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Abstract. A performance expectation is that Earth system
models simulate well the climate mean state and the climate
variability. To test this expectation, we decompose two 20th
century reanalysis data sets and 12 CMIP5 model simula-
tions for the years 1901–2005 of the monthly mean near-
surface air temperature using randomised multi-channel sin-
gular spectrum analysis (RMSSA). Due to the relatively short
time span, we concentrate on the representation of multi-
annual variability which the RMSSA method effectively cap-
tures as separate and mutually orthogonal spatio-temporal
components. This decomposition is a unique way to sepa-
rate statistically significant quasi-periodic oscillations from
one another in high-dimensional data sets.

The main results are as follows. First, the total spectra
for the two reanalysis data sets are remarkably similar in all
timescales, except that the spectral power in ERA-20C is sys-
tematically slightly higher than in 20CR. Apart from the slow
components related to multi-decadal periodicities, ENSO os-
cillations with approximately 3.5- and 5-year periods are the
most prominent forms of variability in both reanalyses. In
20CR, these are relatively slightly more pronounced than in
ERA-20C. Since about the 1970s, the amplitudes of the 3.5-
and 5-year oscillations have increased, presumably due to
some combination of forced climate change, intrinsic low-
frequency climate variability, or change in global observ-
ing network. Second, none of the 12 coupled climate mod-
els closely reproduce all aspects of the reanalysis spectra,
although some models represent many aspects well. For in-
stance, the GFDL-ESM2M model has two nicely separated
ENSO periods although they are relatively too prominent as
compared with the reanalyses. There is an extensive Supple-

ment and YouTube videos to illustrate the multi-annual vari-
ability of the data sets.

1 Introduction

The ultimate goal in developing Earth system models (ESM)
is to enable exploitation of the inherent Earth system pre-
dictability, and hence reduce weather- and climate-related
uncertainties in our daily life, and guide societies in making
sustainable choices (e.g. Slingo and Palmer, 2011; Meehl et
al., 2014). For the predictions to be useful and usable, the ex-
pectation is that the climate mean state and climate variability
are well simulated by these tools. Due to the complexity of
the models and the data they produce, testing the expectation
poses a challenge: many aspects of the model performance
are gathered under the variability concept and no single di-
agnostic alone is sufficient to exhaust its all facets. Yet, un-
derstanding the discrepancies between the observed and sim-
ulated variability is crucial feedback for model development.

Representation of climate variability among models par-
ticipating in climate model inter-comparisons, such as
CMIP5, has been studied by, for example, Bellenger et
al. (2014), Knutson et al. (2013), Ba et al. (2014) and
Fredriksen and Rypdal (2016). We will add to this litera-
ture by interfacing a representative set of contemporary cou-
pled climate models with reanalysis data focusing on spatio-
temporal modes of climate variability. One century of global
reanalysis data is of course a very short period for this pur-
pose and severely constrains inter-comparison studies (e.g.
Wittenberg, 2009; Stevenson et al., 2010). First, time series
should cover a sufficient number of recurring “events” for
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obtaining significance for the findings. Therefore, decadal-
to-multi-decadal variability is of interest but not as informa-
tive as focusing on shorter cycles of variability. Second, the
applied methods have to be very effective in extracting in-
formation from the short but high-dimensional data sets. For
these reasons, we concentrate on the representation of multi-
annual variability in reanalyses and coupled climate models
applying randomised multi-channel singular spectrum anal-
ysis (RMSSA; Seitola et al., 2014, 2015) which effectively
separates mutually orthogonal spatio-temporal components
from our high-dimensional data sets.

The aim of this study is to decompose the 20th century
climate variability into its multi-annual modes, and to as-
sess how these modes are represented by the contemporary
climate models. We hope for this to provide guidance for
model development due better understanding of the deficien-
cies in representing reanalysed modes of multi-annual cli-
mate variability. Ultimately, interpretation of the hints about
model deficiencies as development topics is due for the de-
velopment teams themselves. Our role is to point towards
the potential error sources. For reassuring the teams that
high-dimensional time series analysis is possible today, we
emphasise the methodological aspect of this study. RMSSA
can, under very weak assumptions about the data, decom-
pose high-dimensional data sets in a unique way and separate
statistically significant quasi-periodic spatio-temporal oscil-
lations from one another. This is in contrast to many other
approaches which either make assumptions about the oscil-
lation structures, such as Fourier or spherical decomposition,
or resolve only either spatial or temporal aspects of variabil-
ity. RMSSA can detect spatially evolving “chains of events”
through resolving eigenmodes of spatio-temporal covariance
data. This is a significant advantage over, say, PCA, which
only resolves eigenmodes of spatial covariances and often
projects temporal evolution of an “event” onto a number of
different eigenmodes. In addition, the novel data compres-
sion based on random projections enables here a vast increase
in tractable problem size (i.e. data dimension) – even multi-
variate decomposition is now possible, although not included
here.

2 Methods and data

2.1 Randomised multi-channel singular spectrum
analysis

Multi-channel singular spectrum analysis (MSSA; Broom-
head and King, 1986a, b) can be characterised as being a
time series analysis method for high-dimensional problems.
It effectively identifies spatially and temporally coherent pat-
terns of a data set by decomposing a lag-covariance data ma-
trix into its eigenvectors and eigenvalues (e.g. Ghil et al.,
2002) using singular value decomposition (SVD). The lag
window in MSSA is a user choice, recommended typically

to be shorter than approximately one third of the length of
the time series (Vautard and Ghil, 1989). A long lag win-
dow enhances the spectral resolution, i.e. the number of fre-
quencies that can be identified, but distributes the variance
on a larger set of components. Here, MSSA eigenvectors
are called space–time empirical orthogonal functions (ST-
EOFs), and the projections of the data set onto those ST-
EOFs space–time principal components (ST-PCs). Because
of the lag window, ST-PCs have a reduced length and they
cannot be located into the same index space with the original
time series. However, they can be represented in the origi-
nal coordinate system by the reconstructed components (RC;
Plaut and Vautard, 1994).

MSSA is computationally expensive and practical limits
are easily exceeded for large data sets and long lag win-
dows. In order to overcome this limitation, the computation-
ally more efficient variant called RMSSA is applied here. The
RMSSA algorithm, in a nutshell, (1) reduces the dimension
of the original data set by using so-called random projections
(RP; Bingham and Mannila, 2001; Achlioptas, 2003), (2) de-
composes the data set by calculating standard MSSA in the
low-dimensional space and (3) reconstructs the components
in the original high-dimensional space.

In RP, the original data set is projected onto a matrix of
Gaussian-distributed random numbers (zero mean and unit
variance) in order to construct a lower dimensional represen-
tation. In this study, we reduce the data volume to about 5 %
of the original volume. Since the computational complex-
ity of RP is low, involving only a matrix multiplication, it
can be applied to very high-dimensional data sets. Although
RP is not a lossless compression, it has the important prop-
erty that the lower-dimensional data set has essentially the
same structure as the original high-dimensional data set. This
has been demonstrated for climate model data in Seitola et
al. (2014). The RMSSA algorithm is briefly presented in the
Appendix A.

2.2 Computation of spectra

The ST-PCs represent the different oscillatory modes ex-
tracted from the data set. In order to estimate the dominant
frequencies associated with each ST-PC, the power spectrum
is calculated with the multitaper spectral analysis method
(MTM) (Thomson, 1982; Mann and Lees, 1996). To further
compare the variability modes and their intensities in differ-
ent data sets, the power spectrum of all the ST-PCs of each
data set is summed up to obtain so-called total spectrum. The
ST-PCs are already weighted by their respective explana-
tory power, i.e. multiplied by the corresponding eigenvalue.
Therefore the components with more explanatory power also
have higher spectral densities compared to the ones that ex-
plain only a small fraction of the variance. Therefore no extra
weighting is needed in this step.

The uncertainty related to the explanatory power of each
ST-PC (i.e. the confidence interval of the respective eigen-
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value) is estimated using North’s rule of thumb for sampling
errors (North et al., 1982). The sampling error (ek) is given
by ek ∼ λk(2/N), where λk is the eigenvalue associated with
the kth ST-PC and N is the length of the time series. Thus,
the confidence interval of the total spectrum describes the un-
certainties related to the explanatory power of each ST-PC.

2.3 Statistical significance testing

In data sets of dynamical systems, ST-PCs/ST-EOFs of
MSSA often appear as quadratic pairs that explain approxi-
mately the same variance and are π/2 out of phase with each
other. However, the existence of such a pair does not guaran-
tee any physical oscillation in the data set, and it may be due
to some non-oscillatory processes, such as first-order autore-
gressive noise. Allen and Robertson (1996) formulated a test,
where the oscillatory modes identified with MSSA are tested
against a red noise null hypothesis through Monte Carlo sim-
ulation.

Significance testing in MSSA requires solving conven-
tional PCs of the original data set. In case of very high-
dimensional problems this easily exceeds practical compu-
tational limits. The RMSSA implementation in Seitola et
al. (2015) contains the Allen-Robertson test such that the
PCs are solved in the dimension-reduced space, and is thus
affordable even in very high-dimensional problems. The Ap-
pendix A also includes a short description of the significance
test.

2.4 Data sources

The data consist of the monthly mean near-surface air tem-
perature from the historical 20th Century simulations of
12 different climate models (Table 1). The selected models
originate from different modelling centres, and thus do not
have close common-ancestor models. Furthermore, the se-
lected models have undergone a long (generally several gen-
erations) history of development, suggesting that the cho-
sen models collectively represent the state of the art. Near-
surface temperature was chosen because many processes
must be adequately represented in coupled models to realis-
tically capture the observed temperature distribution (IPCC,
2013). These include processes in the Earth system compo-
nent models (atmosphere, ocean, etc.) as well as in their mu-
tual coupling models. Also, for the near-surface temperature,
there are corresponding reanalysis data available.

The historical (1901–2005) simulations were extracted
from the CMIP5 data archive and they follow the CMIP5
experimental protocol (Taylor et al., 2012). The 20th Cen-
tury simulations use the historical record of climate forcing
factors such as greenhouse gases, aerosols, solar variability,
and volcanic eruptions. We used a single ensemble member
of each model and the model data sets were interpolated into
a common grid of 144× 73 points.

Table 1. Climate models used in the study. For more details of the
models, see Table 9.1. in IPCC (2013).

Model ID Model name Modelling centre Country

a CanESM2 CCCMA Canada
b CESM1(CAM5) NSF-DOE-NCAR USA
c CNRM-CM5-2 CNRM-CERFACS France
d CSIRO-Mk3.6.0 CSIRO-QCCCE Australia
e GFDL-ESM2M NOAA GFDL USA
f GISS-E2-R NASA GISS USA
g HadGEM2-ES MOHC UK
h INM-CM4 INM Russia
i IPSL-CM5B-LR IPSL France
j MIROC-ESM JAMSTEC/AORI/NIES Japan
k MPI-ESM-MR MPI-M Germany
l MRI-CGCM3 MRI/JMA Japan

As a reference, we used two reanalysis data sets: the 20th
Century Reanalysis V2 data (hereafter 20CR) provided by
the NOAA/OAR/ESRL PSD (Compo et al., 2011), and ERA-
20C data provided by ECMWF (Poli et al., 2013). The data
sets are produced using an ensemble of perturbed reanaly-
ses, and the final data set corresponds to the ensemble mean.
In 20CR, only surface pressure observations are assimilated,
and the observed monthly sea-surface temperature and sea-
ice distributions from HadISST1.1 (Rayner et al., 2003) are
used as boundary conditions (Compo et al., 2011). In ERA-
20C, observations of surface pressure and surface marine
winds are assimilated (Poli et al., 2013). Unlike 20CR, it
uses a more recent sea-surface temperature and sea-ice cover
analysis from HadISST2 (Rayner et al., 2006). Both 20CR
and ERA-20C are forced by historical record of changes in
climate forcing factors (greenhouse gases, volcanic aerosols
and solar variations). In order to be consistent with the cli-
mate model simulations, the same time period is used (1901–
2005, i.e. 1260 monthly mean fields) and the reanalysis data
sets were interpolated into the same grid as the model simu-
lations (144× 73 points).

2.5 Data processing

Some pre-processing of the data was needed before applying
RMSSA. At each grid point the data sets were processed as
follows:

– linear trend was fitted and removed,

– annual cycle was estimated using seasonal-trend de-
composition (STL; Cleveland et al., 1990) and removed,

– resulting values were mean-centred and divided by the
average standard deviation of all the data sets (see
Fig. 1). Average standard deviation was obtained after
removal of the trend and the annual cycle.

The reanalysis and climate model data sets have differ-
ent temperature standard deviations, which would impact the
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Figure 1. Map of the common normalisation factor. Shown is the
mean standard deviation of 2 m temperature (◦C) across all the data
sets.

temperature variability from inter-annual to multi-decadal
timescales (e.g. Thompson et al., 2015). To retain these dif-
ferences, we have used a common normalisation factor (i.e.
the average standard deviation of all the data sets). This pro-
cedure reduces the weight of grid points with high variance,
typically at higher latitudes, and hence adds weight on the
lower latitude features. After the pre-processing, the dimen-
sion reduction step of RMSSA was applied so that approx-
imately 5 % of the original data dimensions were retained.
The lag window in the analysis was 20 years (240 months).
The total spectra were obtained from this analysis, and are
comparable due to normalisation using the common standard
deviation of the data sets.

The statistical significance test uses a red noise null hy-
pothesis. In the test we have used data sets that are nor-
malised by their own standard deviations. Using a common
normalisation interferes with generating the red noise sur-
rogates corresponding to each data set. The first 50 PCs of
each data set were retained as input. Those PCs explain 79 %
of the variability in 20CR, 75 % in ERA-20C, and 70–80 %
in the climate model data sets. A total of 1000 realisations
of red noise surrogate data sets were generated, and confi-
dence interval (95 %) for the oscillatory modes were esti-
mated. We note that transformation to PCs may interfere with
the detection of weak signals, as demonstrated by Groth and
Ghil (2015).

2.6 Data visualisation

We used reconstructed components (RC; see Appendix A)
for visualisation of the spatial patterns related to ST-PCs. For
each grid point time series, we can calculate the RCs corre-
sponding to the ST-PCs (or modes) of interest. These RC val-
ues, reflecting the contribution of each grid point to the mode,
can be plotted on a map at each time step. We have used these
maps to construct videos of the spatio-temporal modes. In
Sect. 3.5, we have analysed RCs corresponding to 3–4 year
variability. The result is a time series of the data correspond-

ing to the 3–4 year mode in each grid point and according to
its variance after detrending and removing the annual cycle.
In the analysis we have neglected 5 years in the beginning
and the end of the time series, because the reconstruction pro-
cedure may be biased there (see the Appendix, Eq. A4). The
videos can be found at our YouTube channel (https://www.
youtube.com/channel/UCu1zJdwJfLaXvfvTqsKCLHw).

To summarise the animations, we have calculated compos-
ite maps of the modes. The compositing procedure follows
the one described in Plaut and Vautard (1994). The idea is
to choose the grid point time series (RCl) for which the vari-
ance is largest, and calculate its time derivative (RC′l). The
phase of the mode at each time step is determined by calcu-
lating the angle between the vector (RCl, RC′l) and the vector
(0,1). These phases, in the interval (0,2π), are then classi-
fied into eight equally populated categories. Composite maps
are constructed from these categories.

3 Results

3.1 Reanalysis decompositions

The main outcome of the RMSSA method, the space–time
principal components (ST-PCs) characterise both the spa-
tial and temporal structure of the modes of variability. Sec-
tions 3.1–3.4 focus on their temporal aspects. The leading 30
ST-PC time series and the corresponding power spectra are
displayed in Fig. 2 for 20CR and ERA-20C, ordered accord-
ing to the explained variance. We can see that

– components with predominantly multi-decadal period-
icity (1, 2, 5, and 6) explain a total of 7.2 and 5.9 % of
the variance in 20CR and ERA-20C, respectively, with
clear similarities in their time series and spectra;

– multi-annual components (3, 4, 7, and 8) explain 4.2 and
3.2 % of the variance in 20CR and ERA-20C, respec-
tively;

– there is a broad multi-annual peak centred at 5 years and
a narrower peak at 3.5 years in both reanalyses; these are
clearly separated in ERA-20C at the components 3 and
4 vs. 7 and 8. This separation in 20CR is less clear;

– there are many spectral peaks in the reanalyses at 2–
3 year periods with little explained variance but some
are well separated and distinct.

The conclusion based on Fig. 2 is that the leading sources
of the near-surface air temperature variability at multi-
decadal and multi-annual periods are well identifiable in the
reanalysis data sets. 20CR and ERA-20C are composed of
very similar components explaining the variance in the two
data sets. This is of course expected but it is also reassuring
from the methodological view point: despite its complexity,
the RMSSA decomposition is consistent.
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Figure 2. Reanalysis ST-PC time series (columns 1 and 3) of monthly near-surface temperature 1901–2005 and their spectra (columns 2 and
4) for 20CR and ERA-20C. The components are ordered according to the explained variance (%).

It is noteworthy in Fig. 2 that the components 3, 4, 7 and
8 in both reanalyses have become more prominent with time.
Since about the 1970’s, the amplitudes of these 3.5- and
5-year oscillations have been at a higher level, presumably
due to some combination of forced climate change, intrin-
sic low-frequency climate variability, or changes in global
observing networks (the rather sudden increase in the am-
plitude seems to coincide with the onset of the modern
era of satellite observations). This finding seems to be in
support of e.g. Russell and Gnanadesikan (2014). In this
connection it should be noted, however, that apparent low-
frequency variations and changes in amplitude may simply
arise from random fluctuations of the time series (Wunsch,
1999; Wittenberg, 2009). Back-projection of these compo-
nents into the original grid representation (Fig. 3), reveals
that the components are indeed associated with the ENSO
phenomenon and are geographically similar in 20CR and
ERA-20C. In the snapshots from January 1987 and Jan-
uary 1998 (Fig. 3), there is a typical El Niño pattern with
positive anomalies in the equatorial Pacific Ocean, South
America, and northwestern North America. These are asso-
ciated with synchronous evolution of (i) a dipole structure
in the western Antarctica with easterly motion, and (ii) a
wave-train type pattern in the northernmost North America
with northeasterly motion. The components 3, 4, 7 and 8

thus represent a global phenomenon, with an increased am-
plitude in recent decades. These features are nicely depicted
on our YouTube channel (https://www.youtube.com/watch?
v=vehbT8fOHeM, https://www.youtube.com/watch?v=xG–
SiUqqAI).

3.2 Reanalysis total spectra

Figure 4a shows the total spectrum for the reanalyses con-
structed from the ST-PCs, and their confidence intervals
(dashed lines). As in the ST-PCs, there is most power in the
slow modes. At periods of about 3.5- and 5-years, there are
the spectral peaks of the components 3, 4, 7 and 8. The dip
at 1 year reflects the removed annual cycle.

As Fig. 2 already suggests, the shape of the two spectra
is remarkably similar in all timescales (Fig. 4a). This leaves
hardly any doubt that the data assimilation systems of 20CR
and ERA-20C extract observed information in a very similar
manner. There are some differences, however. The spectral
power in ERA-20C is systematically slightly higher than in
20CR. This difference is statistically significant at almost all
timescales. This is most likely due to generally higher tem-
perature variance in ERA-20C compared to 20CR, especially
in the Southern Ocean and Arctic Ocean. Also, in 20CR,
the 3.5- and 5-year spectral peaks are relatively more pro-
nounced than in ERA-20C.

www.geosci-model-dev.net/9/4097/2016/ Geosci. Model Dev., 9, 4097–4109, 2016
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Figure 3. Global patterns of 2 m temperature for the components 3, 4, 7 and 8 in 20CR (left column) and ERA-20C (right column). Snapshots
are taken from January 1987 (top row) and January 1998 (bottom row). Unit ◦C.

Statistical significance tests are presented in Figs. 4b and c
for 20CR and ERA-20C, respectively. The multi-annual pe-
riods (less than 7 years) rising above the 95 % confidence
interval (i.e. the red dots above the region covered by the
vertical bars) are 3.5, 3.6 and 5.7 years in 20CR and 3.6, 5.2,
5.5 and 5.7 years in ERA-20C. Thus, nearly the same peri-
odicities rise above the red noise in the two data sets. It is
logical that the frequency corresponding to the annual cycle
is present in the red noise surrogates while it is absent from
the data, and therefore the red dots fall far below their ex-
pected values. Interestingly, the period of 2.9 years in 20CR
and ERA-20C falls below the 95 % confidence interval. Our
conclusion is therefore that the multi-annual climate variabil-
ity in the near-surface air temperature is very similar in 20CR
and ERA-20C.

3.3 CMIP5 model total spectra

The total spectra for the 12 CMIP5 models are shown in
Fig. 5 (solid lines) with their 95 % confidence intervals
(dashed envelopes) and the reanalysis spectra as a reference
(thin lines). Statistically significant multi-annual modes (at
5 % level) are denoted by vertical dashed lines. As in the case
of reanalyses, these spectra are unique expressions of the
low-frequency variability present in the simulation data. A
comparison between the simulated and the reanalysis spectra
provides one means to assess the strengths and weaknesses of
these models. However, one cannot simply rank the models
based on how “far off” the model spectra are from the refer-

ence, because this comparison focuses on just one (although
important) aspect of model performance and because seem-
ingly good agreement with observations might occasionally
result from compensating errors in model processes.

Here we will concentrate on the multi-annual aspects but
note in passing that the level of multi-decadal variability
(> 20 years) is close to reanalyses in models a, c, d, e, and
g. In the rest of the models, the level seems too low. In the
decadal scale (∼ 10. . . 20 years), the level of variance is close
to reanalyses in a, b, c, f, i, j and l. Subjectively, the shape of
the low-frequency end of the spectra appears most realistic
in models a and c.

In multi-annual scales, the model performance varies a
lot among the models. There is a group of models (a, b, d
and e) with high spectral density at about 3–7 year periods.
The models d and e have a bi-modal spectral structure, as
in the reanalyses, while models a and b have a broad uni-
modal peak. Decompositions (available in the Supplement,
Sect. S1) partly explain the reasons leading to these total
spectra.

In model a, for instance, there is a unimodal broad peak at
3.5–4 year periods (Fig. 5a). The decomposition reveals that
there are, in fact, two well separated component pairs at 3.5
and 4 years generating one merged peak to the total spectrum
(Fig. S1a in the Supplement). A development hint is thus to
investigate these modes which can help to better understand
some underlying modelling deficiencies, and to keep moni-
toring how this aspect of model performance evolves in the
future model upgrades. An additional concern in model a is
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Figure 4. (a) Total spectrum of 20CR (red line) and ERA-20C
(green line) with their min.–max. confidence intervals. The unit of
the spectral density is arbitrary. (b) Significance of the 20CR pe-
riodicities against red noise null hypothesis. Shown are the data
eigenvalues (red squares) and the 2.5th and 97.5th percentiles of the
eigenvalue distribution of the red noise surrogates (vertical bars).
(c) Same as (b), but for the ERA-20C data set.

the excessive spectral density at about 2 and 7–10 year peri-
ods.

In model e, there is a bimodal total spectrum (Fig. 5e),
although far too pronounced as compared with the reanaly-
ses. The decomposition (Fig. S1e in the Supplement) reveals
that the ST-PC components 1–10 (except 7–8) are all multi-
annual and peak strongly and well in isolation at 3, 3.5, 4
and 5 years, explaining together no less than 13.9 % of the
total variance. The development hint for model e is thus to
investigate the mechanisms behind the components 1–10 and
thereby obtain guidance for improving the realism of simu-
lations.

In most other models, the multi-annual variability is less
prominent than in the reanalyses. In model c (Fig. 5c), on the
one hand, the decomposition points out (Fig. S1c in the Sup-
plement) that there are about 12 ST-PC components with pe-
riods between 1.5 and 3 years leading to a total spectrum with
a broad peak of 2–3 year periods. These components tend
to have very regular cycles, remotely resembling a coupled
harmonic oscillator and seemingly missing the “offbeats” or

true quasi-periodicity of the reanalyses. The task seems to
be to find out reasons why model c produces too-rapid and
regular multi-annual variability. In model g (Fig. 5g), on the
other hand, the leading ST-PC components 1–9 are on either
decadal or multi-decadal periods and these overwhelm the to-
tal spectrum. It should be important to find out the causes for
this accentuated variability, especially on the decadal scale.

Finally, Fig. 5 casts light on models’ overall level of vari-
ability compared to reanalyses. Clearly, this level in model h
(Fig. 5h) is low. Curiously enough, the leading ST-PC com-
ponent pair in model h explains only 1.4 % of variance and
peaks at 3.2 year. This corresponds to the isolated peak in the
total spectrum.

3.4 Significance of multi-annual modes in CMIP5
models

In the reanalyses (Fig. 4), only a few multi-annual periods
rise above the red noise (three in 20CR and four in ERA-
20C). They are at approximately 3.5- and 5-year periods. For
the CMIP5 models, the test results are available in the Sup-
plement (Sect. S2). In Fig. 5, the multi-annual modes with
periods less than 7 years at the 5 % significance level are de-
noted by dashed vertical lines.

In summary, there are 5–15 statistically significant peri-
ods in the models, except for model k (Fig. 5k) with three
and model g (Fig. 5g) with zero periods. The large num-
ber of significant periods (models d and e, for instance) can
be explained, at least partly, by the fact that the modes are
quasi-periodic and the spectral density therefore appears on
a range of frequencies. This manifests as an excursion of
the red noise threshold on several adjacent frequencies. This
is typical for models with large spectral power on certain
timescales. In model l (Fig. 5l), for instance, there are two
broad and distinct spectral peaks at about 3.5 and 6 year
periods, and many significant periods are gathered at these
and nearby frequencies. In contrast, models f and h (and to
some extent model c) have several significant and distinct
periods between 2 and 7 years. In terms of number of sig-
nificant modes, models a, i, j and k seem to be closest to the
reanalyses.

3.5 Spatial patterns of the 3–4 year mode

ST-PC components can be represented in the original coordi-
nate system as so-called reconstructed components that can
be visualised. In this section, some visualisation results are
presented and discussed.

In ERA-20C, there is a spectral peak at the 3.5-year pe-
riod, which is significant at 5 % level (Fig. 4). This peak is
due to the ST-PC components 7 and 8 with spectral density
closely concentrated on this frequency (Fig. 2). Figure 6 de-
picts composite maps of each of the eight phases of the 3.5-
year mode in ERA-20C. Firstly, the mode is global with the
largest temperature anomalies in the Pacific and North Amer-
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Figure 5. As Fig. 4a but now for each climate model (black line). The reanalysis spectra are shown as a reference (dashed green and red
lines). The dashed vertical lines indicate the climate model multi-annual periods significant at 5 % level.

ica. Secondly, the mode contains tropical Pacific temperature
anomalies, like in the ENSO phenomenon (e.g. Kleeman,
2008). The cold (warm) maximum is in phase 1 (5) with
the anomalies extending to the South American continent.
Thirdly, there are travelling temperature anomalies at high
latitudes on both hemispheres. These are described next.

In phase 1 (Fig. 6), there is a small warm tempera-
ture anomaly in the North Pacific (long 160◦W, lat 30◦ N).
This pattern slowly moves northeast, reaching Alaska in
phase 5 and then gradually dissipating over northernmost
North America in phase 8 (and being visible still in phase 1).
There is a very similar evolution of a cold anomaly starting in
phase 5. At the same time, there is an oscillating temperature
anomaly over the Eurasian continent in the opposite phase.
In Fig. 6, there is also a travelling temperature anomaly
in the Southern Hemisphere. In phase 8 (Fig. 6), there is
a cold anomaly over the Southern Ocean (long 160◦W).
This strengthens, moves east, weakens, crosses the Antarc-
tic Peninsula in phase 4 and remains in the Weddell Sea until
phase 7. Similarly, there is a warm anomaly in phase 4 (long
160◦W) with similar evolution as the cold one.

Next, 20CR and the CMIP5 model behaviour is studied.
The 3.5-year mode is significant in 20CR and ERA-20C. For
the illustration, we have chosen component pairs from the
model decompositions (Fig. S1 in the Supplement) that have
spectral peaks between 3 and 4 years and do not express sub-

stantial variability on other timescales. In most climate mod-
els, such a corresponding mode exists, except in models g
and k. In model c this mode is not significant at 5 % level, but
it is illustrated anyway. The Supplement reveals how these
modes are represented in different data sets (Figs. S3–S14).
The format is the same as in Fig. 6. A short summary is pre-
sented next.

In 20CR (Fig. S3), the anomalies are weaker compared
to ERA-20C (Fig. S4). This is mainly because the 3–4 year
mode is distributed on two component pairs in 20CR whereas
in ERA-20C it is concentrated on one pair. Nevertheless, a
similar although weaker signal is evident in 20CR, such as
the northeast propagation of the North Pacific temperature
anomaly. (Note that in Fig. 3, the combination of compo-
nents 3, 4, 7 and 8 produce highly similar global patterns for
20CR and ERA-20C.) A prominent feature is also the oppo-
site temperature anomalies in the northern Eurasia vs. North
America. All models (Figs. S5–S14) produce a temperature
anomaly to the equatorial Pacific Ocean (and South Amer-
ica). The amplitude is larger and/or the area extends further
to the west than in ERA-20C in six models (a, b, d, e, h,
l). The anomaly pattern in the northwestern North America
is present in all the models to some extent. In the reanaly-
ses, the anomaly is strictly confined to land areas but in most
models, it is either somewhat misplaced or extends to the ad-
jacent sea areas and the Eurasian continent. Models c, e, and f
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Figure 6. ERA-20C phase (1–8) composites of the 3–4 year variability mode. Unit ◦C.

produce the North American pattern quite similar to reanaly-
ses, and the northeast propagation is captured to some extent
by models b, c, f, i and l.

4 Discussion

We note that a substantial portion of variance at inter-
annual to inter-decadal timescales can be attributed to “cli-
mate noise” associated with processes with timescales much
shorter than the inter-annual scale (Wunsch, 1999; Feldstein,

2000). If the amplitude of the variability mode exceeds some
noise threshold (such as red noise), then the variability mode
is also likely driven by some process external to the atmo-
sphere, in addition to the climate noise. For example, a large
part of the inter-annual atmospheric ENSO pattern is pre-
sumably driven by anomalies of tropical diabatic heating as-
sociated with sea surface temperature anomalies (Feldstein,
2000). We assume that for this reason the multi-annual pat-
terns related to ENSO clearly exceed the noise threshold in
the results of this study.
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5 Conclusions

The aim of this study is to decompose the 20th century cli-
mate variability into its multi-annual modes, and to assess
how these modes are represented by the contemporary cli-
mate models. To this end, two 20th century reanalysis data
sets and 12 CMIP5 model simulations for the years 1901–
2005 of the monthly mean near-surface air temperature have
been decomposed using RMSSA. The statistical significance
of the identified modes has been estimated with Monte Carlo
simulations. The main conclusions are as follows.

Spectral properties of the 20CR and ERA-20C reanalysis
data appear remarkably similar. The most prominent forms
of variability in both data sets are related to approximately
3.5- and 5-year modes which are significant at 5 % level.
The spectral power in ERA-20C is systematically slightly
higher than in 20CR. The 3.5-year mode is illustrated in more
detail. In ERA-20C, the mode is associated with a typical
ENSO pattern of temperature anomalies in the equatorial Pa-
cific Ocean, South America, and northwestern North Amer-
ica. On top of these, the mode also contains a northeast-
propagating temperature anomaly over northernmost North
America, and another eastward-propagating anomaly in the
vicinity of western Antarctica. Since about the 1970s, the
amplitude of this 3.5-year global mode have increased.

None of the 12 coupled climate models closely reproduce
all aspects of the reanalysis spectra, although some mod-
els represent many aspects well. For instance, the GFDL-
ESM2M model has two nicely separated ENSO-related peri-
ods although they are relatively too prominent as compared
to the reanalyses. Also, a number of models represent the
propagating temperature anomalies at 3–4 year time frame.
Some suggestions are provided in the text for potential model
development aspects.

There is an extensive Supplement available presenting the
results in visual format for each reanalysis and model data
set. In the future, relaxation of the uni-variate nature of the
present study would seem a natural extension. This is now
possible since the use of random projections allows efficient
data structures, preserving compression. Of special interest
would be to study behaviour of variables directly linked with
atmosphere–ocean coupling processes, such as heat, momen-
tum and moisture fluxes over oceans.

6 Data and code availability

All data used in this study were downloaded from open
sources. The RMSSA algorithm and the statistical signifi-
cance testing are implemented using GNU licensed free soft-
ware from the R Project for Statistical Computing (http:
//www.r-project.org). Our implementation is available on
request. The animations of the 3–4 year mode are avail-
able for all data sets at https://www.youtube.com/channel/
UCu1zJdwJfLaXvfvTqsKCLHw (Järvinen et al., 2016). See
also Compo et al. (2011, 20CR), Taylor et al. (2012, CMIP5)
and Poli et al. (2013, ERA-20C).
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Appendix A: Randomised multi-channel singular
spectrum analysis (RMSSA)

The RMSSA algorithm and the significance test is briefly
presented here. The original data matrix is XN×L, where the
columns are called channels. In case of gridded data set, N
represents the time steps and L is the number of grid points.
It is useful to think of N as the time steps when the sam-
ple of dimension L is collected. The dimension reduction is
a projection XN×L→ PN×k , where L� k. In other words,
we preserve all samples but reduce the sample dimension
from L to k. The dimension reduction is performed in two
steps: (1) generate a random matrix RL×k , where the matrix
elements are rij ∼N(0,1) and column vectors of R are nor-
malised to unit length, and (2) project X onto R:

PN×k = XN×LRL×k. (A1)

The next step is to construct an augmented data matrix
A, which contains M lagged copies of each channel in P.
In RMSSA, M represents the lag window. A now has Mk
columns and N ′ =N −M + 1 rows. The singular value de-
composition of A is

A= UD1/2VT (A2)

The vectors of U are the eigenvectors of Z=
1
Mk

AAT and

VT contains the eigenvectors of C= 1
N ′

ATA. These vectors
are orthogonal and often called space–time principal compo-
nents (ST-PCs) and space–time empirical orthogonal func-
tions (ST-EOFs), respectively. Note that the ST-EOFs are
now in reduced space k. Diagonal elements of D are the
eigenvalues of C or Z. Finally, the eigenvectors (ST-EOFs)
are calculated in the original L dimensional space by

V≈ ATo U(D1/2)−1, (A3)

where Ao is the augmented matrix of the original data matrix
X. Note that the calculation of ST-EOFs in Eq. (A3) can be
limited only to the eigenmodes of interest.

The ST-PCs can be represented in the original coordinate
system by the RCs (Plaut and Vautard, 1994; Ghil et al.,
2002). This transformation is given by

rcle(n)=
1
Mn

Jn∑
m=In

ue(n−m+ 1)vle(m), (A4)

where ue are the ST-PCs and vle are the ST-EOFs calculated
in Eq. (A3) (the part of ST-EOF corresponding to channel
l). e is the index of the eigenmode that is calculated. The
normalisation factor Mn and the summation bounds In and
Jn are given in Ghil et al. (2002) and for the central part
of the time series (M ≤ n≤N −M+1) they are (M,1,M),
respectively.

RMSSA with significance testing is briefly presented in
the following. Testing the MSSA components against a
red noise null hypothesis requires orthogonal input vec-
tors, which are obtained by calculating first a conventional
PCA and retaining a set of dominant PCs. Therefore some
additional calculation steps are included in the RMSSA-
algorithm:

SVD of lower dimensional matrix P is calculated to obtain
the principal components (PCs, calculated as UD1/2). PCs
fulfil the orthogonality constraint exactly. PCs, which explain
a large part of the variance of the data set (e.g. 50 first), are
retained to obtain matrix T, where the columns are the PCs.
Next, the augmented matrix APC is constructed from T and
SVD is calculated as in Eq. (A2).

Finally, a large number of red noise processes (i.e. sur-
rogate data sets) are generated, and the confidence limits
for the MSSA eigenmodes are determined. This significance
test (Monte Carlo MSSA) is described in detail in Allen and
Robertson (1996).
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The Supplement related to this article is available online
at doi:10.5194/gmd-9-4097-2016-supplement.
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