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Abstract. This paper describes a reduced-order quasi-
geostrophic coupled ocean–atmosphere model that allows
for an arbitrary number of atmospheric and oceanic modes
to be retained in the spectral decomposition. The modu-
larity of this new model allows one to easily modify the
model physics. Using this new model, coined the “Modular
Arbitrary-Order Ocean-Atmosphere Model” (MAOOAM), we
analyse the dependence of the model dynamics on the trun-
cation level of the spectral expansion, and unveil spurious
behaviour that may exist at low resolution by a comparison
with the higher-resolution configurations. In particular, we
assess the robustness of the coupled low-frequency variabil-
ity when the number of modes is increased. An “optimal”
configuration is proposed for which the ocean resolution is
sufficiently high, while the total number of modes is small
enough to allow for a tractable and extensive analysis of the
dynamics.

1 Introduction

The atmosphere at mid-latitudes displays a variability on a
wide range of space scales and timescales, and in partic-
ular a low-frequency variability at interannual and decadal
timescales as suggested by the analyses of different time se-
ries developed in the past years (Trenberth, 1990; Trenberth
and Hurrell, 1994; Hurrell, 1995; Mantua et al., 1997; Li and
Wang, 2003; Lovejoy and Schertzer, 2013). In contrast to
the phenomenon of El Niño–Southern Oscillation (ENSO),
of which the driving mechanisms are intensively studied and
quite well understood (e.g. Philander, 1990; Ghil and Zali-
apin, 2013), the origin of mid-latitude low-frequency vari-
ability (LFV) remains highly debated, mainly due to the poor

ability of state-of-the-art coupled ocean–atmosphere models
to simulate it correctly (e.g. Nnamchi et al., 2011; Smith
et al., 2014). The most plausible candidates of this LFV are
either the coupling with the local ocean (Kravtsov et al.,
2007), or teleconnections with the tropical Pacific ocean–
atmosphere variability (Müller et al., 2008), or both.

Recently the impact of the coupling between the ocean
and the atmosphere at mid-latitudes on the atmospheric pre-
dictability (Nese and Dutton, 1993; Roebber, 1995; Peña
and Kalnay, 2004) and the development of the LFV (van
Veen, 2003) has been explored in a series of low-order cou-
pled ocean–atmosphere systems. However, the limited flex-
ibility of the possible geometries of these previous mod-
els led the present authors to develop a series of new
model versions. The first of these, OA-QG-WS v1 (Van-
nitsem, 2014), for Ocean-Atmosphere–Quasi-Geostrophic–
Wind Stress, features only mechanical coupling between the
ocean and the atmosphere, and uses 12 atmospheric variables
following Charney and Straus (1980) and four oceanic modes
following Pierini (2011). In a successor of this model, OA-
QG-WS v2, the set of atmospheric variables is extended from
12 to 20 as in Reinhold and Pierrehumbert (1982). This in-
crease in resolution in the atmosphere was shown to be key to
the development of a realistic double gyre in the ocean (Van-
nitsem and De Cruz, 2014). A third version of this model,
hereafter referred to as VDDG in reference to the authors of
the model, includes passively advected temperature in the
ocean and an energy balance scheme, combined with an ex-
tended set of modes for the ocean (Vannitsem et al., 2015).

In the VDDG model, an LFV associated with the cou-
pling between the ocean and the atmosphere is success-
fully identified, allowing for extended-range coupled ocean–
atmosphere predictions. Moreover, the development of this
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coupled ocean–atmosphere mode is robust when stochas-
tic forcings are added (Demaeyer and Vannitsem, 2016), or
when a seasonal radiative forcing is incorporated into the
low-order model (Vannitsem, 2015). Remarkably the pres-
ence of the seasonal radiative input favours the development
of the coupled mode due to the amplification of the impact of
the wind stress forcing in summer, associated with a drastic
reduction of the mixed layer thickness at that period of the
year. While these are encouraging results, which suggest the
generic character of the coupled ocean–atmosphere mode,
they need to be confirmed through the analysis of more
sophisticated models, and in particular in higher-resolution
coupled systems.

In this article, we present a model that generalizes the
VDDG model by allowing for an arbitrary number of modes,
or basis functions in which the dynamical fields are ex-
panded. The modes can be selected independently for the
ocean and the atmosphere, and for the zonal and meridional
directions. The modular approach allows one to straightfor-
wardly modify the model physics, such as changing the drag
coefficient, introducing new dissipative schemes or adding a
seasonal insolation. This model was coined MAOOAM: the
Modular Arbitrary-Order Ocean-Atmosphere Model. The
model equations and its technical implementation are de-
tailed in Sect. 2. In Sect. 3, MAOOAM is used to investigate
the dependence of the model dynamics, i.e. its climatology
and the qualitative structure of its attractor, on the number of
modes included. Furthermore, the development of the LFV
as a function of the spectral truncation is discussed. Key re-
sults are summarized in Sect. 4.

2 Model formulation

The model is composed of a two-layer quasi-geostrophic
(QG) atmosphere, coupled both thermally and mechanically
to a QG shallow-water ocean layer, in the β-plane approxi-
mation. The atmospheric component is an extension of the
QG model, first developed by Charney and Straus (1980)
and further refined by Reinhold and Pierrehumbert (1982).
The equations of motion for the atmospheric streamfunction
fields ψ1

a at 250 hPa and ψ3
a at 750 hPa, and the vertical ve-

locity ω = dp/dt , read
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The Coriolis parameter f is linearized around a value
f0 estimated at latitude φ0 = 45◦ N, f = f0+βy, with β =

df/dy. The parameters k′d and kd quantify the friction be-
tween the two atmospheric layers and between the ocean and
the atmosphere, respectively, and 1p = 500 hPa is the pres-
sure difference between the atmospheric layers.

The equation of motion for the streamfunction ψo of the
ocean layer reads (cf. Pierini, 2011)
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LR is the reduced Rossby deformation radius, ρ the density,
h the depth, and r the friction at the bottom of the active
ocean layer. The rightmost term represents the impact of the
wind stress, and is modulated by the drag coefficient of the
mechanical ocean–atmosphere coupling, d = C/(ρh).

The time evolution of the atmosphere and ocean tempera-
tures Ta and To obeys the following equations:
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Here, γa and γo are the heat capacities of the atmosphere
and the active ocean layer. ψa = (ψ

1
a +ψ

3
a )/2 is the atmo-

spheric barotropic streamfunction. λ is the heat transfer co-
efficient at the ocean–atmosphere interface, and σ is the
static stability of the atmosphere, taken to be constant. The
quartic terms represent the long-wave radiation fluxes be-
tween the ocean, the atmosphere, and outer space, with εa the
emissivity of the grey-body atmosphere and σB the Stefan–
Boltzmann constant. By decomposing the temperatures as
Ta = T

0
a + δTa and To = T

0
o + δTo, the quartic terms are lin-

earized around spatially uniform temperatures T 0
a and T 0

o , as
detailed in Appendix B of Vannitsem et al. (2015).Ra andRo
are the short-wave radiation fluxes entering the atmosphere
and the ocean that are also decomposed as Ra = R

0
a + δRa

and Ro = R
0
o + δRo.

The hydrostatic relation in pressure coordinates
(∂8/∂p)=−1/ρa where the geopotential height
8i = f0 ψ

i
a and the ideal gas relation p = ρaRTa allow

one to write the spatially dependent atmospheric tempera-
ture anomaly δTa = 2f0 θa/R, with θa ≡ (ψ

1
a −ψ

3
a )/2 often

referred to as the baroclinic streamfunction. R is the ideal
gas constant. This can be used to eliminate the vertical
velocity ω from Eqs. (1)–(2) and (4). This reduces the
independent dynamical fields to the streamfunction fields ψa
and ψo, and the spatially dependent temperatures δTa and
δTo.

The prognostic equations for these four fields are then non-
dimensionalized by dividing time by f−1

0 , distance by a char-
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Table 1. Values of the parameters of the model that are used in the
analyses of Sect. 3.

Parameter (unit) Value Parameter (unit) Value

n= 2Ly/Lx 1.5 LR (km) 19.93
Ly = πL (km) 5.0× 103 ρ (kg m−3) 1000
f0 (s−1) 1.032× 10−3 σB (W m2 K−4) 5.6× 5.610−8

λ (W m−2 K−1) 15.06 σ (m2 s−2 Pa−2) 2.16× 10−6

r (s−1) 1.0× 10−7 β (m−1 s−1) 1.62× 10−11

d (s−1) 1.1× 10−7 R (J kg−1 K−1) 287
Co (W m−2) 310 γo (J m−2 K−1) 5.46× 108

Ca (W m−2) Co/3 γa (J m−2 K−1) 1.0× 107

kd (s−1) 3.0× 10−6 T 0
a (K) 289.30

k′
d

(s−1) 3.0× 10−6 T 0
o (K) 301.46

h (m) 136.5 εa 0.7

acteristic length scale L, pressure by the difference1p, tem-
perature by f 2

0 L
2/R, and streamfunction by L2f0. A more

detailed discussion of the model equations and their non-
dimensionalization can be found in Vannitsem and De Cruz
(2014) and Vannitsem et al. (2015).

All the parameters of the model equations used in the
present work are listed in Table 1.

2.1 Expansion of the dynamical fields

In non-dimensionalized coordinates x′ = x/L and y′ = y/L,
the domain is defined by (0≤ x′ ≤ 2π

n
,0≤ y′ ≤ π), with

n= 2Ly/Lx the aspect ratio between its meridional and
zonal extents (see Table 1 for the value used here). The
atmospheric flow is defined in a zonally periodic channel
with no-flux boundary conditions in the meridional direc-
tion (∂·a/∂x′ ≡ 0 at y′ = 0,π ), whereas the oceanic flow is
confined within an ocean basin by imposing no-flux bound-
aries in both the meridional (∂·o/∂x′ ≡ 0 at y′ = 0,π ) and
zonal (∂·o/∂y′ ≡ 0 at x′ = 0,2π/n) directions. These bound-
ary conditions limit the functions used in the Fourier expan-
sion of the dynamical fields. With the proper normalization,
the basis functions for the atmosphere must be of the follow-
ing form, following the nomenclature of Cehelsky and Tung
(1987):

FAP (x
′,y′)=

√
2 cos(Py′) (6)

FKM,P (x
′,y′)= 2cos(Mnx′) sin(Py′) (7)

FLH,P (x
′,y′)= 2sin(Hnx′) sin(Py′). (8)

Analogously, the oceanic basis functions must be of the
form

φHo,Po(x
′,y′)= 2sin(

Hon

2
x′) sin(Poy

′), (9)

with integer values of M , H , P , Ho, and Po.
For example, the spectral truncation used by Charney and

Straus (1980) can be specified as Eqs. (6)–(8) withM =H =
1; P ∈ {1,2}. Reinhold and Pierrehumbert (1982) extend this

set by two blocks of two functions each, and the resulting
set can be specified as M,H ∈ {1,2}; P ∈ {1,2}. The VDDG
model has M,H ∈ {1,2}; P ∈ {1,2} and Ho ∈ {1,2}; Po ∈

{1,2,3,4}. Note that, for consistency, the ranges for M and
H should be the same. The distinction between M and H is,
however, required to avoid ambiguities in the formulae of the
inner products, as specified in Appendix A.

For the given ranges of 1≤ P ≤ Pmax, 1≤ (M,H)≤
Hmax and 1≤ Po ≤ P

max
o , and 1≤Ho ≤H

max
o , the number

of basis functions can be calculated as

na = P
max (2Hmax

+ 1); no = P
max
o Hmax

o . (10)

Ordering the basis functions as in Eqs. (6)–(8), along in-
creasing values of M =H(o) and then P(o), allows one to
write the set as

{
Fi(x

′,y′), φj (x
′,y′)

}
(1≤ i ≤ na,1≤ j ≤

no). The dynamical fields can then be written as the follow-
ing truncated series expansions:

ψa(x
′,y′, t)=

na∑
i=1

ψa,i(t)Fi(x
′,y′), (11)

δTa(x
′,y′, t)=

na∑
i=1

δTa,i(t) Fi(x
′,y′), (12)

= 2
f0

R

na∑
i=1

θa,i(t) Fi(x
′,y′),

ψo(x
′,y′, t)=

no∑
j=1

ψo,j (t) (φj (x
′,y′) − φj ), (13)

δTo(x
′,y′, t)=

no∑
j=1

δTo,j (t) φj (x
′,y′). (14)

Furthermore, the short-wave radiation or insolation is de-
termined by δRa = CaF1; δRo = CoF1. In Eq. (13), a term φj
is added to the oceanic basis function φj (x′,y′) in order to
give it a vanishing spatial average. This is required to guar-
antee mass conservation in the ocean (Cessi and Primeau,
2001; McWilliams, 1977), but otherwise does not affect the
dynamics. Indeed, it can be added a posteriori when plotting
the field ψo(x

′,y′, t). This term is non-zero for odd Po and
Ho,

φj =
n

2π2

π∫
0

2π
n∫

0

φj (x
′,y′)dx′dy′ (15)

= 2
((−1)Ho − 1)((−1)Po − 1)

HoPoπ2 .

The mass conservation is automatically satisfied for
ψa(x

′,y′, t), as the spatial averages of the atmospheric ba-
sis functions Fi(x′,y′) are zero.

Substituting the fields in Eqs. (1)–(5) and projecting on
the different basis functions yield 2(na+no) ordinary differ-
ential equations (ODEs) for as many variables. Due to the
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linearization of the quartic temperature fields in Eqs. (4) and
(5), these equations are at most bilinear (due to the advection
term) in the variables ψa,i,θa,i,ψo,j , and δTo,j , which will
henceforth jointly be referred to as ηi , the components of the
state vector η.

To construct the dynamical equations of these variables,
one has to compute the various projections or inner products
with the basis functions, for which the following shorthand
notation will be used:

〈S,G〉 ≡
n

2π2

π∫
0

2π/n∫
0

S(x′,y′) G(x′,y′)dx′ dy′. (16)

As described by Cehelsky and Tung (1987), the inner
products for the atmosphere can be computed as purely al-
gebraic formulae of the wave numbers P , M , and H . We
reiterate these algebraic formulae in Sect. A1 of Appendix A
and extend them with the formulae for both the ocean–
atmosphere coupling terms and the ocean inner products
in Sect. A2. The inner products can be represented as ei-
ther two-dimensional or three-dimensional tensors, which
are sparse but generally not diagonal.

2.2 Technical implementation

Substituting the fields by Eqs. (11)–(14) and calculating the
coefficients using the expressions for the inner products as in
Appendix A yields a set of N ≡ 2(na+ no) prognostic ordi-
nary differential equations. These equations are at most bi-
linear in the variables ηi (1≤ i ≤N ) due to the linearization
of the radiative terms around a reference temperature present
in Eqs. (4)–(5). This system of ODEs can therefore be most
generically expressed as the sum of a constant, a matrix mul-
tiplication, and a tensor contraction:

dηi
dt
= ci +

N∑
j=1

mi,j ηj (17)

+

N∑
j,k=1

ti,j,kηjηk (1≤ i ≤N).

This expression can be further simplified by adding a dummy
variable that is identically equal to one: η0 ≡ 1. This extra
variable allows one to merge ci ,mi,j , and ti,j,k into the tensor
Ti,j,k , in which the linear terms are represented by Ti,j,0 and
the constant term by Ti,0,0:

dηi
dt
=

N∑
j=0

N∑
k=0

Ti,j,k ηj ηk (1≤ i ≤N). (18)

The elements of the tensor Ti,j,k are specified in Appendix B.
Recasting the system of ordinary differential equations for ηi
in the form of a tensor contraction has certain advantages, as
we will clarify below. The symmetry of Eq. (18) allows for a

unique representation of Ti,j,k , if it is taken to be upper trian-
gular in the last two indices (Ti,j,k ≡ 0 if j > k). Since Ti,j,k
is known to be sparse, it is stored using the coordinate list
representation, i.e. a list of tuples (i,j,k,Ti,j,k). This repre-
sentation renders the computation of the tendencies dηi/dt
computationally very efficient as well as conveniently paral-
lelizable.

Two implementations of MAOOAM are provided as a Sup-
plement: one in Lua and one in Fortran. The Lua code is
optimized for LuaJIT, a just-in-time compiler for Lua (Pall,
2015), and runs about 20 % slower than the Fortran version.
By default, the model equations are numerically integrated
using the Heun method. We have tested higher-accuracy
methods, but these did not significantly change the results.
The integration method can easily be changed; as an exam-
ple, a fourth-order Runge–Kutta integrator is also included in
the Lua implementation.

2.3 Derivation of Jacobian, tangent linear, and adjoint
models

The form of Eq. (18) allows one to easily compute the Ja-
cobian matrix of this system of ODEs. Indeed, denoting the
right-hand side of Eq. (18) as dηi/dt = fi , the expression re-
duces to

Ji,j =
dfi
dηj
= d(

N∑
k,l=0

Ti,k,l ηk ηl)/dηj (19)

=

N∑
k=0

(
Ti,k,j + Ti,j,k

)
ηk (1≤ i,j ≤N).

The differential form of the tangent linear (TL) model for
a small perturbation δηTL of a trajectory η∗ is then simply
(Kalnay, 2003)

dδηTL
i

dt
=

N∑
j=1

J ∗i,j δη
TL
j (20)

=

N∑
j=1

N∑
k=0

(
Ti,k,j + Ti,j,k

)
η∗k δη

TL
j (1≤ i ≤N).

To obtain the differential form of the adjoint model along the
trajectory η∗, the Jacobian is transposed to yield the follow-
ing equations for the adjoint variable δηAD:

−
dδηAD

i

dt
=

N∑
j=1

J ∗j,i δη
AD
j (21)

=

N∑
j=1

N∑
k=0

(
Tj,k,i + Tj,i,k

)
η∗k δη

AD
j (1≤ i ≤N).

3 Model dynamics

This section details some key results obtained with the model
for various levels of spectral truncation, with the set of pa-
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Table 2. Number of variables, transient time, and effective runtime
of the runs (in years).

Resolution No. of Transient Eff. runtime
variables (y) (y)

atm. 2x–2y oc. 2x–4x 36 30 726.5 92 179.6
atm. 2x–4y oc. 2x–4x 56 30 726.5 92 179.6
atm. 3x–3y oc. 3x–3x 60 30 726.5 92 179.6
atm. 4x–4y oc. 4x–4x 104 30 726.5 92 179.6

atm. 5x–5y oc. 5x–5x 160 30 726.5 92 179.6
atm. 6x–6y oc. 6x–6x 228 30 726.5 92 179.6
atm. 7x–7y oc. 7x–7x 308 30 726.5 92 179.6
atm. 8x–8y oc. 8x–8x 400 30 726.5 92 179.6

atm. 9x–9y oc. 9x–9y 504 30 726.5 92 179.6
atm. 10x–10 oc. 10x–10y 620 30 726.5 92 179.6
atm. 5x–5y oc. 12x–12y 398 15 363.3 92 179.6
atm. 12x–12y oc. 12x–12y 888 15 363.3 74 972.7

rameter values given in Table 1. The parameter values for L,
LR, λ, r , d, Co, Ca, kd , and k′d were selected as detailed in
Vannitsem et al. (2015). The same value was chosen for kd
and k′d , as was done in Charney and Straus (1980); see also
Vannitsem and De Cruz (2014). Unless otherwise stated, all
the following results are obtained after first integrating the
model for a transient period of 30 726.5 years. The model is
subsequently integrated for another 92 179.6 years to obtain
a sufficiently long trajectory from which good statistics can
be extracted.

For the atmospheric part of the model, a previous study
(Cehelsky and Tung, 1987), referred to as CT in the follow-
ing, has shown that spurious chaos and a too large variability
in the modes near the spectral cut-off could take place if the
resolution is not high enough. These manifestations of spu-
rious behaviour can lead to solutions that differ significantly
from the solutions of the full partial differential equations
(PDEs, here Eqs. 1–5). These findings lead us to the impor-
tant question of convergence: to what degree has the solution
of the truncated equations converged towards the solution of
the PDEs? Although we do not have access to the latter, one
can infer how the solutions are altered when the resolution is
increased. Therefore, it cannot be asserted that convergence
has been reached, and this point was also clearly stated in CT.
However, we can reasonably suppose that when the solutions
stabilize, they give an insight into the full dynamics.

This question is now addressed for the MAOOAM coupled
atmosphere–ocean model. Figures 1 and 2 display cross sec-
tions of the attractors of the model for different resolutions.
The three variables selected in this projection are ψa,1, ψo,2,
and θo,2, which have already been used to represent the large-
scale variability of the model (Vannitsem et al., 2015). We
use the same notation as in CT to specify the resolution of
each component: (Hmax)x–(Pmax)y for the atmosphere and
(Hmax

o )x–(Pmax
o )y for the ocean, withMmax

=Hmax. All the
model configurations used are listed in Table 2. To alleviate

Figure 1. Cross section of the attractors for various model resolu-
tions. The atmospheric and oceanic resolutions are both indicated
above each panel. The parameters are given in Table 1.

Figure 2. Cross section of the attractors for various model resolu-
tions (continued from Fig. 1).
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Figure 3. Variance distributions of the ψa,i variables in percents for
various model resolutions. For the variables associated with the A-
type basis functions, the wave numbers M and H are not defined
(nd).

the notation in the following, a model configuration denoted
simply by Hmaxx–Pmaxy indicates that the resolution is the
same in both components: Hmax

o =Hmax and Pmax
o = Pmax.

The first panel of Fig. 1, with the atm. 2x–2y oc. 2x–
4y resolution, shows the typical attractor geometry found
in Vannitsem et al. (2015) and Vannitsem (2015) with a noisy,
seemingly periodic orbit associated with the development of
a large low-frequency signal. However, as the resolution is
increased in both the ocean and atmosphere components, this
structure destabilizes and we obtain more compact, noisy at-
tractors in Figs. 1 and 2. The cause of this structural change
is an interesting question in itself, which is worth exploring
further in the future, as it is associated with the problem of
structural stability of models, but is beyond the scope of the
present work.

Regarding the question of convergence, the variability of
the atmospheric variables becomes quite stable as the reso-
lution increases beyond 6x–6y. Indeed, the bounds of the at-
tractors on the vertical axis (ψa,1) stabilize at this resolution.
This result is in agreement with the findings of CT. On the
other hand, the convergence is not yet reached for the oceanic
variables whose variability is strongly affected by adding fur-
ther modes as in the 7x–7y and 8x–8y resolutions.

Figure 4. Variance distributions of the ψa,i variables in percents for
various model resolutions (continued from Fig. 3). For the variables
associated with the A-type basis functions, the wave numbers M
and H are not defined (nd).

The impact of the resolution on the solutions can also be
examined by computing the variance of each variable of the
barotropic and baroclinic streamfunctions, since these are as-
sociated with the kinetic and potential energy of the system
(Yao, 1980). The presence of spurious behaviour can then
be detected through substantial changes in this variability.
The distributions of the total variance of the variables ψa,i
and ψo,i are depicted in Figs. 3–6. The results show that the
variance distribution does not change much beyond the 4x–
4y resolution for the atmospheric component. However, for
the oceanic component, the variance distribution is strongly
modified when the resolution increases, and therefore one
cannot conclude from Fig. 6 that some sort of convergence
is reached at the 8x–8y resolution. To interpret this spe-
cific property, one must recall an important feature of two-
dimensional quasi-geostrophic turbulence, namely the pres-
ence of a specific space scale, the Rhines scale, which delim-
its the two regimes associated with a wave-dominated dy-
namics and a turbulent dynamics. This space scale is given
by
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Figure 5. Variance distributions of the ψo,i variables in percents for
various model resolutions.

LRh =

√
U

β
, (22)

where U represents the root-mean-square velocity of the
energy-containing scales (Rhines, 1975; Vallis and Maltrud,
1993; Vallis, 2006) and β = df/dy is the meridional deriva-
tive of the Coriolis parameter f . If one takes the typical ve-
locity of the order of a few metres per second and a few
centimetres per second within the atmosphere and the ocean
at large scales, the typical length scales will be of the or-
der of 1000 and 100 km, respectively. Therefore the high-
est wave numbers necessary to resolve the wave-dominated
part within the atmosphere and the ocean differ by a factor of
10. Coming back to our analysis, if this limit is reached for
the atmosphere in our model at H , P = 4–5, we should sus-
pect that a value of Ho/2≈ Po ≈ 40–50 should be used for
the ocean. This of course imposes strong constraints on our
reduced-order model and would considerably limit its flexi-
bility.

Let us now focus on the development of the LFV in these
different model configurations, and let us define the geopo-
tential height difference δz between the locations (π/n,π/4)
and (π/n,3π/4) of the model’s non-dimensional domain:

δz(t)= z(π/n,π/4, t)− z(π/n,3π/4, t),

z(x′,y′, t)=
f0

g
ψa(x

′,y′, t),
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Figure 6. Variance distributions of the ψo,i variables in percents for
various model resolutions (continued from Fig. 5).

where z is the geopotential height field, as in Vannitsem
et al. (2015). The results shown in Figs. 7 and 8 indicate
that the LFV, present for atm. 2x–2y oc. 2x–4y as in Van-
nitsem (2015), is a very weak signal at intermediate resolu-
tions, but develops again when the number of modes is in-
creased, as shown by the 1-year and 5-year running means.
It suggests that the LFV previously found in low-resolution
versions (see Fig. 7, panel atm. 2x–2y oc. 2x–4y) is a robust
feature of the model. Moreover, at high resolutions this LFV
is weaker than for the VDDG model version, but it seems
closer to the actual dynamics found for the North Atlantic
Oscillation (NAO) as discussed in Li and Wang (2003) and
Stephenson et al. (2000).

The climatologies of the atmospheric barotropic stream-
function expressed in geopotential height further highlight
the changes in the statistical properties of the model as a
function of resolution. As shown in Figs. 9 and 10, the con-
vergence is pretty fast toward an averaged zonal atmospheric
circulation as the model resolution is increased. By contrast,
the convergence for the oceanic streamfunction ψo is less
clear (Figs. 11 and 12), although a recurrent “global” dou-
ble gyre is present for each resolution. As for the LFV, the
topology of the gyres at high resolutions and their small-scale
structures also seem to depend on whether Hmax, Mmax,
Hmax

o and Pmax
o , Pmax are even or odd numbers.

The previous results point toward the important question
of the optimal resolution of the oceanic component needed
to get a sufficiently low-resolution model while keeping a
dynamics with strong similarities to a very high-resolution
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Figure 7. Time series of the geopotential height difference (m) be-
tween locations (π/n,π/4) and (π/n,3π/4) of the model’s non-
dimensional domain for different resolutions. Running averages for
τ = 1y (black) and τ = 5y (red) are also provided, highlighting the
LFV signal present in the series.
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Figure 8. Time series of the geopotential height difference (contin-
ued from Fig. 7).
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Figure 9. Climatologies for the geopotential height field z= f0
g ψa

(m) presented on the non-dimensional model domain, as obtained
using 92 179.6 years of model integration.

model. To answer this question, we have performed some
higher-resolution integrations, but on shorter time spans. The
time span for each integration is given in Table 2.

The variance distributions of the oceanic streamfunction
variables (see Fig. 13) have decreased at the spectral cut-off’s
edges compared to the distributions of the lower-resolution
model configurations shown in Fig. 5. However, this de-
crease is not sufficient, and apparently spurious effects are
still present. For instance, the decay is not identical in both
directions, with a slower decay rate as the zonal wave num-
ber Ho increases. We can even notice a peak in the distri-
bution around H0 =H

max
0 and P0 = 2 for all these higher

model resolutions. This indicates that in fact we are still far
from a quantitatively representative solution in the ocean. It
confirms that, as stated previously, a resolution of the order
of the Rhines scale is needed to achieve a good convergence.
For the ocean, it corresponds to a 100 km resolution which
would then require roughly 2000 modes. Such a model will
of course be very computationally expensive and cannot be
considered a “reduced”-order model anymore.

However, the comparison between the atm. 5x–5y oc.
12x–12y model configuration and the 10x–10y or 12x–12y
model configurations shows that the former displays a large-
scale behaviour close to the latter two, but with a reduced
complexity and computational cost. This similarity can be
assessed by considering the climatologies of these higher-
resolution runs displayed in Fig. 14 and by watching the cor-
responding videos (see below). We therefore believe that the
atm. 5x–5y oc. 12x–12y model configuration is a good can-
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Figure 10. Climatologies for the geopotential height field z= f0
g ψa

(m) (continued from Fig. 9).

didate when investigating more realistic dynamics than the
one presented in VDDG. It must however be stressed that the
VDDG model is still an important tool in this hierarchy of
models since it already contains the basic mechanisms lead-
ing to low-frequency variability. In addition, the climatolo-
gies shown in Fig. 14 confirm the dependence of the dynam-
ics on whether Hmax, Mmax, Hmax

o and Pmax
o , Pmax are even

or odd, and also the presence of a global double-gyre in the
ocean.

Finally, the dynamics of the model for the various resolu-
tions are also illustrated in the videos provided as supplemen-
tary material. These videos depict the time evolution of the
streamfunction and temperature fields, as well as the geopo-
tential height difference and the three-dimensional phase-
space projection shown in Figs. 1 and 2. They give an in-
sight into the high-frequency atmospheric and low-frequency
oceanic variability, and also show the interesting time evo-
lution of the oceanic gyres. In these videos, a striking fea-
ture is the presence of a westward wave propagation within
the ocean while the LFV is developing in the coupled sys-
tem. This feature has been associated with the propagation
of Rossby-like waves (Vannitsem, 2015).

4 Conclusions

A new reduced-order coupled ocean–atmosphere model is
presented, extending the low-resolution versions previously
published (Vannitsem and De Cruz, 2014; Vannitsem et al.,
2015). It is referred to as MAOOAM, for Modular Arbitrary-
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Figure 11. Climatologies for the oceanic streamfunction field ψo
(m2 s−1) presented on the non-dimensional model domain, as ob-
tained using 92 179.6 years of model integration.
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Figure 12. Climatologies for the oceanic streamfunction field ψo
(m2 s−1) (continued from Fig. 11).

Order Ocean-Atmosphere Model. This new model retains the
main features of the previous versions but allows for the se-
lection of an arbitrary resolution within the ocean and the
atmosphere. Besides the potential utility of this new func-
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Figure 13. Variance distributions of the ψo,i variables in percents
for the high-resolution runs. The information on the different run-
times is gathered in Table 2.

tionality for evaluating the impact of the number of modes
on the dynamics (as has been done here), it opens the pos-
sibility of addressing several new questions in a very flexi-
ble way, such as the development of a consistent stochastic
parameterization scheme through scales, the understanding
of the predictability problem at multiple scales and the role
of model error, or the implementation of a data-assimilation
scheme for the coupled ocean–atmosphere system.

In the present work, we have studied the impact of the
resolution on the model solution’s dynamics, by investigat-
ing the properties of the attractors and the variance distri-
butions in both the oceanic and atmospheric components.
The conclusion that can be drawn is that the convergence
of the atmospheric component of the system is quite fast
(as noted in Cehelsky and Tung, 1987), with variance dis-
tributions decreasing rapidly as a function of scale. However,
the convergence of the oceanic component is much slower.
Consequently, none of the solutions presented so far have
satisfactorily converged toward a dynamics that correctly
reflects the wave-dominated regime of the coupled ocean–
atmosphere system. This regime corresponds to a resolu-
tion associated with the Rhines scale (which for the ocean
is equal to 100 km or, equivalently, to wave numbers of the
order of Hmax

o /2≈ Pmax
o ≈ 50). This stresses the need for

high-resolution oceanic models to correctly represent the full
coupled dynamics. One coupled model configuration which
could, however, be recommended so far is the atm. 5x–5y oc.
12x–12y configuration, which seems to display some robust-
ness in the ocean climatology as compared to the full 10x–
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Figure 14. Climatologies for the oceanic streamfunction ψo field
(m2 s−1) presented on the non-dimensional model domain for the
high-resolution runs displayed in Fig. 13.

10y and 12x–12y configurations. This conclusion requires
further investigation with even higher resolutions, together
with the use of more advanced tools of analysis like the com-
putation of the Lyapunov exponents as in Vannitsem and Lu-
carini (2016). These can be computed using the tangent linear
model version for which an implementation is also provided.
This will be the subject of a future investigation.

The robustness of the LFV pattern, one of the most in-
teresting features of the model, has also been explored. As it
turns out, a LFV is still present in a large portion of the model
configurations explored (not in 2x–4y, 3x–3y, and 4x–4y),
but a weaker LFV signal is found when high-resolution con-
figurations are used. A dominant signal is found with a wide
variety of periods ranging from 1 to 100 years, depending on
the model configuration. A more detailed analysis of the un-
derlying structure of the system’s attractor is needed to clar-
ify the origin of this diversity, for instance through a bifur-
cation analysis as in Vannitsem et al. (2015). Note that the
VDDG model is still an important tool in this hierarchy of
models, since it already contains the basic mechanisms lead-
ing to the LFV.

Another interesting finding is the change of structure of the
climatologies of the ocean gyres when choosing even or odd
wave numbers (Hmax, Mmax, Hmax

o and Pmax
o , Pmax). Is this

feature purely associated with the convergence toward a spa-
tially continuous field, or does it reflect specific properties of
the dynamical equations, such as symmetries or invariance?
These questions are still open and will be the subject of a fu-
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ture investigation that should allow one to clarify the best set
of modes needed for the ocean description.

Finally, the aim of the model is to study the effects of spe-
cific physical interaction mechanisms between the ocean and
the atmosphere on the mid-latitude climate, both at large and
intermediate scales. The modular design of the code of the
model is adapted to such purposes, with the possibility of
implementing new components, such as oceanic active trans-
port, time-dependent forcings, or salinity fields.

5 Code availability

MAOOAM v1.0 is freely available for research purposes
in the Supplement and is also available at http://github.
com/Climdyn/MAOOAM. In addition, the code is archived
at http://dx.doi.org/10.5281/zenodo.47507. A version of the
Lua implementation which is parallelized using MPI is also
available at http://github.com/Climdyn/MAOOAM/tree/mpi.
The parallelized version is archived at http://dx.doi.org/10.
5281/zenodo.47510.
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Appendix A: Formulae to compute the inner products

In the formulae of the inner products of the atmospheric
modes, Cehelsky and Tung (1987) use the following helper
functions:

B1(u,v,w)=
w+ v

u
, (A1)

B2(u,v,w)=
w− v

u
, (A2)

λ(r)= 0 (r even) or 1 (r odd), (A3)

S1(u,v,w,z)=−
1
2
(zu+wv), (A4)

S2(u,v,w,z)=
1
2
(wv− zu), (A5)

S3(u,v,w,z)=− S1(u,v,w,z), (A6)
S4(u,v,w,z)=S2(u,v,w,z). (A7)

The same notation will be used in this appendix. In what fol-
lows, δij is the Kronecker delta, so that δij = 1 if i = j , and 0
otherwise. Likewise, the function δ(x) used in this appendix
is defined as

δ(x)=

{
1, if x = 0

0, otherwise.
(A8)

Using these functions, the various coefficients of the model
are calculated, starting with the internal atmosphere coeffi-
cients.

A1 Atmospheric coefficients

In the following, we consider the ordering of the basis func-
tion used in Eqs. (11)–(14). For the sake of clarity, we add
an extra informative upper index specifying the type of the
atmospheric function in the definitions below. However, the
inner products are completely defined by the lower indices
alone. The atmospheric functions are thus noted:

F αi (x
′,y′)=


√

2 cos(Piy′) if α = A,
2cos(Minx

′) sin(Piy′) if α =K,
2sin(Hinx′) sin(Piy′) if α = L,

(A9)

and the oceanic functions

φi(x
′,y′)= 2sin(

Ho,in

2
x′) sin(Po,iy

′). (A10)

A1.1 The ai,j coefficients

These coefficients correspond to the eigenvalues of the
Laplacian operator acting on the spectral expansion basis
functions:

a
α,β
i,j = 〈F

α
i ,∇

2F
β
j 〉, α,β ∈ {A,K,L}, (A11)

which are given for each case by

a
A,A
i,j =−δij P

2
i , (A12)

a
K,K
i,j =−δij (n

2M2
i +P

2
i ), (A13)

a
L,L
i,j =−δij (n

2H 2
i +P

2
i ). (A14)

A1.2 The ci,j coefficients

These coefficients are needed to evaluate the contribution of
the β-terms, and only involve the K- and L-type base func-
tions.

c
α,β
i,j = 〈F

α
i ,∂x′F

β
j 〉, α,β ∈ {K,L}. (A15)

We have that

c
K,K
i,j = c

L,L
i,j = 0, (A16)

c
K,L
i,j =Mi δ(Mi −Hj ) δ(Pi −Pj )=−c

L,K
j,i . (A17)

A1.3 The gi,j,k coefficients

These coefficients are given by

g
α,β,γ

i,j,k = 〈F
α
i ,J (F

β
j ,F

γ

k )〉, α,β,γ ∈ {A,K,L}, (A18)

and the non-zero ones are given by

g
A,K,L
i,j,k =−

2
√

2
π

Mj

(
B1(Pi ,Pj ,Pk)

2

B1(Pi ,Pj ,Pk)2− 1
−

B2(Pi ,Pj ,Pk)
2

B2(Pi ,Pj ,Pk)2− 1

)
,

×δ(Mj −Hk)λ(Pi +Pj +Pk),

(A19)
g
K,K,L
i,j,k = S1(Pj ,Pk,Mj ,Hk)

{
δ(Mi −Hk −Mj ) δ(Pi −Pk +Pj )

−δ(Mi −Hk −Mj ) δ(Pi +Pk −Pj )

+
[
δ(Hk −Mj +Mi )+ δ(Hk −Mj −Mi )

]
δ(Pk +Pj −Pi )

}
+S2(Pj ,Pk,Mj ,Hk)

{
δ(Mi −Hk −Mj ) δ(Pi −Pk −Pj )

+
[
δ(Hk −Mj −Mi )+ δ(Mi +Hk −Mj )

]
×
[
δ(Pi −Pk +Pj )− δ(Pk −Pj +Pi )

]}
,

(A20)

g
L,L,L
i,j,k = S3(Pj ,Pk,Hj ,Hk)

{
δ(Hk +Hj −Hi ) δ(Pk −Pj +Pi )

+
[
δ(Hk −Hj −Hi )− δ(Hk −Hj +Hi )

]
δ(Pk +Pj −Pi )

−δ(Hk +Hj −Hi ) δ(Pk −Pj −Pi )
}

+S4(Pj ,Pk,Hj ,Hk) {δ(Hk +Hj −Hi ) δ(Pk −Pj −Pi )

+
[
δ(Hk −Hj +Hi )− δ(Hk −Hj −Hi )

]
×
[
δ(Pk −Pj −Pi )− δ(Pk −Pj +Pi )

]}
for k ≥ j ≥ i,

(A21)

where we have used the functions defined at the beginning
of this appendix. All the other permutations can be obtained
thanks to

g
α,β,γ

i,j,k =−g
β,α,γ

j,i,k = g
γ,α,β

k,i,j = g
β,γ,α

j,k,i . (A22)

A1.4 The bi,j,k coefficients

These coefficients are given by

b
α,β,γ

i,j,k = 〈F
α
i ,J (F

β
j ,∇

2F
γ

k )〉, α,β,γ ∈ {K,L}. (A23)

Therefore we obtain

b
α,β,γ

i,j,k = a
γ,γ

k,k 〈F
α
i ,J (F

β
j ,F

γ

k )〉 = a
γ,γ

k,k g
α,β,γ

i,j,k . (A24)
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A1.5 The si,j coefficients

These coefficients encode the inner products between the at-
mospheric and oceanic basis functions:

sαi,j = 〈F
α
i ,φj 〉, α ∈ {A,K,L}, (A25)

which gives

sAi,j = 8
√

2Po,j
λ(Ho,j )λ(Po,j +Pi)

π2Ho,j (P
2
o,j −P

2
i )
, (A26)

sKi,j = 4Ho,j
λ(2Mi +Ho,j ) δ(Po,j −Pi)

π(H 2
o,j − 4M2

i )
, (A27)

sLi,j = δ(Po,j −Pi) δ(2Hi −Ho,j ). (A28)

A1.6 The di,j coefficients

These coefficients are related to the forcing of the ocean on
the atmosphere. They are given by the formula

dαi,j = 〈F
α
i ,∇

2φj 〉 =Mj,j s
α
i,j , α ∈ {A,K,L}, (A29)

where the Mj,j are given by the eigenvalues of the Lapla-
cian operator acting on the oceanic basis functions (see next
section).

A2 Oceanic coefficients

A2.1 The Ki,j coefficients

These coefficients are related to the forcing of the atmosphere
on the ocean. They are given by

Kα
i,j = 〈φi,∇

2F αj 〉 = a
α,α
j,j s

α
j,i, α ∈ {A,K,L}. (A30)

A2.2 The Mi,j coefficients

These coefficients identify with the eigenvalues of the Lapla-
cian acting on the oceanic basis functions:

Mi,j = 〈φi,∇
2φj 〉 = −δij (n

2H 2
o,i/4+P

2
o,i). (A31)

A2.3 The Ni,j coefficients

These coefficients are needed to evaluate the contribution of
the β-terms and are given by

Ni,j = 〈φi,∂x′φj 〉 (A32)

=−2nHo,iHo,j
δ(Po,i −Po,j )λ(Ho,i +Ho,j )

π (H 2
o,j −H

2
o,i)

.

A2.4 The Oi,j,k coefficients

These coefficients are given by

Oi,j,k = 〈φi,J (φj ,φk)〉 (A33)

with

Oi,j,k =
n

2

[
S3(Po,j ,Po,k,Ho,j ,Ho,k)

{
[δ(Ho,k −Ho,j −Ho,i )

−δ(Ho,k −Ho,j +Ho,i )]δ(Po,k +Po,j −Po,i )
+δ(Ho,k +Ho,j −Ho,i ) [δ(Po,k −Po,j +Po,i )

−δ(Po,k −Po,j −Po,i )]
}
+ S4(Po,j ,Po,k,Ho,j ,Ho,k)

×
{
[δ(Ho,k +Ho,j −Ho,i ) δ(Po,k −Po,j −Po,i )]

+[δ(Ho,k −Ho,j +Ho,i )− δ(Ho,k −Ho,j −Ho,i )]

×[δ(Po,k −Po,j −Po,i )− δ(Po,k −Po,j +Po,i )]
}]

for k ≥ j ≥ i.

(A34)

A2.5 The Ci,j,k coefficients

These coefficients are given by

Ci,j,k = 〈φi,J (φj ,∇
2φk)〉 =Mk,kOi,j,k. (A35)

A2.6 The Wi,j coefficients

These coefficients are related to the short-wave radiative
forcing of the ocean and are given by

Wα
i,j = 〈φi,F

α
j 〉 = s

α
j,i, α ∈ {A,K,L}. (A36)

Appendix B: Definition of the tensor Ti,j,k

The system of non-dimensionalized ODEs for the model
variables is encoded in the model tensor Ti,j,k , of which
the complete definition is given in this appendix. Tensor ele-
ments that are not listed below are equal to zero. To alleviate
the notations, we use a shorthand notation for the indices of
the different variables,

ψi = i (1≤ i ≤ na), (B1)
θi = i+ na (1≤ i ≤ na),

9i = i+ 2na (1≤ i ≤ no),

2i = i+ 2na+ no (1≤ i ≤ no).

Furthermore, we suppress the upper indices which indicate
the atmospheric function types but are otherwise not needed
to unambiguously specify the inner products.

B1 Atmosphere equations

The components of the tensor for the atmosphere streamfunc-
tion are given by

Tψi ,ψj ,0 =−
ci,j β

′

ai,i
−
kd

2
δi,j , (B2)

Tψi ,θj ,0 =
kd

2
δi,j ,

Tψi ,ψj ,ψk = Tψi ,θj ,θk =−
bi,j,k

ai,i
,

Tψi ,9j ,0 =
kd di,j

2ai,i
.
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The atmospheric temperature equations are determined by
the tensor elements

Tθ1,0,0 =
C′a

1− a1,1 σ0
, (B3)

Tθi ,ψj ,0 =
ai,j kd σ0

2ai,i σ0− 2
,

Tθi ,θj ,0 =−
σ0
(
2 ci,j β ′+ ai,j (kd + 4 k′d)

)
− 2 (S′B,a+ λ

′
a)δi,j

2 ai,i σ0− 2
,

Tθi ,ψj ,θk =
gi,j,k − bi,j,k σ0

ai,i σ0− 1
,

Tθi ,θj ,ψk =
bi,j,k σ0

1− ai,iσ0
,

Tθi ,9j ,0 =
kd di,j σ0

2− 2ai,i σ0
,

Tθi ,2j ,0 = si,j
2 S′B,o+ λ

′
a

2− 2 ai,j σ0
,

where we used the non-dimenionalized quantities

β ′ = βL/f0,

C′a = CaR/(2γaf
3
0 L

2),

σ0 = σ1p
2/(2L2f 2

0 ),

λ′a = λ/(γaf0),

S′B,o = 2εaσB

(
T 0

o

)3
/(γaf0),

S′B,a = 8εaσB

(
T 0

a

)3
/(γaf0).

B2 Ocean equations

The components of the tensor for the ocean streamfunction
are

T9i ,ψj ,0 =−T9i ,θj ,0 =
Ki,j d

′

Mi,i + γ
, (B4)

T9i ,9j ,0 =−
Ni,j β

′
+ δi,j Mi,i (r

′
+ d ′)

Mi,i + γ
,

T9i ,9j ,9k =−
Ci,j,k

Mi,i + γ
,

with γ =−L/LR, d ′ = d/f0, and r ′ = r/f0.
Finally, the equations for the ocean temperature are deter-

mined by

T2i ,0,0 = C
′
o Wi,1, (B5)

T2i ,θj ,0 =Wi,j (2 λ′o+ σ
′
B,a),

T2i ,2j ,0 =−δi,j (λ
′
o+ σ

′
B,o),

T2i ,9j ,2k =−Oi,j,k,

where the following non-dimensionalized quantities are
used:

C′o = CoR/(γaf
3
0 L

2),

λ′o = λ/(γof0),

σ ′B,o = 4σB

(
T 0

o

)3
/(γof0),

σ ′B,a = 8εaσB

(
T 0

a

)3
/(γof0).
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lustrated by a set of videos, which are available
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