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Abstract. nonlinMIP provides experiments that account for
state-dependent regional and global climate responses. The
experiments have two main applications: (1) to focus un-
derstanding of responses to CO2 forcing on states relevant
to specific policy or scientific questions (e.g. change under
low-forcing scenarios, the benefits of mitigation, or from past
cold climates to the present day), or (2) to understand the
state dependence (non-linearity) of climate change – i.e. why
doubling the forcing may not double the response. State de-
pendence (non-linearity) of responses can be large at regional
scales, with important implications for understanding mech-
anisms and for general circulation model (GCM) emulation
techniques (e.g. energy balance models and pattern-scaling
methods). However, these processes are hard to explore us-
ing traditional experiments, which explains why they have
had so little attention in previous studies. Some single model
studies have established novel analysis principles and some
physical mechanisms. There is now a need to explore robust-
ness and uncertainty in such mechanisms across a range of
models (point 2 above), and, more broadly, to focus work on
understanding the response to CO2 on climate states relevant
to specific policy/science questions (point 1).

nonlinMIP addresses this using a simple, small set of CO2-
forced experiments that are able to separate linear and non-
linear mechanisms cleanly, with a good signal-to-noise ra-

tio – while being demonstrably traceable to realistic transient
scenarios. The design builds on the CMIP5 (Coupled Model
Intercomparison Project Phase 5) and CMIP6 DECK (Diag-
nostic, Evaluation and Characterization of Klima) protocols,
and is centred around a suite of instantaneous atmospheric
CO2 change experiments, with a ramp-up–ramp-down exper-
iment to test traceability to gradual forcing scenarios. In all
cases the models are intended to be used with CO2 concentra-
tions rather than CO2 emissions as the input. The understand-
ing gained will help interpret the spread in policy-relevant
scenario projections.

Here we outline the basic physical principles behind non-
linMIP, and the method of establishing traceability from
abruptCO2 to gradual forcing experiments, before detailing
the experimental design, and finally some analysis princi-
ples. The test of traceability from abruptCO2 to transient ex-
periments is recommended as a standard analysis within the
CMIP5 and CMIP6 DECK protocols.

1 Introduction

Robust climate impact assessments require, at regional
scales, an understanding of physical mechanisms of climate
change in general circulation model (GCM) projections. A
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further, pragmatic requirement for impact assessments is the
ability to emulate (using fast but simplified climate models)
GCM behaviour for a much larger range of policy-relevant
scenarios than may be evaluated using GCMs directly. These
two requirements may be combined into a single question:
what is the simplest conceptual framework, for a given well-
defined model application, that has quantitative predictive
power and captures the key mechanisms behind GCM sce-
nario projections?

Often, one choice has been to assume some form of lin-
earity. In studies of the global energy balance, linearity is
often assumed in the form of a constant climate feedback pa-
rameter. This parameter may be used to quantify feedbacks
in different models (e.g. Zelinka et al., 2013) or, in emula-
tion methods, to parameterize global energy balance mod-
els (e.g. Huntingford and Cox, 2000). In understanding or
emulating regional patterns of climate change, it is often as-
sumed explicitly that regional climate change is roughly pro-
portional to global-mean warming. In emulation work, this is
termed “pattern scaling” (Santer et al., 1990; Mitchell, 2003;
Ishizaki et al., 2012; Tebaldi and Arblaster, 2014), but this
assumption may also be applied implicitly in understanding
mechanisms. Often, physical mechanisms are studied for a
single period of a single forcing scenario or in a single high-
forcing experiment such as abrupt4xCO2 (implicitly assum-
ing that the understanding is relevant for other periods or sce-
narios). The use of pattern scaling is prevalent in studies of
climate impacts.

While these approximations appear to work well under
many circumstances, significant limitations are increasingly
being revealed in such assumptions. The following are of
two types: different timescales of response, and non-linear
responses. In discussing this, a complication arises in that
different linearity assumptions exist. Henceforth, we define
“linear” as meaning “consistent with linear systems theory”;
i.e. responses that are linear in model forcing (i.e. where
doubling the forcing doubles the response). This is different
from assuming that regional climate change is proportional
to global-mean warming – as in pattern scaling.

Even in a linear system (where responses are linear in
forcing), the relationship between two system outputs (e.g.
between global-mean temperature and regional sea surface
temperature – SST) will in general not be linear. This is
due to different timescales of response in different locations
and/or variables (Sect. 3.1). Examples include lagged surface
ocean warming due to a connection with the deeper ocean
(Manabe et al., 1990; Williams et al., 2008; Held et al., 2010;
Chadwick et al., 2013a; Andrews and Ringer, 2014) or the
direct response of precipitation to forcings (Mitchell et al.,
1987; Allen and Ingram, 2002; Andrews et al., 2010; Bala
et al., 2010; Bony et al., 2014). One (generally false, but po-
tentially acceptable) assumption of pattern scaling is that re-
gional climate responds over the same timescale as global-
mean temperature. Different timescales of response are es-
pecially important in understanding and predicting behaviour

under mitigation and geo-engineering scenarios (or over very
long timescales).

Non-linear system responses (e.g. Schaller et al., 2013)
are more complex to quantify, understand and predict than
those of linear systems (Sect. 3.2). Some examples have
been known for some time, such as changing feedbacks
through retreating snow/sea ice or increasing water vapour
(Hansen et al., 2005; Colman and McAvaney, 2009; Jonko
et al., 2013; Meraner et al., 2013). Some palaeoclimate ev-
idence supports the idea that climate sensitivity increases
with warming (Caballero and Huber, 2013; Shaffer et al.,
2016), which is important for the risk of high-end global
warming (Bloch-Johnson et al., 2015). The non-linear be-
haviour of the Atlantic Meridional Overturning Circulation
is another example (Hofmann and Rahmstorf, 2009; Ishizaki
et al., 2012). More recently, substantial non-linear precipita-
tion responses have been demonstrated in spatial patterns of
regional precipitation change in two Hadley Centre climate
models with different atmospheric formulations (Good et al.,
2012; Chadwick and Good, 2013). This is largely due to si-
multaneous changes in pairs of known robust pseudo-linear
mechanisms (Chadwick and Good, 2013). Regional warm-
ing has been shown to be different for a first and second CO2
doubling, with implications primarily for impact assessment
models or studies combining linear energy balance models
with pattern scaling (Good et al., 2015). Non-linearity has
also been demonstrated in the response under idealized geo-
engineering scenarios, of ocean heat uptake, sea-level rise,
and regional climate patterns, with different behaviour found
when forcings are decreasing than when they are increasing
(Bouttes et al., 2013, 2015; Schaller et al., 2014).

Investigation of these mechanisms at regional scales has
been constrained by the type of GCM experiment typically
analysed. Most previous analyses (e.g. Solomon et al., 2007)
have used results from transient-forcing experiments, where
forcing changes steadily through the experiment. There are
three main problems with this approach. First, information
about different timescales of response is masked. This is be-
cause the GCM response at any given time in a transient-
forcing experiment is a mixture of different timescales of
response (Li and Jarvis, 2009; Held et al., 2010; Good et
al., 2013), including short-timescale responses (e.g. ocean
mixed-layer response from forcing change over the previ-
ous few years) through long-timescale behaviour (includ-
ing deeper ocean responses from forcing changes multiple
decades to centuries earlier). Second, in transient-forcing ex-
periments, non-linear behaviour is hard to separate from lin-
ear mechanisms. For example, in an experiment where CO2
is increased by 1 % per year for 140 years (1pctCO2), we
might find different spatial patterns at year 70 (at 2xCO2)
than at year 140 (at 4xCO2). This could be due to non-linear
mechanisms (due to the different forcing level and associ-
ated different climate state). However, it could also be due to
linear mechanisms: year 140 follows 140 years of forcing in-
crease, and therefore includes responses over longer response
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timescales than at year 70 (only 70 years of forcing increase).
Third, signal-to-noise ratios of regional climate change can
be relatively poor in such experiments.

These three issues may be addressed by the use of ide-
alized abruptCO2 GCM experiments: an experiment where
CO2 forcing is instantaneously changed, then held con-
stant. The simplified forcing in such experiments simpli-
fies the understanding of physical mechanisms of response.
In these abrupt CO2 experiments, responses over differ-
ent timescales (fast and slow responses) are separated from
each other. Further, responses at different forcing levels may
be directly compared, e.g. by comparing the response in
abrupt2xCO2 and abrupt4xCO2 experiments over the same
timescale – both have identical forcing time histories, apart
from the larger forcing magnitude in abrupt4xCO2. Finally,
high signal-to-noise is possible: averages may be taken over
periods of 100 years or more (after the initial ocean mixed-
layer adjustment, change is gradual in such experiments).
Recent work (Good et al., 2012, 2013; Zelinka et al., 2013;
Bouttes et al., 2015; Good et al., 2015) has established that
these experiments contain global- and regional-scale infor-
mation quantitatively traceable to more policy-relevant tran-
sient experiments – and, equivalently, that they form the ba-
sis for fast simple climate model projections traceable to the
GCMs. In other studies (e.g. Frolicher et al., 2014), pulse ex-
periments have been used to separate different timescales of
response (where forcing is abruptly increased, then abruptly
returned to the control state). We use abruptCO2 experiments
because they offer greater signal-to-noise in the change sig-
nal (important for regional-scale studies) as well as also for
consistency with the CMIP6 (Coupled Model Intercompar-
ison Project Phase 6) DECK (Diagnostic, Evaluation and
Characterization of Klima) abrupt4xCO2 experiment.

The CMIP5 abrupt4xCO2 experiments have thus been
used widely: including quantifying GCM forcing and feed-
back behaviour (Gregory et al., 2004; Zelinka et al., 2013),
and for traceable emulation of GCM projections of global-
mean temperature and heat uptake (Good et al., 2013; Stott
et al., 2013). Abrupt4xCO2 is also part of the CMIP6 DECK
protocol (Meehl et al., 2014).

nonlinMIP builds on the CMIP5 and CMIP6 DECK
designs to explore non-linear responses (via additional
abruptCO2 experiments at different forcing levels). It also ex-
plores responses over slightly longer timescales – extending
the CMIP5 abrupt4xCO2 experiment by 100 years.

2 Relating abruptCO2 to gradual forcing scenarios:
the step-response model

In using the highly idealized abruptCO2 experiments, it is es-
sential that their physical relevance (traceability) to more re-
alistic gradual forcing experiments is determined. We cannot
a priori reject the possibility that some GCMs could respond
unrealistically to the abrupt forcing change. A key tool here

is the step-response model (described below). This (Hassel-
mann et al., 1993) is a response-function method, which aims
to predict the GCM response to any given transient-forcing
experiment, using the GCM response to an abruptCO2 ex-
periment. Such a prediction may be compared with the GCM
transient-forcing simulation, as part of a traceability assess-
ment (discussed in detail in Sect. 5).

Once some confidence is established in traceability of the
abruptCO2 experiments to transient-forcing scenarios, the
step-response model has other roles: to explore the implica-
tions (for different forcing scenarios) of physical understand-
ing gleaned from abruptCO2 experiments, to help separate
linear and non-linear mechanisms (Sect. 5), and potentially
as a basis for GCM emulation. The method description be-
low also serves to illustrate the assumptions of linear system
theory.

The step-response model represents the evolution of ra-
diative forcing in a scenario experiment by a series of step
changes in radiative forcing (with one step taken at the be-
ginning of each year). The method makes two linear assump-
tions. First, the response to each annual forcing step is esti-
mated by linearly scaling the response in a CO2 step experi-
ment according to the magnitude of radiative forcing change.
Second, the response yi at year i of a scenario experiment is
estimated as a sum of responses to all previous annual forcing
changes (see Fig. 1 of Good et al., 2013, for an illustration):

yi =

i∑
j=0

wi−jxj , (1)

where xj is the response of the same variable in year j of
the CO2 step experiment. wi−j scales down the response
from the step experiment (xj ) to match the annual change
in radiative forcing during year i−j of the scenario (denoted
1Fi−j ):

wi−j =
1Fi−j

1Fs
, (2)

where 1Fs is the radiative forcing change in the CO2 step
experiment. All quantities are expressed as anomalies with
respect to a constant-forcing control experiment.

This approach can in principle be applied at any spatial
scale for any variable for which the assumptions are plausible
(e.g. Chadwick et al., 2013a).

3 Linear and non-linear mechanisms, and the
relevance of abruptCO2 experiments

Here we discuss further, with examples, the distinction be-
tween linear and non-linear mechanisms, when they are im-
portant, and the relevance of abruptCO2 experiments.
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Figure 1. Schematic illustrating a situation where linear mecha-
nisms can cause climate patterns to evolve. This represents a sce-
nario where global-mean radiative forcing (black line) is ramped up,
then stabilized. At the time indicated by the left red oval, responses
with shorter timescales are relatively important, due to the recent
increase in forcing. At the time marked by the right-hand oval, forc-
ing has been stabilized for an extended period, so the responses with
longer timescales (such as sea-level rise) have had more time to re-
spond to the initial forcing increase.

3.1 Linear mechanisms: different timescales of
response

Even in a linear system, regional climate change per kelvin
of global warming will evolve during a scenario simulation.
This happens because different parts of the climate system
have different timescales of response to forcing change.

This may be due to different effective heat capacities. For
example, the ocean mixed layer responds much faster than
the deeper ocean, simply due to a thinner column of water
(Li and Jarvis, 2009). However, some areas of the ocean sur-
face (e.g. the Southern Ocean and south-east subtropical Pa-
cific) show lagged warming, due to a greater connection (via
upwelling or mixing) with the deeper ocean (e.g. Manabe et
al., 1990; Williams et al., 2008). The dynamics of the ocean
circulation and vegetation may also have their own inherent
timescales (e.g. vegetation change may lag global warming
by years to hundreds of years; Jones et al., 2009). At the other
extreme, some responses to CO2 forcing are much faster than
global warming: such as the direct response of global-mean
precipitation to forcings (Mitchell et al., 1987; Allen and In-
gram, 2002; Andrews et al., 2010) and the physiological re-
sponse of vegetation to CO2 (Field et al., 1995).

In a linear system, patterns of change per kelvin of global
warming are sensitive to the forcing history. For example in
Fig. 1, a scenario is illustrated where forcing is ramped up,
then stabilized. Three periods are highlighted, which may
have different patterns of change per kelvin of global warm-
ing, due to different forcing histories: at the leftmost point,
faster responses will be relatively more important, whereas
at the right the slower responses have had some time to
catch up. A key example is the different responses of global-
mean warming and global-mean sea-level rise under Rep-
resentative Concentration Pathway 2.6 (RCP2.6), as shown
in Figs. SPM.7 and SPM.9 of the IPCC Fifth Assessment
Report (IPCC, 2013). Under RCP2.6, global-mean warming

ceases after 2050, when radiative forcing is approximately
stabilized (corresponding qualitatively to the period when
the black line is horizontal in Fig. 1). In contrast, sea-level
rise continues at roughly the same rate throughout the cen-
tury. Therefore, in RCP2.6, the sea-level rise per kelvin of
global warming increases after 2050. This is largely because
the timescale of deep ocean heat uptake is much longer than
that of ocean mixed-layer warming.

By design, abruptCO2 experiments separate GCM re-
sponses with different timescales (i.e. separating faster re-
sponses from slower responses): the response of a given vari-
able in year Y of the experiment corresponds to the response
of that variable over the timescale Y . This is used, for ex-
ample, (Gregory et al., 2004) to estimate radiative forcing
and feedback parameters for GCMs: plotting radiative flux
anomalies against global-mean warming can separate “fast”
and “slow” responses. For example, the top-of-atmosphere
outgoing shortwave flux shows a rapid initial change before
the global-mean temperature has had time to respond.

3.2 Non-linear responses

Non-linear mechanisms arise for a variety of reasons. Of-
ten, however, it is useful to describe them as state-dependent
feedbacks. For example, the snow–albedo and sea-ice–
albedo feedbacks become small at high or low snow depth
(Hall, 2004; Eisenman, 2012). Soil moisture–temperature
feedbacks can also be state dependent (Seneviratne et al.,
2006, 2010): feedback is small when soil moisture is sat-
urated, or so low that moisture is tightly bound to the soil
(in both regimes, evaporation is insensitive to change in soil
moisture). Sometimes, non-linear mechanisms may be bet-
ter viewed as simultaneous changes in pairs of properties.
For example, convective precipitation is broadly a product
of moisture content and dynamics (Chadwick et al., 2013b;
Chadwick and Good, 2013; Bony et al., 2014; Oueslati et al.,
2016). Both moisture content and atmospheric dynamics re-
spond to CO2 forcing, so in general we might expect convec-
tive precipitation to have a non-linear response to CO2 forc-
ing. In addition, the Clausius–Clapeyron equation introduces
some non-linearity in the increase of specific humidity with
warming. Of course, more complex non-linear responses ex-
ist, such as for the Atlantic Meridional Overturning Circula-
tion.

In contrast to linear mechanisms, non-linear mechanisms
are sensitive to the magnitude of forcing. For example, the
two points highlighted in Fig. 2 may have different patterns
of change per kelvin of global warming, due to non-linear
mechanisms. In contrast, linear mechanisms would cause
no difference in the patterns of change per kelvin of global
warming between the two points in Fig. 2, because the two
scenarios have the same forcing history apart from a constant
scaling factor.

An example is the snow–ice albedo feedback, which tends
to change in magnitude with increased global temperature,
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Figure 2. Schematic illustrating the point that non-linear mecha-
nisms can cause climate patterns to differ at different forcing (and
hence global temperature) levels. This represents two different sce-
narios, whose forcing time series is identical apart from a constant
scale factor (the higher forcing scenario has about twice the forcing
of the lower scenario).

due to declining snow and ice cover, and the remaining snow
and ice being in areas of lower solar insolation (Colman and
McAvaney, 2009).

AbruptCO2 experiments may be used to separate non-
linear from linear mechanisms. This can be done by com-
paring the responses at the same timescale in different
abruptCO2 experiments. Figure 3 compares abrupt2xCO2
and abrupt4xCO2 experiments over years 50–149. A “dou-
bling difference” is defined (Good et al., 2015), measuring
the difference in response to the first and second CO2 dou-
blings. In most current simple climate models (e.g. Mein-
shausen et al., 2011), the radiative forcing from each suc-
cessive CO2 doubling is assumed identical (because forc-
ing is approximately linear in log[CO2]; Myhre et al., 1998).
With this assumption, a linear system would have zero dou-
bling difference everywhere. Therefore, the doubling differ-
ence is used as a measure of non-linearity. The question of
which abruptCO2 experiments to compare, and over which
timescale, is discussed in Sect. 5.

In some GCMs, the forcing per CO2 doubling has been
shown to vary with CO2 (Colman and McAvaney, 2009;
Jonko et al., 2013). However, this variation depends on the
specific definition of forcing used (Jonko et al., 2013). Cur-
rently, this is folded into our definition of non-linearity. If a
robust definition of this forcing variation becomes available
in the future, it could be used to scale out any difference in
forcing between pairs of abruptCO2 experiments, to calculate
an “adjusted doubling difference”.

4 Experimental design

nonlinMIP is composed of a set of abruptCO2 experiments
(the primary tools), plus a CO2-forced transient experiment.
AbruptCO2 experiments are driven by changes in atmo-
spheric CO2 concentration: CO2 is abruptly changed, then
held constant. These build on the CMIP5 and CMIP6 DECK
protocols (the required runs from these are detailed in Ta-
ble 1). The additional nonlinMIP runs (Table 2) are assigned
three priority levels. The three options for participation are
(1) only the “essential” simulation, (2) all “high priority” plus

Figure 3. Defining the “doubling difference”. The red and blue lines
show illustrative time series of a variable (in this example, global-
mean temperature from HadGEM2-ES) from the abrupt4xCO2 and
abrupt2xCO2 experiments. Doubling difference =142–121 (the
difference in response between the first and second CO2 doublings).
This is defined for a specific timescale after the abrupt CO2 change
– in this example, it is for means over years 50–149.

the “essential” simulations, or, preferably, (3) all simulations.
The experiments in Table 1 are required in all cases. All ex-
periments must be initialized from the same year of a pre-
industrial control experiment, except for abrupt4xto1x (see
Table 2). A typical analysis procedure is outlined in Sect. 5.

The nonlinMIP design is presently limited to CO2 forc-
ing, although the same principles could be applied to other
forcings.

5 Basic analysis principles

This section outlines the applications and general princi-
ples behind analysis of nonlinMIP results. First, some gen-
eral applications are introduced, before giving more detail
on how one particular application (quantifying and under-
standing non-linear change) may be analysed. The addi-
tion of the abrupt2xCO2 experiment to the standard DECK
abrupt4xCO2 permits quantifying and understanding climate
change due to CO2 for three main applications:

1. under global warming approximately comparable to
that envisaged by the Paris agreement (quantified by
abrupt2xCO2 – pre-industrial control)

2. climate change approximately comparable to that
avoided by mitigation (quantified by abrupt4xCO2 –
abrupt2xCO2)

3. non-linear change (the difference between 2 and 1).

Applications 1 and 2 are expected to be of the widest in-
terest to the community, as they could be analysed using the
same methods as have already been used extensively to study
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Table 1. List of CMIP5/CMIP6 DECK experiments required by nonlinMIP.

Experiment Description Role

piControl Pre-industrial control experiment

Abrupt4xCO2 CO2 abruptly quadrupled, then held constant for
150 years.

Separate different timescales of response.

1pctCO2 CO2 increased at 1 % per year for 140 years (i.e. as
CMIP5 1pctCO2 experiment), then decreased by 1 %
per year for 140 years (i.e. returning to pre-industrial
conditions).

To test traceability of the abruptCO2 experiments to
more realistic transient-forcing conditions. Adding the
ramp-down phase explores physics relevant to mitiga-
tion and geo-engineering scenarios.

the response in the CMIP5 abrupt4xCO2 experiment, but for
climate states more relevant to the policy questions outlined
in (1) and (2). Useful signal-to-noise ratios should be possi-
ble because ∼ 100-year means may be analysed (e.g. over
years 50–149, where climate is relatively stable as it fol-
lows the initial ocean mixed-layer warming). Application 3
is more specialized, and is discussed in more detail below.

The abrupt0.5xCO2 experiment permits analogous work,
extending the relevance to colder past climates, and explor-
ing one aspect of how past change may differ from future
change. It also allows non-linear mechanisms to be studied
with greater signal-to-noise ratio:

4. change under past cold climates (abrupt0.5xCO2 – pi-
Control)

5. non-linear change: like 3, but with larger signal-to-
noise ratio ( [abrupt4xco2 – abrupt2xco2] – [piControl
– abrupt0.5xCO2] ).

In quantifying non-linear change (applications 3 or 5 above),
the primary idea is to find where the step-response model
(Sect. 2) breaks: since the step-response model is based on
a linear assumption, this amounts to detecting non-linear re-
sponses.

The aim is to focus subsequent analysis. If non-linearities
in a quantity of interest are found to be small, then analy-
sis may focus on understanding different timescales of re-
sponse from a single abruptCO2 experiment: linearity means
that the physical response (over a useful range of CO2 con-
centrations) is captured by a single abruptCO2 experiment.
This represents a considerable simplification. If, on the other
hand, non-linearities are found to be important, the focus
shifts to understanding the different responses in different
abruptCO2 experiments. The choice of which abruptCO2 ex-
periments to focus on, and over which timescales, is dis-
cussed below.

5.1 First step: check basic traceability of abrupt4xCO2
to the transient-forced response near 4xCO2

The test described here is recommended as a routine analysis
of the CMIP6 DECK experiments (even if nonlinMIP exper-
iments are not performed). The aim is to confirm whether the

abruptCO2 experiments contain realistic physical responses
in the variables of interest, as previously done for global-
mean temperature and heat uptake for a range of CMIP5
models (Good et al., 2013), for regional-scale warming and
ocean heat uptake (Bouttes et al., 2015; Good et al., 2015),
and for other global-mean quantities for HadCM3 (Good et
al., 2011). This also, rules out the most pathological non-
linearities (e.g. if the response to an abrupt CO2 change in
a given GCM was unrealistic). Although this test has been
done for a range of models and variables, traceability cannot
be assumed to hold for all models and variables.

The linear step-response model should first be used with
the abrupt4xCO2 response, to predict the response near year
140 of the 1pctCO2 experiment (i.e. near 4xCO2). This pre-
diction is then compared with the actual GCM 1pctCO2 re-
sult. This should first be done for global-mean temperature:
this assessment has previously been performed for a range of
CMIP5 models (Good et al., 2013), giving an idea of the level
of accuracy expected. If the abruptCO2 response is funda-
mentally unrealistic, it is likely to show up in the global tem-
perature change. This approach may then be repeated for spa-
tial patterns of warming, and then for the quantities of inter-
est. Abrupt4xCO2 is used here as it has larger signal-to-noise
than abrupt2xCO2, yet is representative of forcing levels in a
business-as-usual scenario by 2100. However, the tests may
also be repeated using abrupt2xCO2 – but compared with
year 70 of the 1pctCO2 experiment (i.e. at 2xCO2).

The step-response model emulation under these condi-
tions should perform well for most cases: the state at year
140 of the 1pctCO2 experiment is very similar to that of
abrupt4xCO2 (same forcing, similar global-mean tempera-
ture), so errors from non-linear mechanisms should be min-
imal. If large errors are found, this may imply caution about
the use of abruptCO2 experiments for these variables, or per-
haps point to novel non-linear mechanisms that may be un-
derstood by further analysis.

5.2 Second step: characterising non-linear responses

Having established some level of confidence in the
abruptCO2 physical response, the second step is to look for
non-linear responses. This first involves repeating the tests
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Table 2. nonlinMIP experimental design. Three options are only the “essential” simulation, all “high priority” plus the “essential” simula-
tions, or all simulations. The experiments in Table 1 are required in all cases.

Experiment
(priority)

Description Role

Abrupt2xCO2
(essential)

as abrupt4xCO2 (see Table 1), but at
double pre-industrial CO2 concentra-
tion.

to diagnose non-linear responses (in combination with
abrupt4xCO2);
assess climate response and (if appropriate) make climate projec-
tions with the step-response model at forcing levels more relevant
to mid- or low-forcing scenarios.

Abrupt0.5xCO2
(essential)

as abrupt4xCO2 (see Table 1), but at
half pre-industrial CO2 concentration

to diagnose non-linear responses (in combination with
abrupt4xCO2 and abrupt2xCO2); offers greater signal-to-noise
ratios for regional precipitation change than if just abrupt2xCO2
was used; also relevant to palaeoclimate studies.

Extend both
abrupt2xCO2 and
abrupt4xCO2 by 100
years (high priority)

permit improved signal-to-noise ratio in diagnosing some
regional-scale non-linear responses;
explore longer timescale responses than in CMIP5 experiment;
permit step-response model scenario simulations from 1850 to
2100;
allow traceability tests (via the step-response model) against most
of the 1pctCO2 ramp-up–ramp-down experiment;
provide a baseline control for the abrupt4xto1x experiment.

1pctCO2 ramp-down
(medium priority)

initialized from the end of 1pctCO2;
CO2 is decreased by 1 % per year
for 140 years (i.e. returning to pre-
industrial conditions).

to test traceability of the abruptCO2 experiments to more real-
istic transient-forcing conditions; adding the ramp-down phase
explores a much wider range of physical responses, providing a
sterner test of traceability; relevant also to mitigation and geo-
engineering scenarios, and offers a sterner test of.

Abrupt4xto1x
(medium priority)

initialized from year 100 of
abrupt4xCO2, CO2 is abruptly
returned to pre-industrial levels, then
held constant for 150 years.

quantify non-linearities over a larger range of CO2 (quantifies re-
sponses at 1xCO2);
assess non-linearities that may be associated with the direction of
forcing change.

Abrupt8xCO2
(medium priority)

as abrupt4xCO2, but at 8× pre-
industrial CO2 concentration; only
150 years required here.

quantify non-linearities over a larger range of CO2.

from step 1 above, but for different parts of the 1pctCO2
and 1pctCO2 ramp-down experiments, and using different
abruptCO2 experiments for the step-response model.

An example is given in Fig. 4 (but for different transient-
forcing experiments). This shows results for global-mean
precipitation in the HadCM3 GCM (Good et al., 2012), un-
der an idealized simulation where forcing is ramped up at
a constant rate for 70 years, then ramped down at the same
rate for 70 years. Here, the step-response model prediction
using abrupt4xCO2 (red curves) is only close to the actual
GCM simulation (black), where the transient-forced simula-
tion is near to 4xCO2 (i.e. near year 70). Similarly, the pre-
diction using abrupt2xCO2 (blue curves) works only near
2xCO2 (near years 35 or 105). Otherwise, quite large er-
rors are seen, and the predictions with abrupt2xCO2 and
abrupt4xCO2 are quite different from each other. This im-
plies that there are large non-linearities in the global-mean
precipitation response in this GCM, and that they may be

studied by comparing the responses in the abrupt2xCO2 and
abrupt4xCO2 experiments.

Having identified some non-linear response, and high-
lighted two or more abruptCO2 experiments to compare (in
the previous example abrupt2xCO2 and abrupt4xCO2), the
non-linear mechanisms may be studied in detail by com-
paring the responses in the different abruptCO2 experiments
over the same timescale (e.g. via the doubling difference,
as in Fig. 3). This allows for (Good et al., 2012; Chadwick
and Good, 2013; Good et al., 2015) non-linear mechanisms
to be separated from linear mechanisms (not possible in a
transient-forcing experiment). It is expected that analysis will
focus on the 100-year period over years 40–139 of the ex-
periments (the relatively stable period after the initial ocean
mixed-layer warming).

In the same spirit as other CMIP5 and CMIP6 idealized ex-
periments, nonlinMIP will help understand non-linear mech-
anisms by isolating the signal of non-linear mechanisms
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Figure 4. Finding non-linear responses in transient-forcing experi-
ments (figure from Good et al., 2012). Time series of global-mean
precipitation change under two experiments. Left: where CO2 is
increased by 1 % per year, then stabilized at 2× pre-industrial lev-
els. Right: where CO2 is increased by 2 % per year for 70 years,
then decreased by 2 % per year for 70 years. Black: GCM. Red:
step-response model using the abrupt4xCO2 response. Blue: the
abrupt2xCO2 response.

more effectively. This occurs in two ways: first, by using
simplified forcing compared to the time-dependent, RCP
projections (the latter feature multiple forcings of evolv-
ing strength). The simplified forcing means that alternative
mechanisms (from different forcing agents or linear mecha-
nisms) may be ruled out by design. Secondly, contamination
of the signal from internal variability may be reduced, as av-
erages of around 100 years are possible.

The magnitude of internal variability may also be esti-
mated at the different levels of CO2 forcing. This could be
used to help explore changes in variability with warming
(Seneviratne et al., 2006; Screen, 2014), and to assess sig-
nificance of any signal of non-linear change in the time mean
climate. Internal variability could be estimated from years
40 to 139 of the experiments (after the initial warming of the
ocean mixed layer), after removing a fitted linear trend.

6 Conclusions

These experiments can help improve climate science and
consequent policy advice in a number of ways. The focus
is on understanding mechanisms (given the idealized nature
of the experiments). A further application, however, is that
energy balance models could be tuned to the different exper-
iments, to explore the importance, for projections, of state
dependence of feedback parameters (Hansen et al., 2005;
Colman and McAvaney, 2009; Caballero and Huber, 2013).
Also, if certain regions are found to show strongly non-linear
behaviour in these experiments, this could help focus assess-
ment of impact tools like pattern scaling or time shifting (e.g.
Herger et al., 2015).

Probably of widest interest is the fact that the additional
experiments will allow understanding work to focus on cli-
mate states more directly relevant to discrete policy/science

questions (the benefits of mitigation; impacts of scenarios
consistent with the Paris agreement; or understanding past
cold climates; see start of Sect. 5). These questions may
show important differences, due to state dependence (non-
linearity) of mechanisms, but for many cases the nature of
the non-linearity may not need to be assessed. A classical
example is the snow–albedo feedback: the strength of this
would be different in a warm vs. a cold world (due to differ-
ent baseline snow cover), but if the focus is on understanding
the warm world, the first priority is to study experiments rep-
resentative of the warm world (with the correct climate state).

There is also a need to quantify and understand, at regional
scales, non-linear mechanisms of climate change; that is, do
the above science/policy questions give significantly differ-
ent answers (e.g. different patterns of rainfall change), and
why? This is difficult to do using transient model experi-
ments alone, for two reasons: contamination due to different
timescales of response, and noise from internal variability.

This paper outlines the basic physical principles behind the
nonlinMIP design, and the method of establishing traceabil-
ity from abruptCO2 to gradual forcing experiments, before
detailing the experimental design and finally some general
analysis principles that should apply to most studies based
on this dataset.

7 Data availability

Results will be made available as part of the CFMIP project,
within the sixth model intercomparison project, CMIP6.
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