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Abstract. Bocquet and Sakov (2013) introduced a low-order

model based on the coupling of the chaotic Lorenz-95 (L95)

model, which simulates winds along a mid-latitude circle,

with the transport of a tracer species advected by this zonal

wind field. This model, named L95-T, can serve as a play-

ground for testing data assimilation schemes with an on-

line model. Here, the tracer part of the model is extended

to a reduced photochemistry module. This coupled chem-

istry meteorology model (CCMM), the L95-GRS (generic

reaction set) model, mimics continental and transcontinental

transport and the photochemistry of ozone, volatile organic

compounds and nitrogen oxides. Its numerical implementa-

tion is described. The model is shown to reproduce the ma-

jor physical and chemical processes being considered. L95-T

and L95-GRS are specifically designed and useful for testing

advanced data assimilation schemes, such as the iterative en-

semble Kalman smoother (IEnKS), which combines the best

of ensemble and variational methods. These models provide

useful insights prior to the implementation of data assimila-

tion methods into larger models. We illustrate their use with

data assimilation schemes on preliminary yet instructive nu-

merical experiments. In particular, online and offline data as-

similation strategies can be conveniently tested and discussed

with this low-order CCMM. The impact of observed chemi-

cal species concentrations on the wind field estimate can be

quantitatively assessed. The impacts of the wind chaotic dy-

namics and of the chemical species non-chaotic but highly

nonlinear dynamics on the data assimilation strategies are il-

lustrated.

1 Introduction

Several data assimilation methods have been used in the field

of atmospheric chemistry and air quality in many studies (as

exemplified in the reviews of Carmichael et al., 2008; Sandu

and Chai, 2011; Zhang et al., 2012; Bocquet et al., 2015a).

Yet, how efficiently data assimilation schemes operate in

high-dimensional and heterogeneous models such as those

used in the field remains largely unclear. Indeed, atmospheric

chemistry models are becoming increasingly complex, with

multiphasic chemistry, size-resolved particulate matter, and

possibly coupled to numerical weather prediction models. In

the meantime, data assimilation methods have also become

more sophisticated. Let us briefly and non-exhaustively de-

scribe this evolution. Kalman filters have been used with at-

mospheric chemistry models by Ménard et al. (2000). The

numerical cost of this algorithm was addressed by the use

of the ensemble Kalman filter and variants thereof in Segers

et al. (2000), Eben et al. (2005), Hanea et al. (2007), Wu

et al. (2008), and Sekiyama et al. (2011). In order to address

rank deficiencies and sampling issues, localisation and infla-

tion have been used in this context (Constantinescu et al.,

2007a, b; Schutgens et al., 2010). Moreover, 3D- and 4D-Var

techniques have been applied to chemical transport models

(CTMs) in the wake of their success in operational meteorol-

ogy (Elbern et al., 2000; Quélo et al., 2005; Errera et al.,

2008; Wu et al., 2008). These methods, however, require

the development of the adjoint models (e.g. Hakami et al.,

2007; Henze et al., 2007) and this has led to the implemen-

tation of easier approximate adjoints (Bocquet, 2005, 2012;

Koohkan and Bocquet, 2012; Singh and Sandu, 2012). Atten-

tion has been paid to the construction of the background error

covariance matrix (Elbern et al., 2007; Singh et al., 2011).

Getting the best of the ensemble Kalman filter and varia-
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tional methods through an hybrid ensemble–variational ap-

proach is a quest recently initiated in meteorology (Buehner

et al., 2010; Clayton et al., 2013; Bocquet and Sakov, 2014;

Desroziers et al., 2014; Nino Ruiz and Sandu, 2016) that

could be applied to atmospheric chemistry models (Bocquet

and Sakov, 2013). Finally, the recent development of coupled

chemistry meteorology models (CCMMs) opens the Pan-

dora’s box of data assimilation in coupled systems charac-

terised by heterogeneous dynamics with distinct timescales,

heterogeneous sources of uncertainty, and complex interac-

tions.

Hence, it will become increasingly difficult to disentan-

gle the merits of data assimilation schemes, of models,

and of their numerical implementation in a successful high-

dimensional data assimilation study. That is why we believe

that the increasing variety of problems encountered in the

field of atmospheric chemistry data assimilation puts for-

ward the need for simple low-order models, albeit complex

enough to capture the relevant dynamics, physics, and chem-

istry that could impact the performance of data assimila-

tion schemes. Low-order models, also called toy models, are

models of reduced dimension meant to capture the promi-

nent characteristics of the dynamics of larger models, but

at a much lower computational cost. They are not meant to

be realistic, but their study provides insights into the larger

models and their dynamics. Their low numerical cost also

comes with the ability to compute reliable statistical scores in

various regimes and hence to validate methods with greater

confidence. Moreover, they can be distributed and used with

the goal to benchmark data assimilation methods since their

baseline performance can easily be reproduced.

1.1 The Lorenz-95 and tracer model

The Lorenz-95 (L95) model is a very popular low-order me-

teorology model (Lorenz and Emanuel, 1998). It is a one-

dimensional model, whose M = 40 state variables extend

over a mid-latitude circle. It is defined by the following set

of ordinary differential equations

dxm

dt
= (xm+1− xm−2)xm−1− xm+F , (1)

for m= 1, . . .,M . The domain is periodic (circle-like, i.e.

x−1 = x39, x0 = x40, and x41 = x1). F is chosen to be 8 so

that the dynamics is chaotic with a doubling time of about

0.42 Lorenz time units and with 13 positive Lyapunov expo-

nents. A time step of 1t = 0.05 is meant to represent a time

interval of 6 h in the real atmosphere. The L95 model has

been extensively used as a test bed and benchmark for data

assimilation experiments.

Bocquet and Sakov (2013) added a tracer field to the L95

model state vector. The field is discretised into 40 additional

variables meant to represent 40 tracer concentrations. The 40

scalar variables of L95 are considered to be the magnitude

of winds at 40 locations, their sign giving their direction.

The tracer field is advected by these winds with a simple

Godunov/upwind scheme. These 80 variables are defined on

the circle using an Arakawa C-grid as shown below.
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Bocquet and Sakov (2013) have added a tracer field to the L95 model state vector. The field is
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This model will be called L95-T in the following. Because the meteorological and tracer state vec-

tors are simulated together, it is an online model. The tracer is emitted over the whole domain and

the emission fluxes are denoted Em+ 1
2

. It is deposited over the whole domain, using a simple scav-

enging scheme parametrised by a scavenging ratio λ. The reference values for those parameters in80

Bocquet and Sakov (2013) are: Em+ 1
2

= 1 and λ= 0.1. Additional details and illustrations can be

found in Bocquet and Sakov (2013). L95-T is a one-way coupled model in the sense that there is

no physical feedback from the transport part to the meteorology part. However, when applying data

assimilation to the model, information is exchanged both ways through covariances between the

meteorological and transport subsystems. In particular, observations of tracer concentrations can in85

principle improve the estimation of the meteorological variables.

Hence, L95-T represents an instructive model for more ambitious CCMMs (Bocquet et al., 2015).

From a dynamical perspective, this model couples chaotic meteorology with non-chaotic transport,
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This model will be called L95-T in the following. Because

the meteorological and tracer state vectors are simulated to-

gether, it is an online model. The tracer is emitted over the

whole domain and the emission fluxes are denoted E
m+ 1

2
.

It is deposited over the whole domain, using a simple scav-

enging scheme parametrised by a scavenging ratio λ. The

reference values for those parameters in Bocquet and Sakov

(2013) are E
m+ 1

2
= 1 and λ= 0.1. Additional details and il-

lustrations can be found in Bocquet and Sakov (2013). L95-

T is a one-way coupled model in the sense that there is no

physical feedback from the transport part to the meteorology

part. However, when applying data assimilation to the model,

information is exchanged both ways through covariances be-

tween the meteorological and transport subsystems. In par-

ticular, observations of tracer concentrations can in principle

improve the estimation of the meteorological variables.

Hence, L95-T represents an instructive model for more

ambitious CCMMs (Bocquet et al., 2015a). From a dynami-

cal perspective, this model couples chaotic meteorology with

non-chaotic transport, as any realistic online tracer model

would do. Uncertainty in the meteorology comes from er-

rors on the initial conditions, which grow due to the chaotic

dynamics. Uncertainty in transport comes from the uncer-

tainty in the emission field and from the wind uncertainty, but

the dynamics being stable, there is no exponential growth of

the error in the transport subsystem. This is meant to mimic

CCMMs. Data assimilation techniques applied to the model,

which are meant to reduce these uncertainties, should be

able to control the growing error modes as done in numer-

ical weather prediction, and also estimate forcings, typically

emissions, as done with CTMs.

However, in order to develop a qualitatively representative

low-order CCMM, nonlinear chemistry must be added. The

primary goal of this article is to extend the L95-T model with
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a simple photochemical kinetic mechanism. To that end, we

will use the generic reaction set (GRS; Azzi et al., 1992). The

resulting coupled model, which will be introduced in detail

in Sect. 2, will be called L95-GRS. In particular, it is meant

to be useful to test a state-of-the-art data assimilation and

parameter estimation method with a significant potential for

such coupled models with heterogeneous observations and

dynamics.

1.2 The iterative ensemble Kalman smoother

Hence, the secondary goal of this work is to illustrate the

usefulness of low-order CCMMs to better understand the ap-

plication of specific data assimilation techniques to CCMMs

and CTMs. The data assimilation method we shall use is the

iterative ensemble Kalman smoother (IEnKS). It was intro-

duced and developed by Bocquet and Sakov (2014). A short

account of the scheme can be found in Bocquet and Sakov

(2013), which we do not repeat here. However, the main

characteristics of the method are recalled in the following

and its algorithm is recalled in Appendix A. The IEnKS is

an ensemble variational (EnVar) method. It solves a varia-

tional problem over a data assimilation window (DAW), as

4D-Var would do. However, because the variational prob-

lem is solved in the reduced space generated by an ensem-

ble of state vectors, the adjoint of the model can easily be

estimated without the burden of generating the full adjoint

model. Indeed, one can for instance use the ensemble of per-

turbations within the DAW to estimate the sensitivities us-

ing finite differences. Because it can solve nonlinear varia-

tional problems, it has an edge over a state-of-the-art ensem-

ble Kalman filter. In particular, it is known to handle param-

eter estimation very well, as well as nonlinear models (Boc-

quet and Sakov, 2013, 2014). As such, it is as good a can-

didate method as 4D-Var (Elbern and Schmidt, 1999, 2001)

when accounting for nonlinear chemistry such as in a photo-

chemical model. Unlike 4D-Var, a posterior ensemble is gen-

erated as the output of the analysis using techniques known

in deterministic ensemble Kalman filtering. The IEnKS then

propagates the updated ensemble, allowing a better transfer

of the errors from an update to the next.

It was shown with the L95 and L95-T models that the

IEnKS outperforms the ensemble Kalman filter (EnKF) and

4D-Var for filtering applications (i.e. present-time estimation

and forecasting), especially in strongly nonlinear conditions.

It was also shown to outperform the 4D-Var and the standard

ensemble Kalman smoother for smoothing (i.e. reanalysis).

As for any EnVar method, the toll for applying these meth-

ods to high-dimensional models is to use ad hoc techniques

to regularise the error statistics obtained by empirical ensem-

ble statistics that are prone to sampling errors. As a conse-

quence, localisation and possibly inflation are required when

implementing the IEnKS in high-dimensional systems.

If 1t is the time interval between two batches of observa-

tions, L1t is the DAW length over which the IEnKS vari-

ational analysis is performed. The simplest variant of the

IEnKS algorithm is given in Appendix A. Note that the case

L= 0 corresponds to the ensemble square root Kalman filter

in its ensemble transform implementation (Hunt et al., 2007),

while the case L= 1 corresponds to the iterative ensemble

Kalman filter (Sakov et al., 2012).

1.3 Outline

In Sect. 2, the L95-GRS model with a reduced photochem-

istry module is introduced and justified. This entails numeri-

cal complications similar to what is experienced in larger nu-

merical CTMs and CCMMs due to the numerical stiffness of

the chemical reactions. Its physical and chemical relevance

is also discussed. The following sections illustrate the useful-

ness of these models. In Sect. 3, additional experiments with

the IEnKS on L95-T are described, focusing on features not

discussed in Bocquet and Sakov (2013). In particular, data

assimilation for the full L95-T model is compared to an of-

fline variant where the tracer data assimilation system is op-

erated independently from the L95 data assimilation system.

We also demonstrate the importance of the emission regime

for the efficiency of the data assimilation scheme and we as-

sess the impact of the tracer observation network density. In

Sect. 4, the EnKF and IEnKS are applied to the newly devel-

oped L95-GRS model, with emphasis on the precision, lo-

calisation, and parameter estimation. Conclusions are given

in Sect. 5.

2 A low-order photochemical and transport model

In this section, we substitute the tracer part of L95-T for

a reduced-order photochemical kinetic mechanism to form

the low-order coupled chemistry meteorology model L95-

GRS. We will first describe the resulting model, then we will

evaluate its ability to reproduce major physical and chemical

characteristics of the processes considered. All the parame-

ters and equations described in the following, with additional

details, are gathered in Appendix B.

2.1 Description of the model

The photochemistry module is based on the GRS of Azzi

et al. (1992). GRS consists of seven chemical species meant

to represent the atmospheric chemistry of ozone formation

from VOC (volatile organic compound) and NOx emissions.

The chemical reactions are

ROC+ hν
O2
−→
k1

RP+ROC (R1)

RP+NO
k2
−→ NO2 (R2)

NO2+ hν
k3
−→ NO+O3 (R3)

NO+O3
O2
−→
k4

NO2 (R4)

www.geosci-model-dev.net/9/393/2016/ Geosci. Model Dev., 9, 393–412, 2016
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RP+RP
k5
−→ RP (R5)

RP+NO2
k6
−→ SGN (R6)

RP+NO2
k7
−→ SNGN (R7)

where ROC represents the reactive organic compounds, RP is

the radical pool, SGN is the stable gaseous nitrogen product,

and SNGN is the stable non-gaseous nitrogen product. The

kinetic rate constants, taken from Venkatram et al. (1994),

are as follows

k1 = 10 000× e−
4710
T × k3 min−1, (5)

k2 = 5.482× e
242
T ppb−1 min−1, (6)

k4 = 2.643× e−
1370
T ppb−1 min−1, (7)

k5 = 10.2ppb−1 min−1, (8)

k6 = 0.12ppb−1 min−1, (9)

k7 = 0.12ppb−1 min−1, (10)

where T is the temperature, chosen to be constant equal to

300K for the sake of simplicity and k3 is the photolysis rate

for NO2 in min−1, which is a function of sunlight. Details

are given in Appendix B.

Since k6 = k7 and Reactions (R6) and (R7) are similar, one

can merge the last two species of the scheme into a lumped

species and use a kinetic rate of 0.24ppb−1 min−1 that rep-

resents the formation of all the stable nitrogen products,

whether gaseous or non-gaseous, i.e.

RP+NO2
k=2·k6
−−−−→ S(N)GN . (R8)

To further reduce the GRS scheme and improve the effi-

ciency of its numerical implementation, we use the quasi-

steady-state approximation (QSSA) for the radical pool

species RP, which is highly reactive and has the shortest life-

time among all the GRS species. This means that the radi-

cal pool is in a dynamic equilibrium, adjusting rapidly to the

other species concentrations. Solving the algebraic second-

order equation for the concentration of the radical pool, we

obtain

[RP] =
k2[NO] + 2k6[NO2]

2k5(√
1+

4k1k5[ROC]

(k2[NO] + 2k6[NO2])2
− 1

)
. (11)

This approximation has been validated a posteriori. There

was little to no impact on the simulated concentrations, while

the mean adaptive time step of the chemistry solver increased

significantly. Further explanations on how Eq. (11) is ob-

tained are given in Appendix B.

GRS is coupled to the L95 model. As for the L95-T model,

the L95 variables are seen as wind speeds that advect the

GRS chemical species. The objective is, therefore, to create

a simplified model that is able to reproduce the temporal vari-

ability of ozone chemistry at a regional to transcontinental

scale. There is a total of 40 wind variables and 200 concentra-

tion variables, namely the ROC, NO, NO2, O3, and S(N)GN

concentrations at each of the 40 grid points defined on the

circle using the C-grid. Note that the RP concentrations are

obtained from Eq. (11).

The transport equations for species [Ci] are consequently

d[Ci]m+ 1
2

dt
= ψ im−ψ

i
m+1+Ri

(
[Cj ]j=1,...,6

)
− λi[Ci]m+ 1

2
+Ei

m+ 1
2

, (12)

with ψ im = xm[Ci]m− 1
2

if xm ≥ 0 , (13)

ψ im = xm[Ci]m+ 1
2

if xm < 0 , (14)

where λi is the scavenging ratio, Ei is the emission rate and

Ri
(
[Cj ]

)
is the production term for Ci . There is no such

production term for ROC (RROC = 0) so that ROC behaves

as the tracer of L95-T. The full equations are given in Ap-

pendix B for completeness.

When L95-GRS is seen as a global low-order model,

the photolysis rate constant k3, which depends on sunlight,

should vary around the domain and with the season since it is

directly linked to the solar zenith angle at a given grid point.

Hence, there are points on the grid where it is nighttime, with

k3 = 0, and others where it is daytime, with k3 6= 0. However,

for the sake of simplicity, it has been chosen constant over

the domain and it varies according to a uniform daily cycle.

This choice does not impact the order of magnitude of the

simulated concentrations. A test where the coefficient varies

around the domain was performed and led to the same visual

result as in Fig. 3 but with a delay around the domain: the

black stripes of the figure that signal the time when the NO

concentrations reach 0 are slanted instead of straight.

As ROC is not consumed in Reaction (R1), it will even-

tually produce enough RP to consume all the NO, NO2, and

O3. Therefore, we have added emission fluxes for ROC and

NOx and a single scavenging ratio for all the species. The

emissions are considered constant over time and uniform

over the domain, even though a distinction between continent

and ocean will also be made in the following. These constants

have been chosen using a genuine emission inventory. Since

the domain of our model is supposed to be a mid-latitude cir-

cle discretised with 40 grid points, one cell of our domain

is roughly a few hundred kilometres in length. We used an

emission rate for NOx of 0.27 ppbday−1, where NO accounts

for 90% of these emissions and NO2 for 10%. This corre-

sponds to an emission of 3 kgyear−1 inhabitant−1 of NO for

60 million inhabitants in a volume of 700km×700km×3km

(typically France). We have fitted the values of the ROC

emission and scavenging coefficient in order to obtain con-

centrations of O3 and NOx within the range of realistic conti-

nental concentrations. Specifically, we used an emission rate

Geosci. Model Dev., 9, 393–412, 2016 www.geosci-model-dev.net/9/393/2016/
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Figure 1. Time evolution of the L95-GRS variables at one grid point. The L95 variables, flagged “Wind”, are shown with the original Lorenz

unit, while the concentration unit is ppb (ppbC for ROC).

of 0.0235 ppbCday−1 for the ROC species and a scavenging

ratio of 0.02 day−1. This ratio is the same as the reference

value of the L95-T model, since 1 Lorenz time unit corre-

sponds to 5 days. All parameters are listed in Appendix B.

2.2 Time integration of the model

The L95-T model is integrated in time using a fourth-order

Runge–Kutta (RK4) scheme with a time step of δt = 0.05 in

Lorenz time units, i.e. 6 h (Bocquet and Sakov, 2013).

Similarly, the L95 subsystem of the L95-GRS model

and the transport part are integrated with the RK4 scheme.

A first-order splitting of this integration and the chemistry

integration is performed, integrating first the L95 and species

transport part, followed by the GRS integration.

The chemical reactions of L95-GRS have a wide range of

rates, which leads to numerical stiffness. Hence, the RK4

scheme is an inadequate solver to integrate the chemistry,

even though it is more precise. An implicit or semi-implicit

scheme is required. That is why the GRS chemical scheme is

integrated with a second-order Rosenbrock method, follow-

ing Hundsdorfer and Verwer (2003). This method is costly

since it is based on a semi-implicit scheme that requires us-

ing the tangent linear model and solving two linear systems.

This is potentially the most time-consuming operation of the

whole model integration. Since the chemistry is local and

because of the splitting, the Rosenbrock scheme is actually

implemented block-wise, one block per grid point. The lin-

ear systems to be solved point-wise have a size equal to the

number of species. Because the integration of the chemistry

is block-wise, it can easily be parallelised. The tangent linear

model of GRS required by the Rosenbrock scheme is simple

to derive analytically and implement given the limited num-

ber of reactions.

Furthermore, an adaptive time stepping has been imple-

mented that adjusts the time step to the instantaneous stiff-

ness of the reaction rates. However, it has often been proven

unnecessary in the free model run (i.e. without data assim-

ilation) in conjunction with the QSSA used for the radical

pool.

The typical integration time step for the chemistry is δt =

1h. The L95 and transport subsystem of L95-GRS is inte-

grated with δt = 1h (δt = 0.05/6 in Lorenz units).

2.3 Qualitative analysis of the L95-GRS model

The outcome of a free run (after spin-up) at a grid point is

shown in Fig. 1. One notices the daily cycle induced onto the

NO, NO2, and O3 concentrations by the variation of the pho-

tolysis coefficient k3, since they are directly related to the

value of that coefficient through Reactions (R3) and (R4).

The wind speed and orientation variations are responsible

for the wave with a period of about 1 week. In real situa-

tions, O3 and NO concentrations can drop close to zero at

night (Finlayson-Pitts and Pitts Jr., 1986). In our simulation

results, only NO reaches zero at night while O3 remains at

high levels. However, if the ROC emissions are sufficiently

lowered or if the NOx emissions are sufficiently increased,

the opposite behaviour occurs.

This model, even if not chaotic, is highly nonlinear, ex-

hibiting distinct chemical regimes. This can be seen in Fig. 2,

which represents ozone isopleths for different mean ROC and

NOx concentrations. This feature is typical of lower tropo-

sphere ozone chemistry and is commonly known as an Em-
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Figure 2. Maximal ozone concentration (in ppb) averaged over the domain depending on maximal averaged ROC (in ppbC) and NOx

concentrations (in ppb). Each dot corresponds to a run with a different emission rate for ROC and NOx, leading to different maximal

averaged concentrations. The reference run is circled in black.

pirical Kinetic Modeling Approach (EKMA) diagram (Dimi-

triades, 1977). Two different regimes are visible in this graph.

The top part of the diagram, where the isopleths are steep,

corresponds to a ROC-limited regime. In this regime, a re-

duction in the emissions of the ozone precursor NOx leads to

an increase of the ozone concentrations (as long as the regime

does not change), while a diminution of ROC emissions re-

duces the ozone concentrations significantly. This is due to

the fact that in that ROC-poor regime, RP concentrations are

low and NO reacts preferentially with O3. On the contrary,

the bottom part of the diagram, where the isopleths are flat,

corresponds to a NOx-limited regime. In this regime, a re-

duction in the emissions of the ozone precursor NOx leads

to a strong decrease in the ozone concentrations, whereas the

ROC emissions have little to no impact on the ozone concen-

trations. Since the black circle corresponds to our reference

case, it is located in the ROC-limited regime.

In the NOx-limited regime, the low levels of NO con-

centrations reduce the amplitude of the daily cycle of the

ozone. Hence, the resulting concentrations rather correspond

to a background ozone simulation, with very low concentra-

tions of NOx and little daily variability of ozone. Because

GRS is meant to be used with concentrations typical of ur-

ban areas, we chose to remain in a ROC-limited regime even

though a global simulation should be NOx-limited. Never-

theless, several free runs and data assimilation experiments

have been performed as well in a NOx-limited regime and

lead to one noteworthy result: ROC concentration estima-

tions are worse than in our reference case, unlike NO2. This

makes sense because the NO2 concentrations mainly control

the model and an error on the ROC concentrations has less

impact on other species in this context.

To emphasise the impact of the transport of the chemical

species by the wind in the model, an experiment was per-

formed, where the domain was split into a continental zone

and an oceanic zone. In this experiment, we set the ROC and

NOx emissions on the continent to Ei > 0 for i in [1,20]

and on the ocean to Ei = 0 for i in [21,40]. The results of

this experiment, displayed in Fig. 3, show that puffs of ozone

and its precursors can cross the ocean, similarly to what is

witnessed over the Pacific (Lin et al., 2012) and the Atlantic

(Guerova et al., 2006). Moreover, ozone concentrations are

higher above the ocean in the absence of NO emissions. Note

also that the tracer plumes move eastward (increasing in-

dices), which is consistent with a positive group velocity for

the L95 model, while the peaks and lows of the L95 field

move westward according to the L95 negative phase velocity

(Lorenz and Emanuel, 1998).

So far, the wind kinetics (amplitude and variability) has

been determined by the original L95 model characteristics.

In the reference experiment, the waves of the wind extend

over several days. The concentrations are driven by this wind

kinetics but vary within those waves according to the photo-

chemical daily cycles. However, other types of behaviour are

possible with L95-GRS by choosing differently the timescale

of the L95 model. If time within the L95 model is rescaled

by α and the wind variables are rescaled by β,

dxm

dt
= α

[
β(xm+1− xm−2)xm−1− xm+

F

β

]
, (15)
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Figure 3. Time evolution of the L95-GRS variables over the whole domain in the case of a continent/ocean division. The L95 variables,

flagged “Wind”, are shown with the original Lorenz unit, while the concentration unit is ppb (ppbC for ROC).

it is possible to reduce the period of the wind wave and to

match that of the chemical daily cycles. This way, the species

concentrations are significantly modulated by the wind vari-

ations. In terms of spatial scale, this would correspond to re-

gional modelling rather than continental to global modelling

of the species fields. Figure 4 illustrates this timescale change

with α = 20 and β = 1. The winds fluctuate at a higher rate

than the concentrations, quite differently from the reference

configuration of Fig. 1. Adjusting β, it is also possible to

rescale the amplitude of the winds in the L95 equations to

match a more regional/lower troposphere transport behaviour

with weaker mean wind magnitude. Note that α, β are only

rescaling parameters that do not fundamentally impact the

nature of the model dynamics in contrast to, e.g. Carrassi

et al. (2008).

3 Numerical experiments with the L95-T model

In this section, we experiment on the use of data assimila-

tion techniques for forecasting and reanalysis with the tracer

model (L95-T) beyond the preliminary results of Bocquet

and Sakov (2013). The aim is to demonstrate the advan-

tages brought by this model to study certain data assimila-

tion strategies. Several of the results and interpretations in

this section will also apply to data assimilation systems op-

erating with the L95-GRS model.

3.1 Definition of online and offline data assimilation

systems

A typical offline model is a CTM where the meteorological

fields have been generated externally and are given as an in-

put to the model. These fields usually stem from operational

meteorological prediction centres or from any independently

run meteorological model. On the other hand, online mod-

els consistently process meteorology, chemistry, and trans-

port of species all together, but at a higher numerical cost.

The choice of an offline or online approach is a crucial issue

as far as modelling is concerned (Zhang et al., 2012). It is

even more so when data assimilation techniques are applied

to offline or online models because of the fluxes of informa-

tion between the two subsystems: chemistry and transport on

the one hand and meteorology on the other hand (Milewski

and Bourqui, 2011; Bocquet et al., 2015a).

The L95-T model stands as a well-suited simple tool to ex-

periment on this issue. In the following, we apply the quasi-

static IEnKS to L95-T using either an offline or an online

approach. A distinction is made between

– The full online data assimilation system for the L95-T

model. Even though the L95 subsystem of the model

does not depend on the tracer subsystem, it should be

kept in mind that information propagates both ways in

advanced data assimilation methods, as long as the error

covariance matrices are defined over both subsystems.
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Figure 4. Time evolution of the L95-GRS variables at one grid point with a time rescaling of α = 20 applied to the L95 model. The L95

variables, flagged “Wind”, are shown with the original Lorenz unit, while the concentration unit is ppb (ppbC for ROC).

– The offline data assimilation system for the L95-T

model. The L95 subsystem is run separately. The IEnKS

is applied to L95 with a DAW length Lw (in units

of 1t). The IEnKS is applied separately to the tracer

subsystem (transport, deposition, and emission) with

a DAW length Lc (in units of 1t). For advection, the

winds are provided by the analyses of the independent

L95 data assimilation system. Therefore, no feedback

from the tracer subsystem to the L95 subsystem is to be

expected. The information gained from the observations

flows one way. Moreover, for the tracer subsystem, the

uncertainty of the wind field constitutes a realistic and

significant source of model error. We believe that this is

an elegant way to create consistent model error, beyond

stochastic noise or offset parameters.

We conduct synthetic data assimilation experiments, ap-

plying the IEnKS to the L95-T model. A simulation of L95-

T that represents the truth is generated, with E = 1, λ= 0.1.

Synthetic observations are generated from the truth every

1t = 0.05. The system is fully observed, on both wind and

concentration variables. An unbiased Gaussian white noise

is used to perturb the observations. At any observation time,

the observation error covariance matrix for the wind and the

tracer is in both cases R= I the identity matrix. The anal-

ysis, output of the data assimilation system, is compared to

the truth using a root mean square error (RMSE), for the me-

teorological subsystem as well as for the tracer subsystem.

Reliable statistics are computed over runs of 105
×1t with

a burn-in period of 5× 103
×1t .

The ensemble size of the IEnKS has been chosen to be

N = 20 in a dynamical regime of L95-T where localisation

is unnecessary. Yet, sampling errors due to the finite-size of

the ensemble would require the use of inflation of the errors.

To avoid this issue, we use the finite-size scheme of Boc-

quet (2011), Bocquet and Sakov (2012), and Bocquet et al.

(2015b) where no inflation tuning is necessary. Practically, it

means that whenever the IEnKS is mentioned, the finite-size

IEnKS (IENKS-N) has been used instead or, equivalently,

that we enforced optimal inflation meant to account for sam-

pling errors. However, note that the finite-size approach does

not account for model error but rather sampling errors.

We consider several practical variants of the offline data

assimilation system for the tracer model. In the first offline

system, called Offline 1a in the following, the mean analysis

wind is provided to the IEnKS of the tracer subsystem, both

for the forecast step and the analysis step of the IEnKS. In

this baseline case, we choose Lw = Lc. In a second variant,

the winds are obtained through an EnKF; i.e. Lw = 0 and Lc

is varied (experiment Offline 1b). In a third variant, the winds

are obtained from an IEnKS with a given Lw and an EnKF is

run for the tracer subsystem, i.e. Lc = 0 (experiment Offline

1c).

Because the uncertain winds are a source of model error

for the offline system, we also implement a multiplicative

inflation on top of the IEnKS-N. It is applied on the prior

by a rescaling of the anomalies. We choose the inflation that

leads to the best RMSE.

In a last variant of the offline model, called Offline 2, the

analysis mean wind is still provided for the analysis step

of the IEnKS applied on the tracer subsystem. Yet, the full

analysis wind ensemble, rather than the mean, is provided

in the forecast step of the IEnKS applied on the tracer sub-

system. If the wind ensemble spread is representative of the

wind uncertainty, it is hoped that the uncertainty in the winds
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will be properly accounted for. As in the Offline 1 experi-

ments, a multiplicative inflation is also applied for any resid-

ual model error.

The full online data assimilation system is also run for

comparison (experiment Online), without any multiplicative

inflation.

3.2 Comparison of online and offline data assimilation

systems

The performance of these systems as a function of the DAW

length is reported in Fig. 5. The best estimate of the present-

time wind and concentration state vectors are compared to

the truth leading to the filtering RMSE, which is a good in-

dication of the forecasting quality in this context. Best es-

timates for the past state vectors (reanalysis) are also com-

pared to the truth, leading to the smoothing RMSE. For

a DAW of length L, a run of length Nt (both in units of 1t),

and a state vector of size M , the formulas of the RMSEs are

RMSEfiltering
=

1

Nt

Nt∑
i=1

√
1

M
||ML←0(x

i
a)− x

i+L
t ||

2

and

RMSEsmoothing
=

1

Nt

Nt∑
i=1

√
1

M
||xia− x

i
t ||

2,

where xka is the state analysis at time k, xkt is the truth at time

k, and for a vector x of size M , ||x||2 =
M∑
j=1

x2
j .

First of all, the online system has a very significant edge

over the offline systems because of the two-way information

flows, both for the concentration variables and for the wind

variables. This shows that concentration observations can

significantly improve meteorological forecasts, in agreement

with the results of Semane et al. (2009) obtained when assim-

ilating real observations of lower stratospheric ozone. For all

offline systems, the wind variables cannot benefit from the

assimilation of concentrations, but only from the L95 obser-

vations. Therefore, from now on, we shall focus on the tracer

subsystem.

The extrinsic model error due to the uncertain winds must

be accounted for in the tracer subsystems. Otherwise, the

ensemble of the tracer subsystem collapses (the ensemble

method diverges). In the absence of any correction for model

error, we observe that the estimation is close to a free run,

with an average filtering RMSE of about 0.65.

Yet, as expected, accounting for model error offers bet-

ter performance. Let us first consider cases 1a, 1b, and 1c

that use the best estimate of the mean wind and apply mul-

tiplicative inflation to account for model error. Configuration

Offline 1a, i.e. when Lc = Lw, offers a baseline performance

for the filtering and smoothing RMSEs, which improves as

the joint DAW length increases. It remains quite far from the

performance of the online system since multiplicative infla-

tion cannot compete with a better wind estimate.

With configuration Offline 1b, where the mean wind es-

timate comes from an EnKF (Lw = 0), the average filtering

RMSE does not benefit from an extended DAW for the tracer,

while the smoothing RMSE only marginally benefits from

short DAW (up to Lc = 2) before degrading. Hence a longer

window for this CTM system is inefficient. We attribute this

important property to the stable and linear dynamics of trans-

port.

With configuration Offline 1c, the tracer data assimilation

system is based on an EnKF, while the wind estimation gets

better as Lw gets larger. Therefore, the improvement that is

observed for the filtering RMSE comes from reduced model

errors. In this configuration, the filtering and smoothing RM-

SEs coincide since the concentrations are merely estimated

by an EnKF (Lc = 0).

In the light of these results, we understand that the im-

provement that is observed in configuration 1a comes from

the reduced uncertainty in the wind fields in the first place.

Note that as Lc = Lw gets larger, the tracer analysis within

the DAW of length Lc uses wind fields with lower error

thanks to smoothing. This explains why the improvement

in the RMSEs is more pronounced than in configuration 1b,

which only benefits from the filtered winds at present time.

With configuration Offline 2, model error is addressed by

not only the multiplicative inflation but also the ensemble of

winds in the forecast steps. Each wind member is ascribed

to a tracer member. This is similar to stochastic parametrisa-

tion where one changes the model input parameters for each

member of the CTM (Wu et al., 2008). This shows much bet-

ter performance. As far as filtering is concerned, the optimal

inflation is an increasing function of Lc (with an inflation of

1.06 for anomalies at Lc = 25), whereas the absence of infla-

tion is optimal for smoothing.

One lesson is that a variational analysis over a long DAW

is useless for the offline transport subsystem, because of

its linear dynamics; an IEnKS, or a 4D-Var analysis does

not perform better than an EnKF analysis in this context.

This conclusion will not necessarily hold with the L95-GRS

model because of the nonlinear chemistry.

3.3 Emission/deposition regime

The scavenging ratio λ and the emission rate E control the

tracer mass budget in the domain. Their ratio can lead to dif-

ferent regimes of the physics of the model. It can impact

the performance of data assimilation. In the reference case

(E = 1, λ= 0.1), parcels of tracer travel over large distances

before deposition. Hence, an observation of the tracer con-

centration at a grid point gives information about the wind

magnitude and direction at other grid points several time

steps in the past.

A synthetic experiment where the scavenging ratio λ is

varied over several orders of magnitude has been set up to
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Figure 6. Average filtering analysis RMSEs of the wind variables (left) and concentration variables (right) of the L95-T, as a function of the

scavenging ratio for the ensemble transform EnKF (IEnKS with L= 0) and the IEnKS with L= 15.

highlight this point. The emission flux E is tuned in order

to keep the ratio E/λ constant. Thus, the order of magnitude

of the concentrations is unchanged so that the relative preci-

sion of the concentration observations remains the same with

an unchanged error covariance matrix. The set-up of this ex-

periment is the same as in the previous section, but only the

online data assimilation system based on the L95-T model is

used.

The average filtering RMSE of the concentration variables

and of the wind variables are plotted in Fig. 6 as a function of

the scavenging ratio. The RMSE remains rather constant for

both the concentrations and the winds for small scavenging

ratios, with the same performance as in the reference case

(E = 1, λ= 0.1). However, as soon as λ > 1, the behaviour

changes. With such higher values of the scavenging ratio, the

wind does not have sufficient time to transport the tracer over

significant distances. The information about the wind embed-
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ded in the observations of the concentrations diminishes and

the wind RMSE increases. On the contrary, the absence of

transport of the tracer by the wind reduces the detrimental

impact of diffusion making the concentrations easier to esti-

mate (in the fully observed configuration at least). Moreover,

the benefit of using a larger DAW (L= 15 here) is greater

with lower scavenging ratios because the tracer is advected

farther in space. Indeed, pieces of information contained in

concentration observations help estimate the wind back in

time before the tracer was advected by that wind. These re-

sults stress that variational schemes implemented over large

DAW have an advantage over the EnKF in that context.

3.4 Observation network

The performance of the EnKF and of the IEnKS is now stud-

ied with the L95-T model when the observations of the tracer

concentrations are sparser. The set-up of this synthetic exper-

iment remains unchanged except for the density of the obser-

vations. The wind variables are observed on all grid points

while only some of the observations of the tracer concentra-

tions are assimilated. The observations of the concentrations

are chosen to be evenly spread. The number of observations

is a divisor of 40 and belongs to {1,2,4,5,8,10,20,40}.

The performance of the IEnKS is studied for several DAW

lengths L= 0,1,2,3,4,5,10,20. The resulting average fil-

tering RMSEs for the concentration variables and the wind

variables are shown in Fig. 7. In both cases, the gain derived

from using a longer DAW is undeniable: the gain in RMSE

is greater for large L than for small L, but the marginal gain

decreases with L.

4 Applying the IEnKS to the L95-GRS model

The IEnKS is now applied to the L95-GRS model introduced

in Sect. 2. We showed that the model could reproduce the

main physical and chemical processes of interest. The aim

in this section is to show that it offers a rich playground for

testing data assimilation methods. The approach is similar to

the one applied in Sect. 3. Apart from an overall performance

test, we will focus on specific aspects not addressed in Sect. 3

of relevance for this type of model.

Twin experiments are conducted where each chemical

species is observed. The observations are drawn from the

truth every 1t = 6 h and perturbed using a Gaussian white

noise. The standard deviations of the error for the concen-

trations have been chosen to correspond to about 10 % of

the average value of the concentration over the domain.

Specifically, the observation error covariance matrix of each

species is of the form R= σ 2I, where σ 2
= 1 for the wind

in Lorenz units, σ 2
= 0.01ppbC2 for ROC, σ 2

= 0.16ppb2

for NO, σ 2
= 1ppb2 for NO2, σ 2

= 4ppb2 for O3, and σ 2
=

0.01ppb2 for S(N)GN. All the RMSEs shown in this section

are normalised by the observational error standard deviation

of the corresponding species. All the data assimilation runs

use the same set-up as used with the L95-T model. The size

of the ensemble is set again to N = 20, except when locali-

sation is tested.

4.1 Performance

At first, the number and distribution of observations of the

concentration variables have been varied following the same

set-up as in Sect. 3.4. All the chemical species are observed

but only at selected grid points. The resulting average fil-

tering RMSEs for the concentration variables and the wind

variables are shown in Fig. 8. We found that with poor ob-

servability of the concentrations, the system’s state estimate

can be imprecise. When the concentrations are only observed

at one point, the EnKF diverges from the truth. The IEnKS

with L= 1 also fails to estimate the S(N)GN better on aver-

age over the whole domain than the standard deviation of the

single observation.

To be more realistic, further experiments will assimilate

sparse concentration observations. We choose to keep eight

observations in the domain per species, that is to say at 1 ev-

ery 5 grid points. In this context, the DAW length has been

varied over a wider range of values. The time-averaged anal-

ysis filtering and smoothing RMSEs for the wind and the

concentrations are shown in Fig. 9. Even though the model is

strongly nonlinear, the IEnKS method can account for these

nonlinearities and, therefore, it performs well and improves

with L for both the filtering and smoothing RMSEs. The

S(N)GN species is still the one with the worst results, proba-

bly because it is little correlated with the other species except

for ROC. A misestimation of its concentration has no conse-

quences on the other species.

4.2 Parameter estimation

In atmospheric chemistry, there is a strong dependency of

the model on the values of the various forcings, such as the

boundary conditions (Roustan et al., 2010), the meteorolog-

ical fields (Dawson et al., 2007) or the emission rates of

the pollutants and their precursors (Cohan et al., 2005). It

is therefore important to estimate these inputs and data as-

similation can be a powerful tool in this context. Here, we

show how the L95-GRS model allows us to test parameter

estimation strategies, which is illustrated using the IEnKS.

To estimate a set of model parameters θ ∈ RP along with

the state variables, the state vector is augmented from x ∈

RM to a vector

z=

(
x

θ

)
∈ RM+P , (16)

in the joint state and parameter space. It is also necessary to

define a forward model for the parameters. The persistence

model is chosen, i.e. θk+1 = θk .

The estimation of the main parameters of the L95-T model

(forcing of the L95 and emission rate of the tracer) with
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Figure 7. Average filtering analysis RMSEs of the wind variables (left) and concentration variables (right) of the L95-T, as a function of

the number of concentration observations for the IEnKS with several DAW lengths. The case L= 0 corresponds to the ensemble transform

EnKF.
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IEnKS with three DAW lengths. The case L= 0 corresponds to the ensemble transform EnKF. The RMSEs are normalised by the standard

deviations of the observation error.

various data assimilation methods, including the IEnKS, has

been experimented upon by Bocquet and Sakov (2013). Sim-

ilarly, we conduct a twin experiment with the L95-GRS

model where, in addition to the state variables, the F forcing

of the L95 model and the emission rates of ROC and NOx are

estimated simultaneously. The state space is, therefore, aug-

mented from a 240- to a 240+ 3-vector of the joint state and

parameter space. The parameter variables in the ensemble are

set as follows.

– For the emission rates: the ensemble is initialised

around the truth by adding an unbiased Gaussian noise

of standard deviation 10% of the true value.

– For F : the ensemble is initialised around the value

F = 7 by adding an unbiased Gaussian noise of stan-

dard deviation 10% of the true value.

Rather than the single data assimilation (SDA) version of

the IEnKS presented in Appendix A, we use the multiple data

assimilation (MDA) version, which is very similar, less accu-
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Figure 9. Average filtering and smoothing analysis RMSEs of the L95-GRS variables, as a function of the DAW length (in units of1t = 6h).

The case L= 0 corresponds to the ensemble transform EnKF. The RMSEs are normalised by the standard deviations of the observation error.

rate for smallL but more stable for largeL. The MDA IEnKS

algorithm is described in detail in Bocquet and Sakov (2014).

Let us first mention that the RMSEs of the state variables

are barely changed by the joint state and parameter estima-

tion, as well as by the use of a different variant of the IEnKS

in this experiment. Hence, the results in Fig. 9 for state vari-

ables still hold. The parameter values are plotted in Fig. 10,

over time intervals of different lengths. We observe that only

a few days are required to converge to the right value for the

forcing parameter of the meteorology F , while a few dozens

of days are necessary for the emission rates to stabilise. This

is due to the high sensitivity of both wind and concentration

variables to the forcing F of the wind model, which controls

its chaotic behaviour, as well as to the fact that there is a bias

on the initial value of F . At the end of a long data assimila-

tion run, the algorithm has converged to the right values with

a precision of less than a percent. The use of a long DAW

improves the estimation of the parameters and the smooth-

ness of the results. The case L= 1 shows that the method

can sometimes converge to a biased value for a long period

of time.

It could be possible to estimate chemical reaction rates, for

instance, the ROC photolysis rate. However, our experiments

have shown that the filter diverges. It probably happens be-

cause this rate is equal to 0 at night. Hence, it is imperative

to set a prior distribution on this type of parameter to avoid

divergence when the model becomes insensitive to the pa-

rameter. But, this is outside the scope of this work.

4.3 Localisation

Estimating covariances from a limited size ensemble of state

vectors produces spurious long distance correlations between

variables. This degrades the estimation of the error statis-

tics and can lead to divergence in ensemble data assimi-

lation methods. To address this issue, localisation is used

in high-dimensional systems implementing ensemble meth-

ods. There are two main localisation methods known as

covariance localisation and local/domain analysis (Sakov

and Bertino, 2011, and references therein). The first method

consists in tapering the empirical covariance matrix using

a Schur product with short-range correlation function. The

second method performs the analysis in a local domain

around each grid point, using only nearby observations. Both

localisation methods have been tested with success with

EnKF techniques applied to the L95-GRS model. Here, we

provide an illustration of such experiments.

We tested covariance localisation on the L95-GRS model

using the DEnKF data assimilation method from Sakov and

Oke (2008). This method has the advantage of being com-

putationally efficient while allowing a straightforward use

of Schur localisation. The RMSEs are shown in Fig. 11, as

a function of the ensemble size, with optimally tuned infla-
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Figure 10. Time evolution (days) of the parameter variables for several DAW lengths without spin-up (main) or after a long time (inset).

The case L= 0 corresponds to the ensemble transform EnKF. F is shown with the original Lorenz unit, while the emission rate unit is

ppb Cday−1 or ppbday−1.

tion and localisation radius. For comparison, the results with-

out localisation are shown as well. We see how localisation

allows us to reduce the size of the ensemble below 18 without

diverging, even though it leads to a degradation of the scores

for very small ensemble sizes (N < 10).

5 Conclusions

The aim of this article is to introduce low-order models on

which to test advanced data assimilation methods in order to

gain insights on some of the many difficulties encountered

in data assimilation applied to meteorology and atmospheric

chemistry. Amongst them, the questions of inflation, locali-

sation for ensemble methods, model error, online and offline

modelling, or nonlinearities have been addressed.

Building on the L95-T model, where the transport of

a tracer is coupled to the L95 model, we introduced a new

model, L95-GRS, where the tracer part is replaced with

a simplified ozone chemistry. The L95-GRS model shows

important peculiarities typical of tropospheric ozone chem-

istry. It has been adjusted to simulate pollutant concentra-

tions of realistic magnitude. Ozone precursors can experi-

ence long-range transport by the meteorology and lead to

ozone episodes far from the pollutant sources. It is possi-

ble to tune the wind magnitude in order to modify the time-

and space scale of the model. Moreover, it has stiff equa-

tions that require the use of the same numerical tools as high-

dimensional CTMs. Last but not least, it shows a nonlinear

response to the emission rates of the ozone precursors. It thus

includes several of the hardships of high-dimensional chem-

istry models without the high numerical cost. As such, it can

be used to experiment upon and validate new data assimila-

tion methods in the context of atmospheric chemistry mod-

elling and coupled chemistry meteorology modelling.

To illustrate the use of advanced data assimilation methods

on these models, and specifically ensemble variational meth-

ods, we first performed new experiments on the L95-T with

the iterative ensemble Kalman smoother (including the en-

semble Kalman filter). We showed that this model is suitable

to test online and offline strategies for data assimilation, as

well as to emulate model error stemming from a meteorolog-

ical field, or an ensemble forecast of meteorological fields.
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Figure 11. Average filtering analysis RMSEs of the L95-GRS variables, as a function of the ensemble size for the DEnKF without local-

isation or with optimally tuned localisation radius. The L95 variables, flagged “Wind”, are shown with the original Lorenz unit, while the

concentration unit is ppb (ppbC for ROC).

More specifically, we experimented on the offline version

of the L95-T model, where the meteorology and the tracer

subsystems are integrated and assimilated separately. This

decoupling introduces model error into the tracer subsystem.

In this context, having an ensemble of analyses from a data

assimilation on the meteorology as an input to the tracer sub-

system gives us a representative sample of this model error.

By doing so, we have avoided the use of inflation and ob-

tained optimal performance. We noticed as well that, for data

assimilation purposes, the coupling of the two subsystems is

only relevant when they have similar evolution timescales.

In the case where the tracer subsystem evolves too quickly

or too slowly compared to the meteorology, the coupling of

these two parts fails to improve the results of the data assim-

ilation compared to an offline case.

The use of data assimilation methods was also illustrated

with the L95-GRS model. The iterative ensemble Kalman

smoother performs well despite the nonlinearities of the

model and even if the observation network is sparse. In par-

ticular, the model can help testing parameter estimation tech-

niques with multiple parameters usually met in CCMMs and

CTMs. The use of localisation was also successfully tested

with L95-GRS. By making this wide range of experiments,

we concluded that the L95-GRS model is suitable to test ad-

vanced data assimilation schemes.

A broad class of models could be developed by exchang-

ing the L95 meteorological part with another low-order

model. The L95 model has anti-correlations in space and

time that are not observed in more realistic models. It could

be replaced by its continuous extension, the Lorenz 2005-

II model (Lorenz, 2005), which could offer a more complex

set-up for testing localisation, but still suffers from similar

correlation patterns. Alternatively, the L95 meteorological

part could be exchanged with the multiscale Lorenz 2005-

III model to explore the impact of subgrid-scale model er-

ror. To study space–time intermittent behaviours, the model

of Kuramoto–Sivashinsky (Vannitsem and Nicolis, 1994, and

references within) could be implemented. Alternatively, the

Burgers equation could be used to study the impact of a front

(concentration/rarefaction) on the chemistry. If such continu-

ous meteorological models are used, the choice of the advec-

tion scheme could be revised as well, and a more accurate

higher-order one compared to the upwind scheme could be

used, alongside with a flux limiter.

The L95-GRS model depends on several key species-

dependent chemical and physical parameters that introduce

many time- and space scales in the data assimilation system

and that impact its observability and controllability. These

parameters are likely to be representative of those of realistic

CCMMs and CTMs. We have only investigated the impact of

a few of those parameters, fixing the others. But a more gen-
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eral parameter-wise exploration of data assimilation systems

built on L95-GRS is desirable.

Finally, following this study, we are planning to test the

IEnKS on the Polair3D CTM of the research and operational

Polyphemus modelling platform (Mallet et al., 2007; Sartelet

et al., 2012) building on the experience acquired with the

L95-T and L95-GRS low-order models.

Code availability

The code for the models L95-T and L95-GRS can be

downloaded from the following website: http://cerea.enpc.fr/

l95-grs/

Geosci. Model Dev., 9, 393–412, 2016 www.geosci-model-dev.net/9/393/2016/
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Appendix A: Algorithm of the IEnKS

The following pseudo-algorithm specifies a variant of the

IEnKS, called the single data assimilation (SDA) IEnKS

(Bocquet and Sakov, 2014). The minimisation of the nonlin-

ear cost function is based on a Gauss–Newton scheme (other

schemes such as BFGS or Levenberg–Marquardt are pos-

sible). The sensitivities are computed by a finite difference

scheme (bundle variant, as in Bocquet and Sakov, 2012).

They could also be computed using the propagation of the

ensemble (ensemble transform variant, as in Sakov et al.,

2012) as well. The data assimilation window is of length

L1t . In the algorithm, tL is present time. The forward model

resolvent from tk to tk+1 isMk+1←k; the observation oper-

ator at tk is Hk . ε, e, and jmax are algorithmic parameters

with values taken to be 10−4, 10−3, and 20, respectively. The

outcome is largely independent of these parameters. E0 is

the ensemble matrix at t0, whose columns are the ensemble

vectors: x0
1,x

0
2, . . .,x

0
N . yk is the observation vector at tk . λ

is the inflation factor. U is an orthogonal matrix in RN×N
satisfying U1= 1, where 1= (1,1, . . .,1)T. In between two

updates, the ensemble is forecast over S1t . The configu-

ration L= 0,S = 1 corresponds to the ensemble transform

Kalman filter; L= 1,S = 1 corresponds to the iterative en-

semble Kalman filter; and for any L, S = 1 corresponds to

the generic quasi-static IEnKS.

Algorithm 1 A cycle of the lag-L / shift-S / SDA / bundle

/ Gauss-Newton IEnKS.

1: j = 0, w = 0

2: x
(0)
0
= E01/N

3: A0 = E0− x
(0)
0

1T

4: repeat

5: x0 = x
(0)
0
+A0w

6: E0 = x01T
+ εA0

7: for k = 1, . . .,L do

8: Ek =Mk←k−1(Ek−1)

9: if k ∈ [L− S+ 1,L− 1] then

10: yk =Hk(Ek)1/N

11: Yk = (Hk(Ek)− yk1T)/ε

12: end if

13: end for

14: yL =HL(EL)1/N

15: YL = (HL(EL)− yL1T)/ε

16: ∇J̃ = (N − 1)w−
∑L
k=L−S+1YT

k
R−1
k
(yk − yk)

17: H̃= (N − 1)IN +
∑L
k=L−S+1YT

k
R−1
k

Yk

18: Solve H̃1w =∇J̃
19: w := w−1w

20: j := j + 1

21: until ||1w|| ≤ e or j ≥ jmax

22: E0 = x01T
+
√
N − 1A0H̃−

1
2 U

23: ES =MS←0(E0)

24: xs = ES1/N

25: ES := xS1T
+ λ

(
ES − xS1T

)

Appendix B: Full equations and parameters of

L95-GRS

Equations for the Lorenz variables xm, m ∈ [1,M]:

dxm

dt
= (xm+1− xm−2)xm−1− xm+F.

Equations of the chemical species concentrations:

d[ROC]
m+ 1

2

dt
= ψROC

m −ψROC
m+1 − λ[ROC]

m+ 1
2
+EROC

m+ 1
2

, (B1)

d[RP]
m+ 1

2

dt
= ψRP

m −ψ
RP
m+1− λ[RP]
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2
+ k1[ROC]
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2

−[RP]
m+ 1

2

(
k2[NO]
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2
+ 2k6[NO2]m+ 1

2
+ k5[RP]
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dt
= ψNO
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NO
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2
+ENO
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2
− [NO]

m+ 1
2

(
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2
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)
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d[NO2]m+ 1
2

dt
= ψNO2

m −ψ
NO2
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NO2
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2
[O3]m+ 1

2
, (B5)

d[S(N)GN]
m+ 1

2

dt
= ψS(N)GN

m −ψ
S(N)GN
m+1 − λ[S(N)GN]

m+ 1
2

+ 2k6[NO2]m+ 1
2
[RP]

m+ 1
2
, (B6)

with the following definitions of the fluxes

ψC
m = xm[C]m− 1

2
if xm ≥ 0

ψC
m = xm[C]m+ 1

2
if xm < 0 ; (B7)

the constants

M = 40 , F = 8 , λ= 0.02day−1
; (B8)

the emission rates (in ppbCday−1 for ROC or ppbday−1 for

NOx)

EROC

m+ 1
2

= 0.0235 , ENO

m+ 1
2

= 0.27× 0.9= 0.243 ,

E
NO2

m+ 1
2

= 0.27× 0.1= 0.027 ; (B9)

and the kinetic rates computed at T = 300K (all in

ppb−1 min−1, except for k1 in min−1)

k1 = 0.00152× k3 , k2 = 12.3 , k4 = 0.275 ,

k5 = 10.2 , k6 = 0.12 . (B10)
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Table B1. Hourly values of k3 in min−1.

t k3 t k3 t k3 t k3

00 h 0 06 h 0.1972314 12 h 0.622824 18 h 0.00675528

01 h 0 07 h 0.3910734 13 h 0.611526 19 h 0

02 h 0 08 h 0.5074326 14 h 0.5755002 20 h 0

03 h 0 09 h 0.5755002 15 h 0.5074326 21 h 0

04 h 0 10 h 0.611526 16 h 0.3910734 22 h 0

05 h 0.00675528 11 h 0.622824 17 h 0.1972314 23 h 0

k3 is the photolysis rate of NO2 in min−1, which is a func-

tion of solar radiation. It was computed using Fast-JX (Voul-

garakis et al., 2009). We then took the value on 21 March at

the Equator and used it repeatedly without attenuation. If k3

is required between two hours, a linear interpolation is per-

formed. Specifically, hourly values of k3 used are reported in

Table B1.

The quasi-steady-state approximation (QSSA) consists in

replacing Eq. (B2) by diagnosing the concentration of RP at

each grid point assuming steady-state for a given time step.

This means that there is a dynamical equilibrium between the

chemical production and decay of the RP, which implies

0=
d[RP]

dt
= k1[ROC] − [RP](k2[NO] + 2k6[NO2] + k5[RP])

⇔ [RP] =
k2[NO] + 2k6[NO2]

2k5(√
1+

4k1k5[ROC]

(k2[NO] + 2k6[NO2])
2
− 1

)
. (B11)

The model is integrated with an autonomous second-order

Rosenbrock method with a time step of δt = 1h. With this

time step, an adaptive time step is unnecessary with the

QSSA version of the model but is required in the non-QSSA

case.
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