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Abstract. We present a generic algorithm for numbering and
then efficiently iterating over the data values attached to an
extruded mesh. An extruded mesh is formed by replicating
an existing mesh, assumed to be unstructured, to form layers
of prismatic cells. Applications of extruded meshes include,
but are not limited to, the representation of three-dimensional
high aspect ratio domains employed by geophysical finite el-
ement simulations. These meshes are structured in the ex-
truded direction. The algorithm presented here exploits this
structure to avoid the performance penalty traditionally asso-
ciated with unstructured meshes. We evaluate the implemen-
tation of this algorithm in the Firedrake finite element sys-
tem on a range of low compute intensity operations which
constitute worst cases for data layout performance explo-
ration. The experiments show that having structure along the
extruded direction enables the cost of the indirect data ac-
cesses to be amortized after 10–20 layers as long as the un-
derlying mesh is well ordered. We characterize the result-
ing spatial and temporal reuse in a representative set of both
continuous-Galerkin and discontinuous-Galerkin discretiza-
tions. On meshes with realistic numbers of layers the per-
formance achieved is between 70 and 90 % of a theoretical
hardware-specific limit.

1 Introduction

In the field of numerical simulation of fluids and structures,
there is traditionally considered to be a tension between
the computational efficiency and ease of implementation of
structured grid models, and the flexible geometry and resolu-
tion offered by unstructured meshes.

In particular, one of the grand challenges in simulation
science is modelling the ocean and atmosphere for the pur-
poses of predicting the weather or understanding the Earth’s
climate system. The current generation of large-scale opera-
tional atmosphere and ocean models almost all employ struc-
tured meshes (Slingo et al., 2009). However, requirements
for geometric flexibility as well as the need to overcome scal-
ability issues created by the poles of structured meshes have
led in recent years to a number of national projects to cre-
ate unstructured mesh models (Ford et al., 2013; Zängl et al.,
2015; Skamarock et al., 2012).

The ocean and atmosphere are thin shells on the Earth’s
surface, with typical domain aspect ratios in the thousands
(oceans are a few kilometres deep but thousands of kilo-
metres across). Additionally the direction of gravity and the
stratification of the ocean and atmosphere create important
scale separations between the vertical and horizontal direc-
tions. The consequence of this is that even unstructured mesh
models of the ocean and atmosphere are in fact only unstruc-
tured in the horizontal direction, while the mesh is composed
of aligned layers in the vertical direction. In other words, the
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meshes employed in the new generation of models are the
result of extruding an unstructured two-dimensional mesh to
form a layered mesh of prismatic elements.

This layered structure was exploited in Macdonald et al.
(2011) to create a numbering for a finite volume atmospheric
model such that iteration from one cell to the next within a
vertical column required only direct addressing. They show
that when only paying the price of indirect addressing on the
base mesh there is less than 5 % performance difference be-
tween two implementations of an atmospheric model which
treat the same icosahedral mesh first as fully structured and
then as partially structured (extruded). One of the caveats of
that comparison is that the underlying mesh is fully struc-
tured in both cases, which presents an advantage to the indi-
rect addressing scheme which is not present for more general
unstructured meshes.

Exploiting the anisotropic nature of domains has seen var-
ious software developments in various fields. For example,
p6est (Isaac et al., 2015 and Isaac, 2015, Sect. 2.3), a pack-
age for 2+ 1 dimensional adaptive mesh refinement, was de-
veloped to maintain columnwise numbering for numerical
reasons in ice sheet modelling, but does not support gen-
eral unstructured base meshes. The DUNE-PrismGrid mod-
ule (Gersbacher, 2012) provides extruded meshes for any
base DUNE grid, but does not describe a degree of freedom
numbering or provide detailed performance characteristics
of the iteration on extruded meshes. The Model for Predic-
tion Across Scales (MPAS) uses a column innermost num-
bering for their C-grid atmospheric and ocean model (Sarje
et al., 2015). Their implementation is limited to the single
discretization employed by that model.

A key motivation for this work was to provide an efficient
mechanism for the implementation of the layered finite el-
ement numerics which have been adopted by the UK Met
Office’s Gung Ho programme to develop a new atmospheric
dynamical core. The algorithms here have been adopted by
the Met Office for this purpose (Ford et al., 2013). While geo-
physical applications motivate this work, the algorithms and
their implementation in Firedrake (Rathgeber et al., 2016)
are more general and could be applied to any high aspect ra-
tio domain.

Contributions

– We generalize the numbering algorithm in Macdonald
et al. (2011) to the full range of finite element discretiza-
tions.

– We demonstrate the effectiveness of the algorithm with
respect to absolute hardware performance limits.

2 Unstructured meshes

In this section we briefly restate the data model for un-
structured meshes introduced in Logg (2009) and Knepley

and Karpeev (2009). In Sect. 2.2 we rigorously define a
mesh, and explain mesh topology, geometry, and number-
ing. In Sect. 2.3 we explain how data may be associated with
meshes.

2.1 Terminology

When describing a mesh, we need some way of specifying
the neighbours of a given entity. This is always possible us-
ing indirect addressing in which the neighbours are explicitly
enumerated, and sometimes possible with direct addressing
where a closed-form mathematical expression suffices.

In what follows we start with a base mesh which we will
extrude to form a mesh of higher topological dimension. Due
to geophysical considerations, we refer to the plane of the
base mesh as the horizontal and to the layers as the vertical.

We will also employ the definition of a graph as a set V
and a set E of edges where each edge represents the relation-
ships between the elements of the set V .

2.2 Meshes

A mesh is a decomposition of a simulation domain into
non-overlapping polygonal or polyhedral cells. We consider
meshes used in algorithms for the automatic numerical so-
lution of partial differential equations. These meshes com-
bine topology and geometry. The topology of a mesh is com-
posed of mesh entities (such as vertices, edges, and cells) and
the adjacency relationships between them (cells to vertices or
edges to cells). The geometry of the mesh is represented by
coordinates which define the position of the mesh entities in
space.

Every mesh entity has a topological dimension given by
the minimum number of spatial dimensions required to rep-
resent that entity. We define D to be the minimum number
of spatial dimensions needed to represent a mesh and all its
entities. A vertex is representable in zero-dimensional space;
similarly, an edge is a one-dimensional entity and a cell aD-
dimensional entity. In a two-dimensional mesh of triangles,
for example, the entities are the vertices, edges, and triangle
cells with topological dimensions 0, 1, and 2 respectively.
The minimum number of geometric dimensions needed to
represent the mesh and all its entities is D = 2.

A mesh can be represented by several graphs. Each graph
consists of a multi-type set V and a typed adjacency relation-
ship Adjd1,d2

between d1 and d2 typed elements in V . The
type of an entity in V is simply its dimension. The adjacency
graphs will always map from a set of uniform dimension to a
set of uniform dimension. Attaching types to elements of V
enables graphs to capture the relationships between different
mesh entities, for example cells and vertices, and edges and
vertices.

We write Vd to mean the set of mesh entities of topological
dimension d where 0≤ d ≤D:

Vd = {(d, i) | 0≤ i ≤Nd − 1}, (1)
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where Nd is the number of entities of dimension d. The set
V is then simply the union of the Vds:

V =
⋃

0≤d≤D
Vd . (2)

Every mesh entity has a number of adjacent entities. The
mesh–element connectivity relationships are used to specify
the way mesh entities are connected. For a given mesh of
topological dimension D there are (D+ 1)2 different types
of adjacency relationships. To define the mesh, only a mini-
mal subset of relationships from which all the others can be
derived is required. For example, as shown in Logg (2009),
the complete set of adjacency relationships may be derived
from the cell–vertex adjacency.

We write

Adjd1,d2
(v)= (v1,v2, . . .,vk) (3)

to specify the entities v1,v2, . . .,vk ∈ Vd2 adjacent to v ∈ Vd1 .
In a mesh with a very regular topology, there may be a

closed-form mathematical expression for the adjacency re-
lationship Adjd1,d2

(v). Such meshes are termed structured.
However, since we are also interested in supporting more
general unstructured meshes, we must store the lists of ad-
jacent entities explicitly.

2.3 Attaching data to meshes

Every mesh entity has a number of values associated with
it. These values are also known as degrees of freedom and
they are the discrete representation of the continuous data
fields of the domain. As the degrees of freedom are uniquely
associated with mesh entities, the mesh topology can be used
to access the degrees of freedom local to any entity using the
connectivity relationships.

A finite element discretization associates a number of de-
grees of freedom with each entity of the mesh. A function
space uses the discretization to define a numbering for all
the degrees of freedom. Multiple different function spaces
may be defined on a mesh and each function space may have
several data fields associated with it. In the case of a trian-
gular mesh for example, a piecewise linear function space
will associate a degree of freedom with every vertex of the
mesh, while a cubic function space will associate one degree
of freedom with every vertex, two degrees of freedom with
every edge, and one degree of freedom with every cell. In the
former case there will be 3 degrees of freedom adjacent to a
cell, and a total of 10 in the latter case.

The data associated with the mesh also need to be num-
bered. The choice of numbering can have a significant effect
on the computational efficiency of calculations over the mesh
(Günther et al., 2006; Lange et al., 2016; Yoon et al., 2005).

2.4 Kernels and stencils

The most common operation performed on meshes is the lo-
cal application of a function or kernel while traversing or

iterating over a homogeneous subset of mesh entities. The
kernel is executed once for each such mesh entity and acts
on the degrees of freedom in a stencil composed of the
mesh entities adjacent to the the iterated entity. For exam-
ple, a finite element operator evaluating an integral over the
domain would iterate over the mesh cells and access data
through a stencil comprising the degrees of freedom on that
cell and its adjacent facets, edges, and vertices. For a more
in-depth discussion on the construction of stencils on un-
structured meshes, the reader is referred to Logg (2009) and
Knepley and Karpeev (2009). In theory, this requires cell-to-
facets, cell-to-edges, and cell-to-vertices adjacency relation-
ships (cell-to-cell is implicit). In practice the three different
relationships may be composed into a single adjacency re-
lationship which references the data associated with all the
different adjacent entity types.

In the unstructured case, we store an explicit list (also
known as a map) L(e) for each type of stencil operation
which given a topological entity e returns the set of degrees
of freedom in the stencil at that entity.

3 Extruded meshes

In Sect. 3.1 we introduce extruded meshes and in Sect. 3.2
we show how the entities and the data are to be numbered.
In Sect. 3.3 we present the extruded mesh iteration algorithm
and the offset computation for the direct addressing scheme
along the vertical direction.

3.1 Definition of an extruded mesh

An extruded mesh consists of a base mesh which is repli-
cated a fixed number of times in a layered structure1. A mesh
of topological dimension D becomes an extruded mesh of
topological dimension D+ 1.

The mesh definition can be extended to include extruded
meshes. Let mesh M = (V ,Adj) be a non-extruded mesh
where Adj stands for all the valid adjacency relationships of
M . An extruded mesh which has M as the base mesh can be
defined as a triple (V extr,Adjextr,λ) where Adjextr is the set
of valid adjacency relationships and λ ∈ N+ is the number
of intervals over which the mesh is extruded. This implies
that there are λ+ 1 vertices in the extruded direction. Before
we can define V extr and Adjextr several concepts have to be
introduced.

3.1.1 Tensor product cells

The effect of the extrusion process on the base mesh can al-
ways be captured by associating a line segment with the ver-
tical direction. We write Db for the topological dimension of

1For ease of exposition, we discuss the case where each mesh
column contains the same number of layers; however, this is not a
limitation of the method and algorithms presented here
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Figure 1. Extruded mesh entities belonging to the base mesh to be
extruded (left to right): vertices, horizontal edges, horizontal facets.

Figure 2. Mesh entities used in the extrusion process to connect
entities in Fig. 1 (left to right): vertical edges, vertical facets, three-
dimensional cells.

the base mesh, while the topological dimension of the verti-
cal mesh is always equal to 1.

As a consequence, the cells of the extruded mesh are
prisms formed by taking the tensor product of the base mesh
cell with the vertical line segment. For example, each trian-
gle becomes a triangular prism. The construction of tensor
product cells and finite element spaces on them is considered
in more detail in McRae et al. (2016).

3.1.2 Extruded mesh entities

The extrusion process introduces new types of mesh entities
reflecting the connectivity between layers. The pairs of cor-
responding entities of dimension d in adjacent layers are con-
nected using entities of dimension d+1. In a triangular mesh
for example (Fig. 1), the corresponding vertices are con-
nected using vertical edges, edges contained in each layer are
connected by quadrilateral facets, and the two-dimensional
triangle faces are connected by a three-dimensional triangu-
lar prism (Fig. 2).

The topological dimension on its own is no longer enough
to distinguish between the different types of entities and their
orientation. Instead entities are characterized by a pair com-
posed of the horizontal and vertical dimensions. In the case
of a two-dimensional triangular base mesh, the set of dimen-
sions is {0,1,2}. The line segment of the vertical can be de-
scribed by the set of dimensions {0,1}. The Cartesian product
of the two sets yields a set of pairs (Eq. 4) which can be used
to uniquely identify mesh entities.

{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)} (4)

We refer to the components of each pair as the horizontal
and vertical dimensions of the entity respectively. Table 1
shows the mapping between the mesh entity types and their
descriptor.

3.1.3 Extruded mesh entity numbering

We write Vd1,d2 to denote the set of topological entities which
are the tensor product of entities of dimensions d1 in the hor-

Table 1. Topological dimensions of extruded mesh entities. Db de-
notes the topological dimension of the base mesh.

Mesh entity Dimensions

Vertex (0,0)
Vertical edge (0,1)
Horizontal edge (1,0)
Vertical facet (Db− 1,1)
Horizontal facet (Db,0)
Cell (Db,1)

izontal and d2 in the vertical (0≤ d1 ≤Db and 0≤ d2 ≤ 1):

Vd1,d2 =
{
((d1,d2), (i, l)) | 0≤ i ≤Nd1

−1, 0≤ l ≤ λ− d2} , (5)

where Nd1 is the number of entities of dimension d1 in the
base mesh and λ is the number of edges in the extruded di-
rection. The subtraction of d2 from λ accounts for the fence-
post error caused by the fact that there is always one fewer
edge than vertex in the vertical direction.

The complete set of extruded mesh entities is then

V extr =
⋃

0≤d1≤Db
0≤d2≤1

Vd1,d2 . (6)

These entities are those drawn for the case of an extruded
triangle in Fig. 3.

Similarly we must extend the indexing of the adjacency
relationships, writing

Adjextr
(d1,d2),(d3,d4)

(v)= (v1,v2, . . .,vk), (7)

where v ∈ Vd1,d2 and v1,v2, . . .,vk ∈ Vd3,d4 .

3.2 Attaching data to extruded meshes

Identically to the case of non-extruded meshes, function
spaces over an extruded mesh associate degrees of freedom
with the (extended) set of mesh entities. A constant num-
ber of degrees of freedom is associated with each entity of a
given type.

If we can arrange that the degrees of freedom are num-
bered such that the vertical entities are “innermost”, it is pos-
sible to use direct addressing for the vertical part of any mesh
iteration, significantly reducing the computational penalty
introduced by using an indirectly addressed, unstructured
base mesh. Algorithm 1 implements this “vertical innermost”
numbering algorithm. The critical feature of this algorithm is
that degrees of freedom associated with vertically adjacent
entities have adjacent global numbers. The outcome of this
vertical numbering is shown in Fig. 4. The global number-
ing algorithm is orthogonal to any base mesh decomposition
strategy used to support execution on distributed memory
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Algorithm 1 Computing the global numbering for degrees
of freedom on an extruded mesh

Require: V : the set of base mesh entities
Require: λ : the number of vertical intervals
Require: δ((d1,d2)) : the number of DoFs associated with each

(d1,d2) entity
Ensure: dofsfs: the degrees of freedom associated with each entity

c← 0 {Loop over base mesh entities}
for (d1, i) in V do

{Loop over layers}
for l in {0,1, ...,λ− 1} do

{Number the horizontal layer, then the connecting entity
above it}
for d2 in {0,1} do

{Assign the next δ((d1,d2)) global DoF numbers to this
entity}
dofsfs((d1,d2), (i, l))← c,c+ 1, ...,c+ δ((d1,d2))− 1
c← c+ δ((d1,d2))

end for
end for
{Number the top horizontal layer of this column}
dofsfs((d1,0), (i,λ))← c,c+ 1, ...,c+ δ((d1,0))− 1
c← c+ δ((d1,0))

end for

www.geosci-model-dev.net/9/1/2016/ Geosci. Model Dev., 9, 1–5, 2016
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Figure 3. Numbering of the topological entities of an extruded cell
for the case of an extruded triangle. The cell itself has number-
ing ((2,1), (0,0)) (not shown); the other entities are numbered as
shown with vertices in black, edges in green, and faces in blue.

parallel systems. The numbering order within each entity col-
umn is not unique; for example, one could interchange the l
and d2 loops in Algorithm 1. However, our choice maximizes
cache-line usage on a per-element basis.

3.3 Iterating over extruded meshes

Iterating over the mesh and applying a kernel to a set of con-
nected entities (stencil) is the key operation used in mesh-
based computations.

The global numbering of the degrees of freedom allows
stencils to be calculated using a direct addressing scheme
when accessing the degrees of freedom of vertically adjacent
entities. We assume that the traversal of the mesh occurs over
a set of mesh entities which is homogeneous (a set contain-

m

m+1

m+2

m+3

m+4

nn+1

n+2n+3

n+4n+5

n+7 n+6

n+9 n+8

Figure 4. Vertical numbering of degrees of freedom (shown in filled
circles) associated with vertices and horizontal edges. Only one set
of vertically aligned degrees of freedom of each type is shown. The
arrows outline the order in which the degrees of freedom are num-
bered.

ing only cells for example). Degrees of freedom belonging to
vertically adjacent entities, accessed by two consecutive ker-
nel applications on the same column, have a constant offset
between them. The offset is given by the sum of degrees of
freedom attached to the two vertically adjacent entities con-
tained in the stencil:

δ((d,0))+ δ((d,1)). (8)

Let S be the stencil of a kernel which needs to access
the values of the degrees of freedom of a field f defined on
a function space fs. Let Lfs(v)= (dof0,dof1, . . .,dofk−1) be
the list of degrees of freedom of the stencil for an input entity
v ∈ Vd1,d2 .

The lists of degrees of freedom accessed by S could be
provided explicitly for all the input entities v. Using the pre-
vious result we can instead reduce the number of explicitly
provided lists by a factor of λ. For each column we visit, the
only explicit accesses required are the ones to the degrees of
freedom at the bottom of the column. The degrees of freedom
identifiers for the rest of the stencil applications in the same
column can be obtained by adding a multiple of the constant
vertical offset to each degree of freedom in the bottom ex-
plicit list.

For a given stencil function S an offset can be computed
for each degree of freedom in the corresponding explicit list
Lfs. As the ordering of the degrees of freedom in the stencil
is fixed (by consistent ordering of mesh entities) the vertical
offset only needs to be computed once for a particular func-
tion space f s.

The algorithm for computing the vertical offset is pre-
sented in Algorithm 2. Note that since the offset for two ver-
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Lfs. As the ordering of the degrees of freedom in the stencil
is fixed (by consistent ordering of mesh entities) the vertical
offset only needs to be computed once for a particular func-
tion space f s.

The algorithm for computing the vertical offset is pre-5

sented in Algorithm 2. Note that since the offset for two ver-
tically aligned entity types is the same, only the base mesh
entity type is considered.

Algorithm 2 Computation of vertical offsets

Require: k : number of degrees of freedom accessed by stencil
function S

Require: ES(i): the base mesh entity type of the i-th degree of
freedom accessed by S

Require: δ((d1,d2)) : the number of DoFs associated with each
(d1,d2) entity

Ensure: offsetS,fs : the vertical offset for function space fs given
stencil S

for i in {0,1, ...,k− 1} do
d← ES(i)

offsetS,fs(i)← δ((d,0))+ δ((d,1))

end for
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tically aligned entity types is the same, only the base mesh
entity type is considered.

If (dof0,dof1, . . .,dofk−1) is the explicit list of degrees of
freedom for the initial layer to which the stencil can be ap-
plied, then the list of degrees of freedom for the nth applica-
tion of the stencil along the vertical is given by

(dof0+ n× (offsetS,f (0)), . . .,dofk−1

+ n× (offsetS,f (k− 1))). (9)

Algorithm 3 shows the iteration algorithm working for a
single field f on a function space fs. The stencil function S
is applied to the entities of each column in turn. Each time the
algorithm moves on to the next vertically adjacent entity, the
indices of the degrees of freedom accessed are incremented
by the vertical offset offsetS,fs. The algorithm is also applica-
ble to stencil functions of multiple fields defined on the same
function space since the data associated with each field are
accessible using the same set of degree of freedom numbers.
The extension to fields from different function spaces just re-
quires explicit lists Lfs for each space.

4 Performance evaluation

In this section, we test the hypothesis that iteration exploiting
the extruded structure of the mesh amortizes the unstructured
base mesh overhead of accessing memory through explicit
neighbour lists. We also show that the more layers the mesh
contains, the closer its performance is to the hardware limits
of the machine.

We validate our hypotheses in the Firedrake finite element
framework (Rathgeber et al., 2016). Although we restrict our
performance evaluation to examples drawn from finite ele-
ment discretizations, the algorithms we have presented can
be applied to any mesh-based discretization.

In Sect. 4.1 we describe the design of the experiments un-
dertaken. The hardware platforms and the methodology used
are described in Sect. 4.2 followed by results and discussion
in Sects. 4.3 and 4.4 respectively.
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plied, then the list of degrees of freedom for the nth applica-
tion of the stencil along the vertical is given by:

(dof0+n×(offsetS,f (0)), . . .,dofk−1+n×(offsetS,f (k−1)))
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Algorithm 3 shows the iteration algorithm working for a
single field f on a function space fs. The stencil function S15

is applied to the entities of each column in turn. Each time the
algorithm moves on to the next vertically adjacent entity, the
indices of the degrees of freedom accessed are incremented
by the vertical offset offsetS,fs. The algorithm is also appli-
cable to stencil functions of multiple fields defined on the20

same function space since the data associated with each field
is accessible using the same set of degree of freedom num-
bers. The extension to fields from different function spaces
just requires explicit lists Lfs for each space.

Algorithm 3 Iteration of a stencil function over an extruded
mesh

Require: V : iteration set of base mesh entities
Require: d2 : the dimension of vertical iteration entities
Require: λ : the number of vertical intervals
Require: S: stencil function to be applied to the degrees of freedom

of field f

Require: Lfs: set of explicit lists of degrees of freedom for func-
tion space fs

Require: offsetS,fs: the vertical offset for function space fs given
stencil S

for v in V do
(dof0,dof1, ...,dofk−1)← Lfs(v)

for l in {0,1, ...,λ− d2} do
S(f (dof0),f (dof1), ...,f (dofk−1))

for j in {0,1, ...,k− 1} do
dofj ← dofj + offsetS,fs(j)

end for
end for

end for

Geosci. Model Dev., 9, 1–6, 2016 www.geosci-model-dev.net/9/1/2016/

4.1 Experimental design

The design space to be explored is parameterized by num-
ber of layers and the manner in which the data are associ-
ated with the mesh and therefore accessed. In establishing
the relationship between the performance and the hardware
we examine performance on two generations of processors
and varying process counts.

4.1.1 Choosing the computation

Numerical computations of integrals are the core mesh iter-
ation operation in the finite element method. We focus on
residual (vector) assembly for two reasons. First, in contrast
to Jacobian assembly, there are no overheads due to sparse
matrix insertion; the experiment is purely a test of data ac-
cess via the mesh indirections. Second, residual evaluation is
the assembly operation with the lowest computational inten-
sity and therefore constitutes a worst-case scenario for data
layout performance exploration.

Since we are interested in data accesses, we choose the
simplest non-trivial residual assembly operation:

I1 =
∫
�

f v dx, ∀v ∈ V (10)

for f in the finite element space V . For this study we choose
�= [0,1]3 to be the unit cube. The base mesh is generated in
an unstructured manner using Gmsh (Geuzaine and Remacle,
2009), and then extruded to form a three-dimensional do-
main.

In addition to the output field I1 and the input field f this
computation accesses the coordinate field, x. Regardless of
the choice of V , we always represent x by a d-vector at each
vertex of the d-dimensional mesh.
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Figure 5. Tensor product finite elements with different data layout
and cell-to-cell data re-use.

4.1.2 Choosing the discretizations

The construction of a wide variety of finite element spaces
on extruded meshes was introduced in McRae et al. (2016).
This enables us to select the horizontal and vertical data dis-
cretizations independently.

For the purposes of data access, the distinguishing feature
of different finite element spaces is the extent to which de-
grees of freedom are shared between adjacent cells.

We choose a set of finite element spaces spanning the com-
binations of horizontal and vertical reuse patterns found on
extruded meshes: horizontal and vertical reuse, only horizon-
tal, only vertical, or no reuse at all.

We employ low-order continuous and discontinuous dis-
cretizations (abbreviated as CG and DG respectively) in both
the horizontal and vertical directions.

The set of discretizations is A= {CG1,DG0,DG1} where
the number indicates the degree of polynomials in the space.
We examine all pairs of discretizations (h,v) ∈ A×A. Since
the cells of the base mesh are triangles, the extruded mesh
consists of triangular prisms. Figure 5 shows the data layout
of each of these finite elements.

Both Firedrake and our numbering algorithm support a
much larger range of finite element spaces than this. How-
ever, the more complex and higher degree spaces will result
in more computationally intensive kernels but not materially
different data reuse. The lowest-order spaces are the most se-
vere test of our approach since they are more likely to be
memory bound.

Table 2. Hardware used.

Name Intel Sandy Bridge Intel Haswell

Model Xeon E5-2620 Xeon E5-2640 v3
Frequency 2.0 GHz 2.6 GHz
Sockets 2 2
Cores per socket 6 8
Bandwidth per socket 42.6 GB s−1 56.0 GB s−1

4.1.3 Layer count and problem size

We vary the number of layers between 1 and 100. This is a
realistic range for current ocean and atmosphere simulations.
The number of cells in the extruded mesh is kept approxi-
mately constant by shrinking the base mesh as the number of
layers increases. The mesh size is chosen such that the data
volume far exceeds the total last level cache capacity of each
chosen architecture (L3 cache in all cases). This minimizes
caching benefits and is therefore the strongest test of our al-
gorithms. The overall mesh size is fixed at approximately
15 million cells, which yields a data volume of between 300
and 840 MB, depending on discretization.

4.1.4 Base mesh numbering

The order in which the entities of the unstructured mesh
are numbered is known to be critical for data access perfor-
mance. To characterize this effect and distinguish it from the
impact of the number of layers, we employ two variants of
each base mesh. The first is a mesh for which the traversal
is optimized using a reverse Cuthill–McKee ordering (Lange
et al., 2016). The second is a badly ordered mesh with a ran-
dom numbering. This represents a pathological case for tem-
poral locality.

4.2 Experimental setup

The specification of the hardware used to conduct the experi-
ments is shown in Table 2. Following Ofenbeck et al. (2014)
we disable the Intel turbo boost and frequency scaling. This
is intended to prevent our performance results from being
subject to fluctuations due to processor temperature.

The experiments we are considering are run on a single
two-socket machine and use MPI (Message Passing Inter-
face) parallelism. The number of MPI processes varies from
one up to two processes per physical core (exploiting hy-
perthreading). We pin the processes evenly across physical
cores to ensure load balance and prevent process migration
between cores.

The Firedrake platform performs integral computations by
automatically generating C code. The compiler used is GCC
version 4.9.1 (-O3 -march=native -ffast-math
-fassociative-math). We also assessed the perfor-
mance of the Intel C Compiler version 15.0.2 (-O3 -xAVX
-ip -xHost); however, we only report results from GCC
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Table 3. Maximum STREAM triad (ai = bi +αci ) performance
achieved by varying the number of MPI processes from one to twice
the number of physical cores.

Platform STREAM bandwidth

Intel Sandy Bridge 55.3 GB s−1

Intel Haswell 80.2 GB s−1

in this paper since the performance of the Intel compiler was
inferior.

4.2.1 Runtime, data volume, bandwidth, and FLOPs

Runtime is measured using a nanosecond precision timer.
Each experiment is performed 10 times and we report the
minimum runtime. Exclusive access to the hardware has been
ensured for all experiments.

We model the data transfer from main memory to CPU
assuming a perfect cache: each piece of data is only loaded
from main memory once. We define the valuable data vol-
ume as the total size of the input, output, and coordinate
fields. This gives a lower bound on the memory traffic to and
from main memory. The valuable data volume divided by the
runtime yields the valuable bandwidth.

Different discretizations lead to different data volumes due
to the way data are shared between cells. DG-based dis-
cretizations require the movement of larger data volumes,
while CG discretizations lead to smaller volumes due to data
reuse.

To evaluate the impact of different data volumes we com-
pare the valuable bandwidth with the maximum bandwidth
achieved for the STREAM triad benchmark (McCalpin,
1995), shown in Table 3. The valuable bandwidth achieved
as a percentage of STREAM bandwidth shows how prone
the code is to becoming bandwidth bound as its floating point
performance is improved.

The floating point operations – adds, multiplies, and,
on Haswell, fused multiply–add (FMA) operations – are
counted automatically using the Intel Architecture Code
Analyzer (Intel, 2012) whose results are verified with
PAPI (Mucci et al., 1999) which accesses the hardware coun-
ters.

4.2.2 Theoretical performance bounds

The performance of the extruded iteration depends on the ef-
ficiency of the generated finite element kernel (payload) code
which for some cases may not be vectorized (as outlined in
Luporini et al., 2015) or may not have a perfectly balanced
number of floating point additions and multiplications. A dis-
cussion of kernel code optimality is outside the scope of this
paper.

To a first approximation the performance of a numerical
algorithm will be limited by either the memory bandwidth

or the floating point throughput. The STREAM benchmark
provides an effective upper bound on the achievable memory
bandwidth. The floating point bounds employed are based
on the theoretical maximum given the clock frequency of the
processor.

The Intel architectures considered are capable of executing
both a floating point addition and a floating point multiplica-
tion on each clock cycle. The Haswell processor can execute
a fused multiply–add instruction (FMA) instead of either an
addition or multiplication operation.

The achievable FLOP rate may therefore be as much as
twice the clock rate depending on the mix of instructions ex-
ecuted. The achievable speed-up over the clock rate, fb, for
the Sandy Bridge platform is therefore bounded by the bal-
ance factor

fb = 1+ min(add FLOPs,multiplication FLOPs)
max(add FLOPs,multiplication FLOPs)

, (11)

while for Haswell it is bounded by

fb = 1+ min(add FLOPs,multiplication FLOPs)+ k
max(add FLOPs,multiplication FLOPs)+ k , (12)

where k is half the number of FMAs.

4.2.3 Vectorization

The processors employed support 256 bit wide vector float-
ing point instructions. The double precision FLOP rate of
a fully vectorized code can be as much as 4 times that of
an unvectorized code. GCC automatically vectorized only a
part of the total number of floating point instructions. The
ratio between the number of vector (packed) floating point
instructions and the total number of floating point instruc-
tions (scalar and packed) characterizes the impact of partial
vectorization on the floating point bound through the vector-
ization factor

fv = 1+ (4− 1)× vector FLOPs
total FLOPs

. (13)

To control the impact of the kernel computation (payload)
on the evaluation, we compare the measured floating point
throughput with a theoretical peak which incorporates the
payload instruction balance and the degree of vectorization.
Let c be the number of active physical CPU cores during the
computation of interest. The theoretical base floating point
performance Bc is the same for all discretizations and as-
sumes one floating point instruction per cycle for each ac-
tive physical CPU core. The peak theoretical floating point
throughput Pd is different for each discretization d as it de-
pends on the properties of the payload and is given by

Pd = Bc× fb× fv. (14)
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Figure 6. Performance of the I integral computation with varying number of layers and number of processes on a badly-ordered base mesh.

The horizontal line is the base FLOP throughput for fb = fv = 1 and the number of physical cores used.
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Figure 6. Performance of the I integral computation with a varying number of layers and number of processes on a badly ordered base mesh.
The horizontal line is the base FLOP throughput for fb = fv = 1 and the number of physical cores used.

4.3 Experimental results

4.3.1 Percentage of theoretical performance

For the Sandy Bridge and Haswell architectures, the best per-
formance is achieved in the 100-layer case run with 24 and 32
processes respectively (hyperthreading enabled). The results
in Tables 4 and 5 show percentages of the STREAM band-
width and the theoretical floating point throughput which in-
corporates the instruction balance and vectorization factors.

On Sandy Bridge, the proportion of peak theoretical float-
ing point throughput is between 71 and 85 %, while on

Haswell it is between 71 and 92 %. In contrast, the propor-
tion of peak bandwidth achieved varies between 7 and 51 %
on Sandy Bridge and 9 and 75 % on Haswell. The higher and
much more consistent peak FLOP results lead us to the con-
clusion that we are in an operation- rather than bandwidth-
limited regime. The performance figures are therefore pre-
sented with respect to this metric.

4.3.2 Amortizing the cost of indirect accesses

When the base mesh is well ordered (Fig. 7), the number of
layers required to reach a performance plateau is between 10
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Figure 7. Performance of the I integral computation with varying number of layers and number of processes on a well-ordered base mesh.

The star-shaped markers show the performance of the 1-layer badly-ordered mesh for comparison. The horizontal line is the base FLOP

throughput for fb = fv = 1 and the number of physical cores used.
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Figure 7. Performance of the I integral computation with a varying number of layers and number of processes on a well-ordered base mesh.
The star-shaped markers show the performance of the one-layer badly ordered mesh for comparison. The horizontal line is the base FLOP
throughput for fb = fv = 1 and the number of physical cores used.

and 20 for all discretizations. When the base mesh is badly
ordered (Fig. 6) the plateau is frequently not reached even
with 100 layers. A striking feature of Figs. 6 and 7 is that
cases in which the local kernel calculations are identical pro-
duce very similar achieved FLOP rates, despite having dif-
ferent data sharing patterns. This supports the hypothesis that
the results are operation bound.

4.4 Discussion

The performance of the extruded mesh iteration is con-
strained by the properties of the mesh and the kernel com-

putation. The total number of computations is based on the
number of degrees of freedom per cell. The range of dis-
cretizations used in this paper (Fig. 5) leads to four cases:
one, two, three, or six degrees of freedom per cell. In com-
pute bound situations, discretizations with the same number
of computations have the same performance (Fig. 8).

Temporal locality

The numbering algorithm ensures good temporal locality be-
tween vertically aligned cells. Any degrees of freedom which
are shared vertically are reused when the iteration algorithm
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Table 4. Percentage of STREAM bandwidth and theoretical
throughput achieved by the computation of integral I over 100 lay-
ers on Sandy Bridge with 24 MPI processes.

Discretization fb fv Pd (%) Bandwidth (%)

CG1×CG1 1.7 1.58 73.45 7.092
CG1×DG0 1.81 1.0 78.96 14.70
CG1×DG1 1.7 1.58 73.03 10.50
DG0×CG1 1.65 1.0 76.01 27.86
DG0×DG0 1.5 1.0 85.14 34.86
DG0×DG1 1.65 1.0 75.45 45.68
DG1×CG1 1.7 1.58 73.20 24.60
DG1×DG0 1.81 1.0 78.93 50.98
DG1×DG1 1.7 1.58 71.78 44.37

Table 5. Percentage of STREAM bandwidth and theoretical
throughput achieved by the computation of integral I over 100 lay-
ers on Haswell with 32 MPI processes.

Discretization fb fv Pd (%) Bandwidth (%)

CG1×CG1 1.76 1.61 72.43 9.015
CG1×DG0 1.97 1.0 88.57 21.92
CG1×DG1 1.76 1.61 72.20 13.39
DG0×CG1 1.87 1.0 73.94 38.74
DG0×DG0 1.66 1.0 91.93 53.10
DG0×DG1 1.87 1.0 72.89 63.11
DG1×CG1 1.76 1.61 71.99 31.19
DG1×DG0 1.97 1.0 87.55 75.17
DG1×DG1 1.76 1.61 71.50 56.98

visits the next element. The reuse distance along the vertical
is therefore minimal.

For CG discretizations, where degrees of freedom are
shared horizontally with other vertical columns, the overall
performance depends on the ordering of cells in the base
mesh. Assuming a perfect ordering of the base mesh, the
numbering algorithm ensures a minimal reuse distance while
guaranteeing a minimum number of indirect accesses and
satisfying all the previously introduced spatial and temporal
locality requirements.

Figures 7 and 6 demonstrate the combined impact of hor-
izontal mesh ordering and extrusion. In the extreme case the
flop rate increases up to 14 times between the badly ordered
single-layer case and the 100-layer well-ordered case. This
is consistent with the widely held belief that unstructured
mesh models are an order of magnitude slower than struc-
tured mesh models.

The difference between well-ordered and badly ordered
mesh performance outlines the benefits responsible for the
boost in performance. Horizontal data reuse dominates per-
formance for a low number of layers, while spatial locality
and vertical temporal locality (ensured by the numbering and
iteration algorithms) are responsible for most of the perfor-
mance gains as the number of layers increases.
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Figure 8. Performance of the I integral computations on different
data discretizations with a varying number of layers on the Haswell
architecture for a well-ordered base mesh. The star-shaped mark-
ers show the performance of the one-layer badly ordered mesh for
comparison. The horizontal line is the base FLOP throughput for
fb = fv = 1 and the number of physical cores used.

We note, once again, that these results are for the lowest-
order spaces which represent a worst case. Higher-order
methods both access more contiguous data in each column
and require many more FLOPs. As a result, we would expect
to reach performance plateaus at lower numbers of layers.

5 Conclusions

In this paper we have presented efficient, locality-aware al-
gorithms for numbering and iterating over extruded meshes.
For a sufficient number of layers, the cost of using an unstruc-
tured base mesh is amortized. Achieved performance ranges
from 70 to 90 % of our best estimate for the hardware’s per-
formance capabilities and current level of kernel optimiza-
tion. Benefits of spatial and temporal locality vary with the
number of layers: as the number of layers is increased, the
benefits of spatial locality increase, while those of temporal
locality decrease.

This paper employed two simplifying constraints: that
there are a constant number of layers in each column, and
that the number of degrees of freedom associated with each
entity type is a constant. These assumptions are not funda-
mental to the numbering algorithm presented here, or to its
performance. We intend to relax those constraints as they be-
come important for the use cases for which Firedrake is em-
ployed.

The current code generation scheme can be extended to in-
clude inter-kernel vectorization (an optimization mentioned
in Meister and Bader, 2015) for the operations which cannot
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be vectorized at intra-kernel level. The efficiency of such a
generic scheme applicable to different data discretizations is
currently being explored.

In future work we intend to generalize some of the opti-
mizations which extrusion enables for both residual and Ja-
cobian assembly: inter-kernel optimizations, grouping of ad-
dition of contributions to the global system, and exploiting
the vertical alignment at the level of the sparse representa-
tion of the global system matrix. In addition to the CPU re-
sults presented in this paper, we also plan to explore the per-
formance portability issues of extruded meshes on graphical
processing units and Intel Xeon Phi accelerators.

6 Code availability

The packages used to perform the experiments have been
archived using Zenodo: Firedrake (Firedrake, 2016), PETSc
(PETSc, 2016), petsc4py (petsc4py, 2016), FIAT (FIAT,
2016), UFL (UFL, 2016), FFC (FFC, 2016), PyOP2 (PyOP2,
2016), and COFFEE (COFFEE, 2016). The source code
repositories as well as the archived versions are publicly
available.

7 Data availability

The scripts used to perform the experiments as well as the
results are archived using Zenodo: Sandy Bridge (Bercea,
2016c) and Haswell (Bercea, 2016b). The meshes used in the
experiments are available also (Bercea, 2016a). The archives
are publicly available.

Author contributions. Gheorghe-Teodor Bercea designed the gen-
eralized extrusion algorithm, and performed the extension of the
Firedrake and PyOP2 packages to support extruded meshes, the
performance evaluation, and the preparation of the graphs and ta-
bles. Andrew T. T. McRae extended components of the Firedrake
toolchain to support the finite element types used in the experi-
ments, and made minor contributions to the extruded mesh iteration
functionality. David A. Ham was the proponent of a generalized
extrusion algorithm. Lawrence Mitchell, Florian Rathgeber, and
Fabio Luporini developed related features and framework improve-
ments in Firedrake, PyOP2, and COFFEE. Luigi Nardi is responsi-
ble for the use of the floating point balance metric. David A. Ham
and Paul H. J. Kelly are the principal investigators for this paper.
Gheorghe-Teodor Bercea prepared the manuscript with contribu-
tions from all the authors. All authors contributed with feedback
during the paper’s write-up process.
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