Table 1

IS R0 10.0 9.5 As in Table 1

SSS R0 40.0 40.5 N = 4; W1 = 0.8; W2/(W2+W3)= 0.8

3 1.0 1.4 Kaolinite 10.0 10.0 As in Table 1

Illite 25.0 25.1 As in Table 1

Chlorite 20.0 20.1 As in Table 1

IS R0 15.0 14.7 As in Table 1

CS R1 10.0 10.1 N = 10; W1 = 0.5; P11 = 0.1

SSS R0 20.0 20.0 N = 4; W1 = 0.8; W2/(W2+W3)= 0.8

4 1.3 1.8 ISS R0 15.0 15.2 As in Table 1

CSS R0 5.0 5.0 N = 5; W1 = 0.4; W2/(W2+W3)= 0.9

Chlorite 5.0 5.0 As in Table 1

Illite 15.0 14.9 As in Table 1

Kaolinite 1 15.0 14.9 As in Table 1

Kaolinite 2 25.0 25.0 N = 6; d001 = 0.718 nm

IS R1 10.0 10.0 As in Table 1

CS R1 10.0 10.1 N = 10; W1 = 0.5; P11 = 0.1

5 1.7 2.4 ISS R0 10.0 10.0 As in Table 1

CSS R0 10.0 10.0 N = 5; W1 = 0.4; W2/(W2+W3)= 0.9

Chlorite 10.0 10.0 As in Table 1

Illite 10.0 9.9 As in Table 1

Kaolinite 1 10.0 10.0 As in Table 1

Kaolinite 2 10.0 10.0 N = 6; d001 = 0.718 nm

IS R1 10.0 10.1 As in Table 1

CS R1 10.0 9.9 N = 10; W1= 0.5; P11 = 0.1

SS R0 10.0 9.9 N = 4; W1= 0.7

KSS R0 10.0 10.0 N = 7; W1= 0.6; W2/(W2+W3)= 0.8

Table 3. Calculated Rp and Rwp values for selected intervals of mixtures 1, 2, and 3 calculated in PyXRD and Sybilla. (Rp and Rwp are the

unweighted and weighted residual errors of the selected intervals, respectively).

Angular range (◦ 2 θ ) Dominant phase(s) Approximate d-spacing Rp (%) Rwp (%)

Mixture 1

8.2–9.2 Illite ∼ 1.0 nm 1.1 1.1

11.25–13.25 Kaolinite ∼ 0.72 nm 0.6 0.9

Mixture 2

4.5–7.0 IS R0 & SSS R0 ∼ 1.5 nm 0.9 1.1

8.2–9.2 Illite ∼ 1.0 nm 0.5 0.6

11.25–13.25 Kaolinite ∼ 0.72 nm 0.7 1.0

Mixture 3

2.5–4.0 CS R1 ∼ 2.9 nm 0.8 0.8

4.5–7.0 IS R0, SSS R0 & CS R1 ∼ 1.5 nm 1.1 1.3

8.2–9.2 Illite ∼ 1.0 nm 0.5 0.6

11.25–13.25 Kaolinite ∼ 0.72 nm 0.5 0.7
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Figure 3. Calculated patterns for discrete illite (top) and talc (bottom), showing nearly identical output for PyXRD (solid line) and Sybilla

(crosses). For clarity the residual patterns are scaled to 5 times their original intensity.

cell dimension in the z direction, the octahedral iron content

(for illite, chlorite, and smectite components), the interlayer

water, ethylene glycol and cation contents (for smectite and

illite components), and the average coherent scattering do-

main size. The probability parameters were entered as such

that identical P and W matrices were obtained. For most of

the phases this meant identical parameters could be entered.

Only for the R2 illite–smectite with two components, two ad-

ditional parameters were entered in comparison with Sybilla,

which has a more restricted probability model for this com-

bination of Reichweite and components. These parameters

are the junction probabilities P21 (fixed at 1.0 in Sybilla)

and P221 (fixed at 0.0 in Sybilla). A complete deduction on

how the entered probabilities and weight fractions are used

to calculate the unknown weight and probability fractions is

present in the PyXRD manual. Sybilla uses scattering factors

for the atoms in the silicate lattice assuming 50 % ionization,

with the exception of Mg, which is fully ionized (D. Mc-

Carty, personal communication, 2015). The scattering factors

used in PyXRD for this study have been set to match this.

The kaolinite, illite, talc, and chlorite phases are composed

of a single component. As such, these are testing the basic

aspects of the model such as the orientation factor σ*, the

calculation of the coherent scattering domain size, and the

calculation of the atomic scattering and structure factors. To

test whether PyXRD can handle different sample states cor-

rectly, an R0 two-component smectite in air-dried and glyco-

lated state is modelled as well. To further test the implemen-

tation of the matrix algorithm for mixed-layer phases, and

the related probability models, a number of illite–smectite

phases were used. In total seven phases were tested, four

of which are two-component illite–smectite phases with Re-

ichweite values varying from 0 to 3 and three of which are

three-component illite–smectite phases with Reichweite val-

ues varying from 0 to 2. The different smectite components

have different hydration states, i.e. the first component al-

ways has two planes of water (AD state) or two planes of

ethylene glycol molecules (EG state) in its interlayer space

while the second component has only a single layer of water

or ethylene glycol molecules. For these illite–smectite phases

two variants were calculated: one with a low CSDS not at

maximum possible degree of ordering (MPDO) and one with

a higher CSDS at MPDO.
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Figure 4. Calculated patterns for illite–smectite (IS) R3 (top) and illite–smectite (ISS) R2 (bottom; both have MPDO), showing nearly

identical output for PyXRD (solid line) and Sybilla (crosses). For clarity the residual patterns are scaled to 5 times their original intensity.

Table 1 contains the Rp factor obtained for these test cases.

A few of these patterns are presented in Figs. 3 and 4. From

them and from the Rp and Rwp factors, it is clear PyXRD

can produce patterns almost identical to those produced by

Sybilla. The small deviations can probably be explained by

different physical constants (e.g. atomic scattering factors),

although it is impossible to know exactly.

3.2 Comparison between Sybilla and PyXRD results:

calculated 00l reflections for mixtures of discrete

and mixed-layer phyllosilicates

To further validate the model, five patterns were produced

in PyXRD for mixtures of increasing complexity. These pat-

terns were imported in Sybilla and modelled using the same

phases and the same parameters. This should allow one to

validate whether the weight fractions in PyXRD can also

be obtained by Sybilla. The entered and obtained weight

fractions and the corresponding Rp and Rwp factors are

presented in Table 2. Figure 5 shows the comparison be-

tween the calculated patterns for mixture 5 from Sybilla and

PyXRD. The used phases are largely identical to the phases

used in the previous validation, except for the addition of a

few phases for which details are also given in Table 2. The

input files for PyXRD and Sybilla are included in this paper’s

Supplement.

As can be observed, the weight fractions in PyXRD and

Sybilla are reasonably close to each other, with all of the

deviations being smaller then 0.5 wt%. Such differences are

not to be considered significant for a real sample, but when

using “ideal” theoretical phases they do indicate there are

differences between Sybilla and PyXRD. In order to check

if some phases contribute more or less then others to the

whole-pattern misfit, Rp and Rwp factors are calculated for

angular ranges corresponding to first-order reflections for the

phases in mixtures 1, 2, and 3 (Table 3). This was not done

for mixtures 4 and 5 due to the presence of too many over-

lapping peaks, making statements about the contribution of

separate phases to the total misfit difficult. The Rp and Rwp

factors obtained in this way are all of the same order of mag-

nitude. Therefore, each phase must be contributing more or

less equally towards the whole-pattern misfit. The remain-

ing differences between the patterns can be explained by

small differences in physical constants, while the remaining
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Figure 5. Calculated patterns for mixture 5 for PyXRD (solid line) and Sybilla (crosses). For clarity the residual pattern is scaled to 5 times

its original intensity.

Table 4. Overview of the different test assemblages for the com-

parison between multi-specimen and single-pattern refinements and

the type of refined patterns.

Assemblage Smooth Noisy

pattern? pattern?

1 33.3 % kaolinite yes yes

33.3 % illite

33.3 % illite–smectite (10/90) R0

2 25.0 % illite yes yes

25.0 % illite–smectite (65/35) R0

20.0 % smectite

12.5 % kaolinite

12.5 % kaolinite–smectite (80/20) R0

5.0 % chlorite

3 35.0 % kaolinite no yes

30.0 % illite

15.0 % high-charge smectite

20.0 % low-charge smectite

4 35.0 % kaolinite (CSDS= 20) no yes

15.0 % kaolinite (CSDS= 6)

50.0 % illite–smectite (98/2) R0

differences in wt% can be explained by differences in unit

cell dimensions.

3.3 Multi-specimen tests

3.3.1 Assemblage set-up

In total, four theoretical mineral assemblages were tested

(Table 4):

Assemblage 1 is a very simple test because of the absence

of overlapping and similar phases. Its main purpose was to

see whether the program and, more importantly, the selected

refinement strategy, can produce a reliable result. The assem-

blage consists of equal amounts of a discrete kaolinite, a dis-

crete illite, and an R0 illite–smectite with only 10 % illite

layers.

Assemblage 2 is more complex, comprising six different

phases: a discrete illite, a discrete kaolinite, an R0 illite–

smectite with 65 % illite layers, an R0 kaolinite–smectite

with 80 % kaolinite layers, a smectite, and a poorly crys-

talline chlorite. The idea behind this assemblage was to

mimic phases encountered in some soils. The poorly crys-

talline chlorite component can be interpreted as a small

amount of hydroxy-interlayered smectite (or vermiculite)

and is not to be considered a primary trioctahedral chlo-

rite, while the kaolinite–smectite represents a neoformed, de-

fective kaolinite or smectite. This kind of phase has been

reported a number of times, usually in finer clay fractions

(≤ 0.2 µm) of certain soils (Hubert et al., 2009, 2012; Ryan

and Huertas, 2009; Dumon et al., 2014). The different phases

are also present in different quantities, with the illite-bearing

phases each contributing 25.0 wt%, the smectite taking up

20.0 wt%, the kaolinite phases each accounting for 12.5 wt%

and the chlorite being a minor phase with only 5.0 wt%.

Assemblage 3 is composed of 30 % discrete illite, 35 %

kaolinite, 20 % high-charge smectite (vermiculite like), and

15 % low-charge smectite. The main idea behind this test as-

semblage was to see whether the presence of high-charge and

low-charge phases (which in this case produced similar pat-

terns under AD and heated conditions, but different patterns

under EG conditions) has an influence on the refinement and

the quantification in the different set-ups.

Test patterns for assemblage 4 were calculated with 35 %

well-crystallized kaolinite (with a high average CSDS), 15 %

poorly crystallized kaolinite (with a low average CSDS), and
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Table 5. Overview of the means and standard deviations for weight fractions and refined parameters for assemblage 1 using smooth patterns.

Assemblage no. 1 – smooth patterns Multiple specimens (n= 50) Only AD (n= 50) Only EG (n= 50) Only 350 heated (n= 50)

Phase Property name True value Range Obtained value Obtained value Obtained value Obtained value

Min. Max. µ± σ µ± σ µ± σ µ± σ

Kaolinite wt% 33.3 – – 33.3± 0.00 33.3± 0.00 33.3± 0.00 33.3± 0.00

T 10.0 8.0 20.0 10.0± 0.00 10.0± 0.00 10.0± 0.00 10.0± 0.00

Illite wt% 33.3 – – 33.3± 0.00 33.3± 0.00 33.3± 0.00 33.3± 0.00

T 10.0 8.0 20.0 10.0± 0.00 10.0± 0.00 10.0± 0.00 10.0± 0.00

Illite–smectite R0 wt% 33.3 – – 33.3± 0.00 33.3± 0.00 33.3± 0.00 33.3± 0.00

T 5.0 3.0 10.0 5.0± 0.00 5.0± 0.00 5.0± 0.00 5.0± 0.00

Illite content 0.1 0.0 1.0 0.10± 0.00 0.10± 0.00 0.10± 0.00 0.10± 0.00

2wat/(2wat+ 1wat) 0.5 0.0 1.0 0.50± 0.00 0.50± 0.00 – –

2 gly/(2gly+ 1gly) 0.5 0.0 1.0 0.50± 0.00 – 0.50± 0.00 –

0gly/(0gly+ 1gly) 1.0 0.0 1.0 1.00± 0.00 – – 1.00± 0.00

Table 6. Overview of the means and standard deviations of weight fractions and refined parameters for assemblage 1 using noisy patterns.

Assemblage no. 1 – noisy patterns Multiple specimens (n= 50) Only AD (n= 50) Only EG (n= 50) Only 350 ◦C (n= 50)

Phase Property name True value Range Obtained value Obtained value Obtained value Obtained value

Min. Max. µ± σ µ± σ µ± σ µ± σ

Kaolinite wt% 33.3 – – 33.4± 0.0 33.4± 0.0 33.4± 0.0 33.4± 0.0

T 10.0 8.0 20.0 10.0± 0.0 10.0± 0.0 10.0± 0.0 10.1± 0.0

Illite wt% 33.3 – – 33.4± 0.0 33.4± 0.0 33.3± 0.0 33.5± 0.0

T 10.0 8.0 20.0 10.0± 0.0 10.0± 0.0 10.1± 0.0 10.0± 0.0

Illite–smectite R0 wt% 33.3 – – 33.2± 0.0 33.2± 0.0 33.2± 0.0 33.1± 0.0

T 5.0 3.0 10.0 5.0± 0.0 4.9± 0.0 5.0± 0.0 5.0± 0.0

Illite content 0.1 0.0 1.0 0.10± 0.00 0.09± 0.00 0.10± 0.00 0.10± 0.00

2wat/(2wat+ 1wat) 0.5 0.0 1.0 0.50± 0.00 0.49± 0.00 – –

2gly/(2gly+ 1gly) 0.5 0.0 1.0 0.50± 0.00 – 0.50± 0.00 –

0gly/(0gly+ 1gly) 1.0 0.0 1.0 1.00± 0.00 – – 1.00± 0.00

50 % of an R0 illite–smectite with 98 % of illite layers. How-

ever, these patterns were not modelled with the same struc-

tural models. Instead of two different kaolinites, a single

kaolinite was added, and instead of an illite–smectite, a dis-

crete illite was used. As such, the influence of a simplified

model input could be checked, which is a common error in

real-life uses (e.g. due to misinterpretation).

After the necessary phases and their parameters were set

up, a calculated pattern was generated from 2 to 50◦ 2 θ with

a 0.02◦ step size, saved and re-imported as experimental data.

Random noise was also added to these patterns, using the

following formula

In = Io · (1+ (X− 0.5) · fn) ,

where In is the intensity with noise, Io the original intensity,

X a random fraction between 0 and 1 and fn the noise factor,

which was set to 0.01. This results in a random deviation of

at most 0.5 % above or below the original intensity. This is

a high noise level when only considering statistical counting

noise; however, these noise levels can be obtained on iron-

rich samples when working with a Cu X-ray source due to

iron fluorescence. Energy dispersive detectors can eliminate

most of this noise nowadays, but it can still be a problem on

older equipment; hence it is included here.

For assemblages 1 and 2, both the smooth and noisy pat-

terns were used in separate refinements to assess the influ-

ence of this treatment. For assemblages 3 and 4, only the

noisy patterns were used, because the previous two experi-

ments showed little influence of the noise on the final results

(see below).

Since evolutionary refinement strategies have a stochastic

component, each refinement will be different, even if starting

and boundary conditions are identical. Nonetheless, the start-

ing point may also have an influence on the final result. To

average out these differences and to check if the final output

is reproducible, 50 random starting points were sampled so

that a normal distribution over the parameter space was ob-

tained. For each of these points a refinement was started. At

the end of these refinements, average parameter values and

their standard deviations were calculated for these 50 itera-

tions. Additionally, the model kept track of the best solution

found at each generation in each iteration, allowing us to cre-

ate parameter evolution plots.

3.3.2 Assemblage 1

An overview of the obtained average parameter values and

standard deviations for assemblage 1 can be found in Ta-

bles 5 and 6. Parameter evolution plots for two selected
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Figure 6. Parameter evolution plots (left: average CSDS; right: illite content) for the noisy patterns of assemblage 1 for the multi-specimen

run (top plots) and the isolated AD run (bottom plots). Minimum and maximum values during the refinement are indicated with dashed lines,

iterations’ best solutions at each generation indicated by dots and average solution with a solid line. The higher the density of the dots, the

lighter they are coloured.

parameters (the average CSDS and the fraction of illite lay-

ers in the illite–smectite) are also shown in Fig. 6. Most pa-

rameters are determined accurately and with very high preci-

sion. The difference between noisy patterns and smooth pat-

terns is marginal, and no difference can be observed between

the runs where multiple specimens are combined and those

where only a single specimen was used for refinement. As

a result of this, the obtained weight fractions for the three

phases are also very accurate. The obtained level of accuracy

is not a realistic level for natural samples, but stems from the

simplicity of this set-up. For the runs using the noisy pat-

terns, a very small (and systematic) deviation in the obtained

weight fractions can be observed. This is probably the result

of the added noise, since the deviation is not present for runs

using the smooth patterns.

3.3.3 Assemblage 2

An overview of the obtained average parameter values and

standard deviations for assemblage 2 can be found in Ta-

bles 7 and 8. As was the case in the previous assemblage,

no significant difference can be observed between runs that

use smooth patterns and those that use noisy ones. Both types

produced similar parameter accuracies and precisions. Over-

all, the results are less accurate and precise compared to as-

semblage 1, but still very good. Most notably, the weight

fractions of the smectite layer types in the kaolinite–smectite

show a much larger imprecision. This is also the case in the

parameter evolution plots (Fig. 7) for these fractions. An ex-

planation can be found in the sensitivity of these parame-

ters: since the kaolinite fraction in this mixed-layer is rela-

tively high (80 %), the relative amounts of the different types

of smectite layers do not have such a large influence on the

calculated pattern. Some differences are also noticeable be-

tween runs that combine multiple specimens and those where

only heated patterns were used. For the latter, the impreci-

sion on the weight fractions for the illite, illite–smectite and

smectite phases is significantly larger compared to the other

runs. This is to be expected, as heating collapses swelling

layers, causing significant peak overlap with the illite peaks.

Despite this overlap, it was still possible to obtain accurate

and precise averages for the other parameters, comparable to

the other runs.

3.3.4 Assemblage 3

An overview of the obtained average parameter values and

standard deviations for assemblage 3 can be found in Ta-

ble 9. With this assemblage, the combined set-up and the

set-up using only the EG pattern both resulted in the same
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Table 7. Overview of the means and standard deviations of weight fractions and refined parameters for assemblage 2 using smooth patterns.

Assemblage no. 2 – smooth patterns Multiple specimens (n= 50) Only AD (n= 50) Only EG (n= 50) Only 350 ◦C (n= 50)

Phase Property name True value Range Obtained value Obtained value Obtained value Obtained value

Min. Max. µ± σ µ± σ µ± σ µ± σ

Illite wt% 25.0 – – 25.0± 0.1 25.0± 0.1 25.0± 0.0 25.4± 0.71

T 13.0 10.0 30.0 13.0± 0.1 13.0± 0.0 13.0± 0.0 12.9± 0.2

Illite–smectite R0 wt% 25.0 – – 24.9± 0.2 25.0± 0.1 25.0± 0.0 24.8± 0.3

T 5.0 3.0 10.0 5.1± 0.1 5.0± 0.0 5.0± 0.0 5.0± 0.1

Illite content 0.65 0.5 1.0 0.65± 0.00 0.65± 0.00 0.65± 0.00 0.64± 0.03

2wat/(2wat+ 1wat) 0.7 0.0 1.0 0.70± 0.01 0.70± 0.00 – –

2gly/(2gly+ 1gly) 0.7 0.0 1.0 0.71± 0.02 – 0.70± 0.00 –

0gly/(0gly+ 1gly) 1.0 0.8 1.0 0.96± 0.03 – – 0.99± 0.01

Kaolinite wt% 12.5 – – 12.5± 0.0 12.5± 0.0 12.5± 0.0 12.5± 0.0

T 20.0 10.0 30.0 20.1± 0.1 20.0± 0.0 20.0± 0.0 20.1± 0.1

Kaolinite–smectite R0 wt% 12.5 – – 12.7± 0.2 12.5± 0.1 12.5± 0.0 12.9± 0.2

T 3.0 3.0 10.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0

Kaolinite content 0.80 0.7 1.0 0.80± 0.01 0.80± 0.00 0.80± 0.00 0.79± 0.00

2wat/(2wat+ 1wat) 0.25 0.0 0.6 0.26± 0.11 0.25± 0.02 – –

2gly/(2gly+ 1gly) 0.50 0.0 0.6 0.44± 0.10 – 0.50± 0.01 –

0gly/(0gly+ 1gly) 1.00 0.8 1.0 0.93± 0.05 – – 0.93± 0.04

Smectite wt% 20.0 – – 19.9± 0.1 20.0± 0.1 20.0± 0.0 19.6± 0.7

T 3.0 3.0 10.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0

2wat/(2wat+ 1wat) 0.60 0.5 1.0 0.60± 0.00 0.60± 0.00 – –

2gly/(2gly+ 1gly) 0.90 0.5 1.0 0.90± 0.00 – 0.90± 0.00 –

0gly/(0gly+ 1gly) 0.90 0.8 1.0 0.92± 0.01 – – 0.90± 0.01

Chlorite wt% 5.0 – – 5.0± 0.0 5.0± 0.1 5.0± 0.0 5.0± 0.0

T 5.0 3 10 5.0± 0.0 5.0± 0.0 5.0± 0.0 5.0± 0.0

∂d001× 103 5.0 1.0 10.0 5.0± 0.1 5.0± 0.1 5.0± 0.0 5.1± 0.1

Table 8. Overview of the means and standard deviations of weight fractions and refined parameters for assemblage 2 using noisy patterns.

Assemblage no. 2 – noisy patterns Multiple specimens (n= 50) Only AD (n= 50) Only EG (n= 50) Only 350 ◦C (n= 50)

Phase Property name True value Range Obtained value Obtained value Obtained value Obtained value

Min. Max. µ± σ µ± σ µ± σ µ± σ

Illite
wt% 25.0 – – 25.1± 0.2 25.2± 0.1 25.3± 0.1 24.8± 1.5

T 13.0 10.0 30.0 13.1± 0.1 13.2± 0.0 12.9± 0.0 13.2± 0.3

Illite–smectite R0 wt% 25.0 – – 24.6± 0.4 25.8± 0.2 24.7± 0.1 25.8± 1.9

T 5.0 3.0 10.0 5.0± 0.1 5.2± 0.0 4.9± 0.0 5.0± 0.4

Illite content 0.65 0.5 1.0 0.64± 0.01 0.65± 0.00 0.65± 0.00 0.64± 0.04

2wat/(2wat+ 1wat) 0.7 0.0 1.0 0.67± 0.02 0.70± 0.01 – –

2gly/(2gly+ 1gly) 0.7 0.0 1.0 0.68± 0.01 – 0.67± 0.00 –

0gly/(0gly+ 1gly) 1.0 0.8 1.0 0.96± 0.02 – – 0.96± 0.03

Kaolinite wt% 12.5 – – 12.5± 0.0 12.3± 0.0 12.5± 0.0 12.6± 0.1

T 20.0 10.0 30.0 20.1± 0.1 20.1± 0.0 20.1± 0.0 20.0± 0.0

Kaolinite–smectite R0 wt% 12.5 – – 12.8± 0.4 12.1± 0.2 12.4± 0.1 12.5± 0.1

T 3.0 3.0 10.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0

Kaolinite content 0.80 0.7 1.0 0.80± 0.01 0.81± 0.01 0.81± 0.00 0.82± 0.00

2wat/(2wat+ 1wat) 0.25 0.0 0.6 0.30± 0.11 0.34± 0.03 – –

2gly/(2gly+ 1gly) 0.50 0.0 0.6 0.47± 0.10 – 0.54± 0.02 –

0gly/(0gly+ 1gly) 1.00 0.8 1.0 0.91± 0.05 – – 0.94± 0.04

Smectite wt% 20.0 – – 20.1± 0.2 19.6± 0.2 20.2± 0.1 19.5± 3.4

T 3.0 3.0 10.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.2

2wat/(2wat+ 1wat) 0.60 0.5 1.0 0.60± 0.01 0.60± 0.00 – –

2gly/(2gly+ 1gly) 0.90 0.5 1.0 0.90± 0.01 – 0.90± 0.00 –

0gly/(0gly+ 1gly) 0.90 0.8 1.0 0.92± 0.01 – – 0.91± 0.02

Chlorite wt% 5.0 – – 5.0± 0.0 5.1± 0.1 4.9± 0.0 4.9± 0.1

T 5.0 3 10 5.1± 0.0 5.2± 0.1 5.2± 0.0 5.0± 0.0

∂d001× 103 5.0 1.0 10.0 5.2± 0.3 5.5± 0.3 4.5± 0.2 5.4± 0.3

performance, giving accurate and precise parameter values.

The set-up with AD or heated patterns, on the other hand,

led to inaccurate and imprecise results, especially when the

weight fractions are taken into account. Finally, it can also
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Table 9. Overview of the means and standard deviations of weight fractions and refined parameters for assemblage 3.

Assemblage no. 3 – noisy patterns Multiple specimens (n= 50) Only AD (n= 50) Only EG (n= 50) Only 350 ◦C (n= 50)

Phase Property name True value Range Obtained value Obtained value Obtained value Obtained value

Min. Max. µ± σ µ± σ µ± σ µ± σ

Kaolinite wt% 35.0 – – 35.0± 0.0 35.3± 0.6 34.7± 0.0 34.9± 0.0

T 18.0 5 40 18.0± 0.0 18.0± 0.2 18.0± 0.0 18.0± 0.0

Illite wt% 30.0 – – 30.0± 0.0 30.0± 0.8 30.1± 0.1 29.0± 0.1

T 25.0 5 40 25.0± 0.0 25.5± 0.1 24.8± 0.0 25.2± 0.12

High-charge smectite wt% 15.0 – – 15.1± 0.0 16.9± 5.9 15.8± 0.1 16.0± 0.1

T 10.0 5 40 10.0± 0.0 11.3± 5.2 10.0± 0.0 10.0± 0.1

HC/(HC+LC) 0.90 0.50 1.00 0.90± 0.00 0.87± 0.06 0.90± 0.00 –

Low-charge smectite wt % 20.0 – – 19.9± 0.0 17.8± 7.2 19.4± 0.2 20.3± 0.2

T 10.0 5 40 10.0± 0.0 12.2± 7.4 10.0± 0.0 10.2± 0.1

LC/(LC+HC) 0.80 0.50 1.00 0.80± 0.00 0.83± 0.06 0.80± 0.00 –

Figure 7. Parameter evolution plots for the smectite fractions in the kaolinite–smectite mixed layer of assemblage 2 using the multi-specimen

set-up. Plots for the smooth patterns are in the top row, for noisy patterns in the bottom row. Legend as in Fig. 6.

be observed that the weight fractions and parameter values

of phases that were unaffected by the treatments (i.e. kaolin-

ite and illite) are more accurate and precise in these set-ups.

It is mainly for the overlapping phases (i.e. smectites) that

the errors occur.

Figure 8 shows the parameter plots for the multi-specimen

set-up and the AD set-up for a few selected parameters. This

figure illustrates the divergent nature of some parameters in

the AD set-up very well, while it is clear that the combined

set-up does not suffer from this as it has access to the EG

pattern as well.

The outcome of this experiment is in line with our expec-

tations, as only the EG pattern contains enough information

to distinguish these two smectites from each other. When the

EG pattern is absent, the results become divergent, resulting

in the high imprecision observed for the AD and heated pat-

tern set-ups.

3.3.5 Assemblage 4

An overview of the obtained average parameter values

and standard deviations for assemblage 4 can be found in

Table 10. In this set-up, we intentionally misidentified a

www.geosci-model-dev.net/9/41/2016/ Geosci. Model Dev., 9, 41–57, 2016
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Figure 8. Parameter evolution plots for the low-charge smectite in assemblage 3. Plots for the multi-specimen set-up are in the top row, for

the AD single-pattern set-up in the bottom row. Legend as in Fig. 6.

Figure 9. The input (black solid line) and refined (grey solid line) AD pattern and their difference (grey solid line at the bottom) for the multi-

specimen set-up of assemblage 4. An observant user should see the mismatches in the patterns and realize his model needs improvement.

mixed-layer illite–smectite as an illite and overlooked the

presence of two populations of kaolinite instead of one. Nev-

ertheless the flawed structural model is able to give us decent

parameter accuracies. These kinds of “mistakes” are quite

common in the real-life use of this kind of program, and ap-

parently do not matter too much either, as long as they are re-

lated to natural inhomogeneities. In contrast, a model based

on a completely wrong interpretation will never yield any

good output, and will result in a very obvious mismatch be-

tween the calculated and observed patterns. Even in this as-

semblage, the (residual) XRD patterns (Fig. 9) show a clear

mismatch for these phases. An observant user should notice

this and as such be able to identify wrong and/or missing

phases.
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Table 10. Overview of the means and standard deviations of weight fractions and refined parameters for assemblage 4.

Assemblage no. 4 – noisy patterns Multiple specimens (n= 50) Only AD (n= 50) Only EG (n= 50) Only 350 ◦C (n= 50)

Phase Property name True value Range Obtained value Obtained value Obtained value Obtained value

Min. Max. µ± σ µ± σ µ± σ µ± σ

Kaolinite wt% 50.0 – – 49.7± 0.1 49.3± 0.0 50.3± 0.2 49.3± 0.1

T 15.8 5 40 15.2± 0.1 15.2± 0.0 15.2± 0.0 15.6± 0.0

Illite wt% 50.0 – – 50.3± 0.1 50.7± 0.0 49.7± 0.2 50.7± 0.1

T 30.0 5 40 21.2± 0.0 18.8± 0.0 22.7± 0.1 28.0± 0.0

Oct. Fe3+/Oct. Al3+ 0.125 0 0.5 0.133± 0.000 0.126± 0.002 0.151± 0.001 0.139± 0.001

K content 1.50 0 2 1.52± 0.01 1.49± 0.00 1.52± 0.01 1.44± 0.00

3.3.6 Summary

For all four assemblages, PyXRD has been able to repro-

duce the input parameters or at least approximate them with

the multi-specimen approach. The only complications occur

when single patterns are used, which do not contain enough

information on their own (in most cases heated patterns).

The results for these theoretical assemblages seem to sug-

gest that the multi-specimen approach does not add a lot of

constraints to the mathematical model. Instead, it appears far

more important to correctly identify the phases using multi-

ple specimens than to use these for the parameter refinement.

As a result, once the phases are correctly identified, a good

quantification can often be obtained with only a single pat-

tern if all phases can be sufficiently discerned from one an-

other in that state. For most natural samples, this could imply

that it is sufficient to model the EG and/or the AD pattern.

Indeed, many papers presenting modelled X-ray diffraction

patterns of phyllosilicates only use the AD and/or EG pat-

terns (Plançon and Roux, 2010; Hubert et al., 2012; Ufer et

al., 2012a; Dumon et al., 2014). However, it is important to

realize that these results from theoretical experiments can-

not be extrapolated automatically to all real-life modelling

experiments.

In this context, one needs to understand how realistic it is

to share some of the parameters between the different spec-

imens during the refinement. Some of them are rather diffi-

cult or impossible to control from measurement to measure-

ment. For example, the number of water or ethylene glycol

planes intercalated into smectite-bearing phases is dependent

not only on layer charge and the saturating cation but also on

the ambient conditions (i.e. temperature and relative humid-

ity) (Tamura et al., 2000). Because of this, a lot of the param-

eters cannot and should not be shared, and the advantage of

having added more observations is partially lost.

4 Conclusion

In this paper we have presented PyXRD, a new free and

open-source program to perform a (semi-)quantitative anal-

ysis of disordered layered minerals using multi-specimen X-

ray diffraction profile fitting. It is the authors’ sincere hope

that others will pick up on the program and improve it. The

novelty of this program lies specifically in the ab initio in-

corporation of the multi-specimen method, making it pos-

sible to share phases and (a selection of) their parameters

across multiple specimens. This allows one to model sev-

eral specimens side-by-side, and is an important step for-

ward. In theory, this could also help in further constraining

the mathematical model and thus improving the automatic

parameter refinement results (Sakharov et al., 1999a; Meu-

nier, 2005; Lanson, 2011). However, results from theoretical

experiments indicate that a multi-specimen refinement set-up

is not always required to obtain good parameter estimates.

Finally, it remains of paramount importance to use the multi-

specimen method to obtain a correct identification, as with-

out it no meaningful quantification can ever be obtained. We

can conclude that PyXRD has proven to be very useful when

X-ray diffraction patterns for complex mineral assemblages

containing (mixed-layer) phyllosilicates are modelled with a

multi-specimen approach.

Code availability

The source code for PyXRD can be found online at https:

//github.com/mathijs-dumon/PyXRD, together with installa-

tion instructions and a manual with detailed information re-

garding the calculations and a step-by-step example on how

to use the user interface.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-41-2016-supplement.
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