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Abstract. Balance constraints are important for background
error covariance (BEC) in data assimilation to spread infor-
mation between different variables and produce balance anal-
ysis fields. Using statistical regression, we develop a bal-
ance constraint for the BEC of aerosol variables and apply
it to a three-dimensional variational data assimilation sys-
tem in the WRF/Chem model; 1-month forecasts from the
WRF/Chem model are employed for BEC statistics. The
cross-correlations between the different species are generally
high. The largest correlation occurs between elemental car-
bon and organic carbon with as large as 0.9. After using the
balance constraints, the correlations between the unbalanced
variables reduce to less than 0.2. A set of data assimilation
and forecasting experiments is performed. In these experi-
ments, surface PM2.5 concentrations and speciated concen-
trations along aircraft flight tracks are assimilated. The anal-
ysis increments with the balance constraints show spatial dis-
tributions more complex than those without the balance con-
straints, which is a consequence of the spreading of obser-
vation information across variables due to the balance con-
straints. The forecast skills with the balance constraints show
substantial and durable improvements from the 2nd hour to
the 16th hour compared with the forecast skills without the
balance constraints. The results suggest that the developed
balance constraints are important for the aerosol assimilation
and forecasting.

1 Introduction

Aerosol data assimilation in chemical transport models has
received an increasing amount of attention in recent years
as a basic methodology for improving aerosol analysis and
forecasting. In a data assimilation system, the background
error covariance (BEC) plays a crucial role in the success of
an assimilation process. The BEC and the observation error
determine analysis increments from the assimilation process
(Derber and Bouttier, 1999; Chen et al., 2013).

However, accurate estimation of the BEC remains difficult
due to a lack of information about the true atmospheric states
and also due to computational requirement arising from the
large dimension of the BEC (typically 107

×107). For a varia-
tional data assimilation system, a few methods have been de-
veloped to estimate and simplify the expression of the BEC,
such as the analysis of innovations, the NMC (National Me-
teorological Center) and the ensemble-based (Monte Carlo)
methods (Constantinescu et al., 2007; Singh et al., 2011).
The NMC method is extensively used in operational atmo-
spheric and meteorology–chemistry data assimilation sys-
tems. It assumes that the forecast errors are approximated
by differences between pairs of forecasts that are valid at the
same time (Parrish and Derber, 1992). Pagowski et al. (2010)
estimated the BEC of PM2.5 (particles having an aerody-
namic diameter less than 2.5 µm) by calculating the differ-
ences between the forecasts of 24 and 48 h, and used the es-
timated BEC in a Grid-point Statistical Interpolation (GSI)
system (Wu et al., 2002). Benedetti and Fisher (2007) esti-
mated the BEC of the sum of the mixing ratios of all aerosol
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species for an operational analysis and forecast systems at
ECMWF (The European Centre for Medium-Range Weather
Forecasts). The BEC with multiple species and size bins of
aerosols have been calculated and employed in data assimi-
lation. Liu et al. (2011) estimated the BEC with 14 aerosol
species in the Goddard Chemistry Aerosol Radiation and
Transport scheme of the Weather Research and Forecast-
ing/Chemistry (WRF/Chem) model and applied it to the GSI
system. Schwartz et al. (2012) increased the number of the
species to 15 based on the study of Liu et al. (2011). Li et
al. (2013) estimated the BEC for five species derived from
the Model for Simulation Aerosol Interactions and Chem-
istry (MOSAIC) scheme.

One important role that the BEC plays in meteorologi-
cal data assimilation is to spread information between dif-
ferent variables to produce balanced analysis fields, which
employ balance constraints to convert original variables into
new independent variables. Balance constraints have been
employed in atmospheric and oceanic data assimilation, such
as geostrophic balance or temperature–salinity balance (Ban-
nister, 2008a, b). To incorporate balance constraints, the
model variables are usually transformed to balanced and un-
balanced parts. The unbalanced parts as control variables are
can be assumed independent, and the balanced parts are con-
strained by balance constraints (Derber and Bouttier, 1999).
Instead of using an empirical function as a balance constraint,
balance constraints are also derived using regression tech-
niques (Ricci and Weaver, 2005). Although distinct empirical
relations between some variables (such as temperature and
humidity) may not exist, the regression equation can also be
estimated as balance constraints (Chen et al., 2013).

In current aerosol variational data assimilation with mul-
tiple variables, balance constraints are not yet incorporated
in the BEC. The state variables are assumed to be inde-
pendent variables without cross-correlation. However, the
aerosol species are frequently highly correlated due to their
common emission sources and diffusion processes. For ex-
ample, the correlations in terms of the R2 between elemen-
tal carbon and black carbon exceed 0.6 in many locations
across Asia and the South Pacific in both urban and sub-
urban locations (Salako et al., 2012), and the correlations
between different size bins, such as PM2.5 and PM10–2.5
(the diameter of particles being between 2.5 and 10 µm),
are also generally significant (Sun et al., 2003; Geller et al.,
2004). Thus, the cross-correlations between different species
or size bins are necessary to produce balanced analysis fields.
Cross-correlations spread the observation information from
one variable to other variables, which can produce more bal-
anced initial fields. For the data assimilation of the ensemble
Kalman filter method, the BEC with balance constraints is
assured (Pagowski and Grell, 2012; Schwartz et al., 2014),
although the balance may break down because of localiza-
tion.

Recently, several studies have suggested that the BEC
with balanced cross-correlation should be introduced into

aerosol variational data assimilation (Kahnert, 2008; Liu
et al., 2011; Li et al., 2013; Saide et al., 2013). Kahn-
ert (2008) exhibited cross-correlations of the 17 aerosol vari-
ables from the Multiple-scale Atmospheric Transport and
Chemistry (MATCH) model. He found that the statistical
cross-correlations between aerosol components are primar-
ily influenced by the interrelations between emissions and
by interrelations due to chemical reactions to a much lesser
degree. Saide et al. (2012, 2013) incorporated the capacity
to add cross-correlations between aerosol size bins in GSI
for assimilating observations of aerosol optical depth (AOD)
data. The cross-correlations between the two connecting size
bins for each species were considered using recursive filters,
whereas the cross-correlation is not considered for the other
size bins that are not connecting.

In this paper, we explore incorporating cross-correlations
between different species in BEC using balance constraints.
The balance constraints are established using statistical re-
gression. We apply the BEC with the balance constraints to a
data assimilation and forecasting system with the MOSAIC
scheme in WRF/Chem. The MOSAIC scheme includes a
large number of variables with eight species, and flexibility
of eight or four size bins. The scheme of four size bins is used
in our studies. The four bins are located between 0.039–0.1,
0.1–1.0, 1.0–2.5, and 2.5–10 µm, and the total mass of the
first three bins are PM2.5. A 3DVAR system for the MOSAIC
(4-bin) scheme has been developed by Li et al. (2013). For
comparisons, we employ this 3DVAR system with the same
model configurations as employed by Li et al. (2013). The
data assimilation and forecasting experiments are performed
with a focus on assessing the impact of cross-correlations of
the BEC on analyses and forecasts.

The paper is organized as follows: Sect. 2 describes the
3DVAR system and the formulation of the BEC. Section 3
describes the WRF/Chem configuration and estimates the
correlations among the emissions. The statistical character-
istics of the BEC, including the regression coefficient of the
cross-correlation, are discussed in Sect. 4. Using the BEC,
experiments of assimilating surface PM2.5 observations and
aircraft observations are discussed in Sect. 5. Shortcomings,
conclusions and future perspectives are presented in Sect. 6.

2 Data assimilation system and BEC

In this section, we present a formulation of the BEC with
cross-correlation between different species using a regres-
sion technique. Then, the cost function with the new BEC
is derived and the calculating factorization of the BEC is de-
scribed.

The control variables of the data assimilation are obtained
from the MOSAIC (4-bin) aerosol scheme in the WRF/Chem
model (Zaveri et al., 2008). The MOSAIC scheme includes
eight aerosol species, that is, elemental carbon or black car-
bon (EC /BC), organic carbon (OC), nitrate (NO3), sulfate
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(SO4), chloride (Cl), sodium (Na), ammonium (NH4), and
other inorganic mass (OIN). Each species is separated into
four bins with different sizes: 0.039–0.1, 0.1–1.0, 1.0–2.5
and 2.5–10 µm. The scheme involves 32 aerosol variables
with eight species and four size bins. These variables cannot
be directly introduced as control variables in an assimilation
system with regard to computational efficiency. The number
of variables must be decreased prior to assimilation. Li et
al. (2013) lumped these variables into five species as control
variables in the 3DVAR system. The five species consist of
EC, OC, NO3, SO4 and OTR (other species). Here, OTR is
the sum of Cl, Na, NH4 and OIN. Note that the data assim-
ilation system aims to assimilate the observation of PM2.5;
only the first three of four size bins are utilized to lump as
one control variable for each species.

For a 3DVAR system, the cost function (J ), which mea-
sures the distance of the state vector to the background and
observations, can be written as follows:

J (x)=
1
2
(x− xb)TB−1(x− xb)

+
1
2
(y−Hx)TR−1 (y−Hx) . (1)

Here, x is the vector of the state variables, including EC, OC,
NO3, SO4 and OTR; xb is the background vector of these
five species, which are generated by the MOSAIC scheme; y
is the observation vector; H is the observation operator that
maps the model space to the observation space and is as-
sumed to be linear here; R is the observation error covariance
associated with y; and B is the background error covariance
associated with xb. Equation (1) is usually written in the in-
cremental form

J (δx)=
1
2
δxTB−1δx+

1
2
(Hδx− d)TR−1 (Hδx− d) , (2)

where δx(δx = x−xb) is the incremental state variable. The
observation innovation vector is known as d = y−Hxb. The
minimization solution is the analysis increment δx, and the
final analysis is xa

= xb
+δx. This analysis is statistically op-

timal as a minimum error variance estimate (e.g., Jazwinski,
1970; Cohn, 1997).

In Eq. (1) or Eq. (2), xb is a (N ×m)− vector, where N
is the number of model grid points, and m is the number of
state variables. B is a symmetric matrix with a dimension of
(N×m)2. For a high-resolution model, the number of vector
xb is on the order of 107. Therefore, the number of elements
in B is approximately 1014. With this dimension, B cannot
be explicitly manipulated. To pursue simplifications of B, we
employ the following factorization:

B= DCDT, (3)

where D and C are the standard deviation matrix and the cor-
relation matrix, respectively. D and C can be described and
separately prescribed after the factorization. D is a diagonal

matrix, whose elements include the standard deviation of all
state variables in the three-dimensional grids. To reduce the
computational cost, we use the average value of standard de-
viations that are at the same level. Thus, the standard devia-
tion is simplified with vertical levels. C is a symmetric ma-
trix, having the form

C=


CEC COC

EC CNO3
EC CSO4

EC COTR
EC

CEC
OC COC CNO3

OC CSO4
OC COTR

OC
CEC

NO3
COC

NO3
CNO3 CSO4

NO3
COTR

NO3

CEC
SO4

COC
SO4

CNO3
SO4

CSO4 COTR
SO4

CEC
OTR COC

OTR CNO3
OTR CSO4

OTR COTR

 , (4)

where CEC, COC, CNO3 , CSO4 and COTR at diagonal loca-
tions are the background error auto-correlation matrices that
are associated with each species. They represent the corre-
lation among pairs of grid points for one species. Other sub-
matrices represent the correlations between different species,
known as cross-correlations. For example, CEC

OC represents
the cross-correlations between EC and OC, and CEC

OC =

(COC
EC )

T. In Li et al. (2013), these cross-correlations were
disregarded; that is, the five species are considered indepen-
dently and C is thus a block diagonal matrix.

In this study, the cross-correlations between different
species are considered by introducing control variable trans-
forms (Derber and Bouttier, 1999; Barker et al., 2004; Huang
et al., 2009). We divide the model aerosol variables into bal-
anced components (δxb) and unbalanced components (δxu):

δx = δxb+ δxu. (5)

Note the EC does not need to be divided. There is not un-
balanced component for EC that is similar to the variable
of vorticity in the data assimilation of ECMWF (Derber and
Bouttier, 1999), or the variable of stream function in the data
assimilation of MM5 (Barker et al., 2004). The transforma-
tion from unbalanced variables (δxu) to full variables (δx)
by the balance operator K is given by

δx =Kδxu. (6)

Eq. (6) can be written as
δEC
δOC
δNO3
δSO4
δOTR

=


I 0 0 0 0
ρ21 I 0 0 0
ρ31 ρ32 I 0 0
ρ41 ρ42 ρ43 I 0
ρ51 ρ52 ρ53 ρ54 I




δEC
δOCu
δNO3u
δSO4u
δOTRu

 , (7)

where ρij is the submatrix of K, which represents the sta-
tistical regression coefficients between the variables i and j
(Chen et al., 2013). Note that ρij is a diagonal matrix with
the dimension of model grid points. Each model grid point
has a regression coefficient. For convenience, we assumed
that the elements of ρij is a constant value for all grid points,
which are denoted as ρij and are calculated by linear regres-
sion with all grid points. For example, ρ21 can be obtained
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from the regression equation of OC and EC as

δOC= ρ21δEC+ ε, (8)

where ε is the residual. δEC and δOC can be estimated from
the forecast differences of 24 h forecasts and 48 h forecasts,
similar to the statistics of the BEC. Equation (8) contains the
slope but no intercept. The intercept is nearly zero because
δEC and δOC represent forecast differences that can be con-
sidered to be zero mean values. After obtaining ρ21, the bal-
anced part (e.g., the value of the regression prediction) of
δOC can be obtained by

δOCb = ˆδOC= ρ21δEC. (9)

Where ˆδOC represents the predicted value of Eq. (8), which
is equal to the balanced part (δOCb). Remove the δOCb from
the full variables to obtain the unbalanced part (δOCu), that
is, ε in Eq. (8). Thus, the calculation of δOCu can be written
as

δOCu = δOC− ρ21δEC. (10)

Here, δOCu and δEC are employed as predictors in the next
regression equation to obtain δNO3b. Then, we can obtain
the unbalanced parts of the remaining variables, which are
defined as follows:

δNO3u = δNO3− (ρ31δEC+ ρ32δOCu) , (11)

δSO4u = δSO4−
(
ρ41δEC+ ρ42δOCu+ ρ43δNO3u

)
, (12)

δOTRu = δOTR− (ρ51δEC+ ρ52δOCu

+ρ53δNO3u+ ρ54δSO4u) . (13)

The coefficient of determination (R2) can be employed to
measure the fit of these regressions. It can be expressed as

R2
=

SSR
SST

, (14)

where SSR and SST are the regression sum of squares and
the sum of squares for total, respectively.

These unbalanced parts can be considered to be indepen-
dent because they are residual and random. Bu denotes the
unbalanced variables of the BEC and can be factorized as

Bu = DuCuDT
u , (15)

where Du and Cu are the standard deviation matrix and the
correlation matrix, respectively. Cu should be a block diago-
nal without cross-correlations as follows:

Cu =


CEC

COCu

CNO3u

CSO4u

COTRu

 . (16)

According the definition of the BEC,

B= 〈(δx)(δxT)〉, (17)

and Bu can be written as

Bu = 〈(δxu)(δxu
T)〉. (18)

Using Eqs. (6), (17) and (18), the relationship between B and
Bu is

B=KBuKT. (19)

B
1
2 and B

1
2
u are defined as the square root of B and the square

root of Bu, respectively. Their transformation is

B
1
2 =KB

1
2
u . (20)

Using Eq. (15), Eq. (20) can be written as follows:

B
1
2 =KDuC

1
2
u . (21)

Generally, a transformed cost function of Eq. (2) is expressed
as a function of a preconditioned state variable:

J (δz)=
1
2
δzTδz

+
1
2

(
HB

1
2 δz− d

)T
R−1

(
HB

1
2 δz− d

)
. (22)

Here, δz= B−
1
2 δx. Using Eq. (21), Eq. (22) can be written

as

J (δz)=
1
2
δzTδz+

1
2

(
HKDuC

1
2
u δz− d

)T

R−1
(

HKDuC
1
2
u δz− d

)
. (23)

Equation (23) is the last form of the cost function with the
cross-correlation of B.

According to Li et al. (2013), the correlation matrix of the
unbalanced parts (Cu) is factorized as

Cu = Cux ⊗Cuy ⊗Cuz. (24)

Here, ⊗ denotes the Kronecker product, and Cux , Cuy and
Cuz represent the correlation matrices between grid points
in the x direction, the y direction and the z direction, respec-
tively, with the sizes nx×nx , ny×ny and nz×nz, respectively.
Here, nx , ny and nz represent the numbers of grid points in
the x direction, y direction and z direction, respectively. This
factorization can decrease the size of the dimension of Cu.
Another desirable property of Eq. (24) is

C
1
2
u = C

1
2
ux ⊗C

1
2
uy ⊗C

1
2
uz. (25)

Cux and Cuy are expressed by Gaussian functions, and Cuz
is directly computed from the proxy data. They will be dis-
cussed in Sect. 4.2.

Geosci. Model Dev., 9, 2623–2638, 2016 www.geosci-model-dev.net/9/2623/2016/



Z. Zang et al.: Background error covariance with balance constraints for aerosol species 2627

o
oooo

o

o

o

o

o

o

Figure 1. Geographical display of the three-nested model domains.
The innermost domain covers the Los Angeles basin; the black point
denotes the location of Los Angeles.

3 WRF/Chem configuration and cross-correlations of
emission species

In this section, we describe the configuration of WRF/Chem,
whose forecasting products will be employed in the follow-
ing BEC statistics and data assimilation experiments. In ad-
dition, the cross-correlations of emission species from the
WRF/Chem emission data are investigated to understand the
cross-correlation between different species of the BEC.

3.1 WRF/Chem configuration

WRF/Chem (V3.5.1) is employed in our study. This is a fully
coupled online model with a regional meteorological model
that is coupled to aerosol and chemistry models (Grell et
al., 2005). The model domain with three spatial domains is
shown in Fig. 1. The horizontal grid spacing for these three
domains are 36 km (80× 60 points), 12 km (97× 97 points)
and 4 km (144× 96 points), respectively. The outer domain
spans southern California and the innermost domain encom-
passes Los Angeles. All domains have 31 vertical levels with
the top at 50 hPa. The vertical grid is stretched to place the
highest resolution in the lower troposphere. The discussion
of the BEC and the emissions presented in this paper will
be confined to the innermost domain. The initial meteorol-
ogy conditions for WRF/Chem are prepared using the North
American Regional Reanalysis (NARR) (Mesinger et al.,
2006). The meteorology boundary conditions and sea sur-
face temperatures are updated at each initialization. For the
forecast running, the initial meteorological conditions are ob-
tained from the NARR data. The initial aerosol conditions
are obtained from the former forecast. The emissions are de-
rived from the National Emission Inventory 2005 (NEI’05)
for both aerosols and trace gases (Guenther et al., 2006). For
more details, the reader is referred to Li et al. (2013).

3.2 Cross-correlations of emission species

The emission source is necessary for running the WRF/Chem
model. It is an important factor for the distribution of the
aerosol forecasts. The analysis of the correlations among the

Figure 2. Cross-correlations between emission species of E_EC,
E_ORG, E_NO3, E_SO4 and E_PM25. The emission species data
are derived from the NEI’05 emissions set for the innermost domain
of the WRF/Chem model.

emission species can help us to understand the BEC statis-
tics. The emission species is derived from the emission file
that is produced by the NEI’05 data for each model domain.
Only the emission data for the innermost domain is used to
calculate the correlation among the emission species. The
emission file contains 37 variables, including gas species and
aerosol species. An aerosol species also comprises a nuclei
mode and accumulation model species (Peckam et al., 2013).
From these aerosol emission species, five lumped aerosol
species are calculated, which is consistent with the variables
in the data assimilation. These five lumped species are E_EC
(sum of the nuclei mode and the accumulation mode of el-
emental carbon PM2.5), E_ORG (sum of the nuclei mode
and the accumulation mode of organic PM2.5), E_NO3 (sum
of the nuclei mode and the accumulation mode of nitrate
PM2.5), E_SO4 (sum of the nuclei mode and the accumu-
lation mode of sulfate PM2.5) and E_PM25 (sum of the nu-
clei mode and the accumulation mode of unspeciated primary
PM2.5).

Figure 2 shows the cross-correlations of the five lumped
aerosol emission species. All cross-correlations exceed 0.5.
This result reveals that the emission species are correlated,
which may be attributed to the common emission sources
and diffusion processes that are controlled by the same at-
mospheric circulation. The most significant cross-correlation
is between E_EC and E_ORG with a value of approximately
0.8. This high correlation demonstrates that the emission dis-
tributions of these two species are very similar. Their emis-
sions are primary in urban and suburban areas with small
emissions in rural areas and along roadways (not shown).
As shown in Fig. 2, the lowest cross-correlation is between
E_ORG and E_SO4; the latter emissions are primary in the
urban and suburban areas with few emissions in rural areas
and roadways (not shown).
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(b) (a) 

Figure 3. Cross-correlations between the five variables of the BEC. These variables are (a) full variables and (b) unbalanced variables of
EC, OC, NO3, SO4 and OTR.

4 Balance constraints and BEC statistics

With the configuration of the WRF/Chem model described in
Sect. 3.1, forecasts for 1 month (from 00:00 UTC on 15 May
to 00:00 UTC on 14 June 2010) were performed for the bal-
ance constraints and the BEC statistics. Forecast differences
between 24 h forecasts and 48 h forecasts are available at
00:00 UTC; 30 forecast differences are employed as inputs
in the NMC method. For this method, 30 forecast differences
are sufficient; however, a longer time series may be more
beneficial for the BEC statistics (Parrish and Derber, 1992).

4.1 Balance regression statistics

Using the 30 forecast differences between 24 and 48 h fore-
casts, we can obtain δEC, δOC, δNO3, δSO4 and δOTR. The
size of these variables is (N × 30), where N is the number
of model grid points. We put these data into Eqs. (6)–(13)
to calculate the regression coefficients of ρij and the unbal-
anced parts of the variables. Note the process of calculation
should be step by step, since the latter equation will use the
unbalanced parts of former equations. Table 1 shows the re-
gression coefficients, whose column and row are consistent
with ρi,j in Eq. (7). The last column in Table 1 is the coeffi-
cient of determination (R2) of the regression equations. For
the regression equation of OC, the regression coefficient is
0.90 and the coefficient of determination of Eq. (7) is 0.86,
which indicates that EC and OC are highly correlated and
their mass concentration scales are approximate. Their cor-
relation is similar to the correlation of the stream function
and velocity potential; thus, we set them as the first and sec-
ond variables in the regression statistics. For the regression
equation of NO3, the regression coefficients of EC and OCu
are 4.01 and 3.76, respectively, because the mass concentra-
tion scale of NO3 exceeds the mass concentration scales of
EC and OCu. The coefficient of determination is only 0.32,
which indicates that the correlations between NO3 and EC
and between NO3 and OCu are weak. This result reveals that
the forecast errors of NO3 differ from the forecast errors of

EC and OCu. A possible reason is that NO3 is the secondary
particle that is primarily derived from the transformation of
NOx , but EC and OCu are derived from direct emissions.
Similar to NO3, SO4 is also primarily derived from the trans-
formation of SO2 and the coefficient of determination for
SO4 is also low. For the last variable OTR, the maximum
coefficient of determination is 0.96 because OTR includes
some different compositions that are correlated with the first
four variables.

Figure 3 shows the cross-correlations of the five full vari-
ables and the unbalanced variables. In Fig. 3a, the cross-
correlations of the full variables exceed 0.3 and most of them
exceed 0.5. In Fig. 3b, however, the cross-correlations of the
unbalanced variables are less than 0.2. Some of the cross-
correlations are close to zero, which indicates that these un-
balanced variables are approximatively independent and can
be employed as control variables in the data assimilation sys-
tem.

4.2 BEC statistics

Using the original full variables and the unbalanced variables
obtained by the regression equations, the BEC statistics are
obtained. Figure 4 shows the vertical profiles of the stan-
dard deviations of the original D and the unbalanced Du. In
Fig. 4a, the original standard deviation of NO3 is the largest
value, whereas the smallest value is OC, whose profile is
close to the profile of EC. All profiles show a significant de-
crease at approximately 800 m because the aerosol particu-
lates are usually limited under the boundary level. In Fig. 4b,
all standard deviations decrease in different degrees, with the
exception of EC, which remains as the control variable in the
unbalanced BEC statistics. Note that the standard deviation
of OTRu decreases by approximately 80 % compared with
NO3u, which decreases by approximately 10 %. This result
is attributed to the small coefficient of determination for the
regression of NO3 (in Table 1), which indicates that a small
portion of NO3 can be predicted by the regression and a large
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Table 1. Regression coefficients of balance operator K and the coefficient of determination (regression coefficients correspond to ρij in
Eq. 7).

Species Regression coefficient (ρ) Coefficient of
determination (R2)

EC 1 /
OC 0.90 1 0.86
NO3 4.01 3.76 1 0.32
SO4 1.35 −0.21 −3.15 1 0.48
OTR 2.93 2.35 0.28 0.60 1 0.96
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Figure 4. Vertical profiles of the standard deviation of the variables.
(a) Full variables and (b) unbalanced variables.

portion is an unbalanced component. In contrast with NO3, a
small portion of OTR is the unbalanced component.

For the correlation matrix of C and Cu, they are factor-
ized as three independent one-dimensional correlation matri-
ces in Eq. (24). The horizontal correlation Cx or Cy is ap-
proximately expressed by a Gaussian function. The correla-

tion between two points r1 and r2 can be written as e
−
(r2−r1)

2

2L2
s ,

where Ls is the horizontal correlation scale and is a constant
value for Cx and Cy , which are considered to be isotropic
(Li et al., 2013). This scale can be estimated by the curve of
the horizontal correlations with distances. Figure 5 shows the
curves of the horizontal correlations for the five control vari-
ables. For the full variables (Fig. 5a), the sharpest decrease
in the curves is observed for NO3 and the slowest decrease
in the curves is observed for SO4. We assume that the de-
cline curve is according to the Gaussian function. Then the
intersection of the decline curve and the line of e−

1
2 (≈ 0.61)

can be approximately as the value of horizontal correlation
scale. The horizontal correlation scales of EC, OC, NO3, SO4
and OTR are 25, 27, 20, 30 and 28 km, respectively. For the
unbalanced variables (Fig. 5b), their curves are closer than
the curves of the full variables. The correlation scales of EC,
OCu, NO3u, SO4u and OTRu are 25, 23, 24, 28 and 25 km,
respectively. These results suggest that the unbalanced vari-
ables are expressed by some common factors, such as EC,
OCu and NO3u, in the regression equations of Eqs. (10)–(13),
which produces consistent horizontal correlation scales.
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Figure 5. Same as Fig. 4, with the exception of the horizontal auto-
correlation curves of the variables. The horizontal thin line is the
reference line of e−

1
2 (≈ 0.61) for determining the horizontal cor-

relation scales.

For the vertical correlation between Cz and Cuz, they are
directly estimated using the forecasting differences in the
data assimilation system, but not estimated from a approx-
imately alternative function. Because it is only an nz× nz
matrix. Figure 6 shows the vertical correlation matrices Cz
and Cuz for the full variables (left column) and the unbal-
anced variables (right column), respectively. A common fea-
ture of both the full variables and the unbalanced variables
is the significant correlation between the levels of the bound-
ary layer height, which is consistent with the profile of the
standard deviation in Fig. 4. Some weak adjustments to the
correlations between the full and unbalanced variables are
made. For example, the correlation of NO3u is stronger than
the correlation of NO3 between the boundary layers. Com-
pared with the analysis of horizontal correlation scale, the
vertical correlation scale of NO3u is larger than the vertical
correlation scale of NO3. Conversely, the vertical correlation
scale of OTRu is smaller than the vertical correlation scale
of OTR. These results demonstrate that the vertical correla-
tions for the unbalanced variables are more consistent than
the vertical correlations of the full variables, which is similar
to the adjustments to the horizontal correlation scale. Note
that the differences in vertical correlation are slight, com-
pared with those of horizontal correlation. The main reason
is that the vertical correlations are generally affected by the
atmospheric boundary layer height. Thus, all vertical correla-
tion decreases rapidly for the levels above the boundary layer
height.
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Figure 6. Vertical correlations of the five variables of the BEC. The left column represents the full variables, and the right column represents
the unbalanced variables.

5 Application to data assimilation and prediction

To exhibit the effect of the balance constraint of the BEC,
the data assimilation experiments and 24 h forecasts for nine
cases are run using WRF/Chem model. The surface PM2.5
and aircraft-speciated observations are assimilated using dif-

ferent BEC, and the evaluations are presented for the data
assimilation and subsequent forecasts. Three basic statistical
measures including mean bias (BIAS), root mean square er-
ror (RMSE) and correlation coefficient (CORR) are utilized
for the evaluations.
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Figure 7. The topography of the innermost domain and the loca-
tions of surface monitoring stations (black dots). The red square is
the location of Los Angeles

5.1 Observation data and experiment scheme

Two types of observation data are employed in our experi-
ments. The first type of observation data consists of hourly
surface PM2.5 concentrations from the California Air Re-
sources Board (ARB). There are 42 surface PM2.5 mon-
itoring sites that existed in the innermost domain of the
WRF/Chem model (Fig. 7). The second type of observation
data is the speciated concentration along the aircraft flight
track. The aircraft observations were investigated from the
California Research at the Nexus of Air Quality and Climate
Change (CalNex) field campaign in 2010. Nine flights data
around Los Angeles from 15 May to 14 June 2010 are se-
lected as the cases of data assimilation. Table 2 shows the
start time and end time of each flight. The species of the air-
craft observations include OC, NO3, SO4 and NH4. Note that
NH4 is not a control variable; thus, the aircraft observation
of NH4 is disregarded in the data assimilation. Because the
particle size of the aircraft observations is less than 1.0 µm,
some adjustments to the flight observations are made ac-
cording to the ratios between the concentration under 2.5 µm
and the concentration under 1.0 µm for each species using
model products. With the ratios multiplied by the aircraft
observed concentrations, the speciated concentrations under
2.5 µm can be obtained.

The initial time of data assimilation cases are designed ac-
cording to the period of flights, shown in Table 2. The time
window of assimilation for the flight data is ±1.5 h, though
some flight times do not completely cover the time windows.
Figure 8 shows the aircraft tracks during the time window of
data assimilation. It is obvious that the aircraft data on 21,
25 May and 14 June are relative few as the tracks are al-
most outside of the study domain. For the surface data, it is
only the observations at the initial time that assimilated. For
each case, three parallel experiments are performed. The first
experiment is the control experiment without aerosol data as-

similation, which is frequently known as a free run and de-
noted as Control. The second experiment is a data assimila-
tion experiment that assimilates surface PM2.5 and aircraft
observations using the full variables without balance con-
straints; it is denoted as DA-full. The third experiment is also
a data assimilation experiment that also assimilates surface
PM2.5 and aircraft observations, but employs the unbalanced
variables as control variables conducted by the balanced con-
straint; it is denoted as DA-balance. The backgrounds for
DA-full and DA-balance are the forecasting results from the
previous runs without DA. These previous forecasting re-
sults have been obtained when we run the model for the BEC
statistics. The observation error is half of the standard devi-
ation of the original background variable, and a vertical pro-
file of observation errors is applied with the average profile of
standard deviation of the background variable. In each exper-
iment, a 24 h forecasting is run using the WRF/Chem model
with the same configuration described in Sect. 3.1, and the
case on 3 June 2010 is presented in detail as an example.

5.2 Increments of data assimilation

Figure 9 shows the horizontal increments of EC, OC, NO3,
SO4 and OTR at the first model level for the DA-full (left col-
umn) and DA-balance experiments (right column) of the case
on 3 June 2010. In the DA-full experiment, the increment of
EC and OTR (Fig. 9a and i) are similar. They are obtained
from the surface PM2.5 observations because no direct air-
craft observations correspond to these two variables. In the
DA-balance experiment, significant adjustments are made to
the increments of EC (Fig. 9b) under the action of the bal-
ance constraints. The observations of OC greatly affect the
increments of EC for the high cross-correlation between EC
and OC. Thus, the increments of EC are similar with the in-
crements of OC. Similarly, significant adjustments are made
to the increment of OTR (Fig. 9j), though there are no species
observation of OTR. There are also some slight adjustments
for the increments of OC, NO3 and SO4 for the crossing
spread among species.

Figure 10 shows the vertical increments along 35.0◦ N for
the DA-full and DA-balance experiments. Similar to Fig. 9,
the increments of EC and OTR (Fig. 10a and i) spread up-
ward from the surface in the DA-full experiment, which are
obtained from the surface PM2.5 observation. In the DA-
balance, the increments of EC and OTR (Fig. 10b and j)
exhibit observation information from the aircraft height at
approximately 500 m, and the value of the increments show
significant increases. The distributions of the increments for
these five variables in the DA-balance (Fig. 10, right column)
generally tend to coincide compared with the distributions of
the increments in the DA-full (Fig. 10, left column). The re-
sults of the DA-balance are reasonable due to their influence
on each other across the balance constraints.
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Figure 8. Aircraft flight tracks during the time window of data assimilation for nine cases. The color of the track indicates the aircraft height.
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Figure 9. Surface distributions of increments of the five variables of EC, OC, NO3, SO4 and OTR at 12:00 UTC on 3 June 2010. The left
column and right column are from DA-full and DA-balance, respectively.
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Figure 10. Same as Fig. 9, with the exception of the vertical sections along 35◦ N.
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Table 2. The periods of flight during CalNex 2010 and the initial time of assimilation.

Number of cases Start time of flight End time of flight Initial time of assimilation

1 18:00 UTC, 16 May 01:42 UTC, 17 May 00:00 UTC, 17 May
2 17:28 UTC, 19 May 00:10 UTC, 20 May 18:00 UTC, 19 May
3 17:28 UTC, 21 May 00:10 UTC, 21 May 18:00 UTC, 21 May
4 23:08 UTC, 24 May 05:23 UTC, 25 May 00:00 UTC, 25 May
5 01:59 UTC, 30 May 07:45 UTC, 30 May 06:00 UTC, 30 May
6 05:00 UTC, 31 May 10:54 UTC, 31 May 06:00 UTC, 31 May
7 07:59 UTC, 2 June 14:09 UTC, 2 June 12:00 UTC, 2 June
8 07:59 UTC, 3 June 14:041 UTC, 3 June 12:00 UTC, 3 June
9 17:56 UTC, 14 June 23:35 UTC, 14 June 18:00 UTC, 14 June

5.3 Evaluation of data assimilation and forecasts

Figure 11 shows the scatter plots of the initial model
fields vs. the surface observation for all nine cases. In
Fig. 11a, the simulated concentrations of the Control ex-
periment display a significant underestimation with a BIAS
of −3.66 µg m−3. The mean concentration of Control is
10.90 µg m−3, about 25.1 % lower than observed mean con-
centrations (14.56 µg m−3). In the DA-full and DA-balance
experiments, there are remarkable increases for the simulated
concentrations, and the BIASs reduce to as small as −1.21
and −0.94 µg m−3. The RMSE is 9.53 µg m−3 in the Control
experiment. The RMSE reduces to 4.82 and 4.48 µg m−3 in
the DA-full and DA-balance experiment, respectively. There
are also significant improvements for the CORR in the DA-
full and DA-balance experiments, compared with the Control
experiment. Furthermore, these three statistical measures of
the DA-balance experiments show some slight improvement,
compared with that of the DA-full experiments. The result
demonstrates that more observation information spread by
balance constraints can improve assimilation performance.

To evaluate the effects of the data assimilation, the CORR,
RMSE and BIAS during the forecast time are calculated for
each case, and their averaged results are shown in Fig. 12.
The CORRs of the DA-balance and DA-full experiments are
very close (Fig. 12a). But, the difference increases after the
1st hour with a higher CORR in the DA-balance experiment.
The CORR of the DA-balance experiment is substantially
higher than that of the DA-full experiment from the 2nd
hour to the 16th hour. Similar improvements for the RMSE
and the BIAS of the DA-balance experiment are observed in
Fig. 12b and c, respectively. The improvement for the BIAS
in the DA-balance experiment is the most significant among
these three statistical measures. The peak value of the im-
provement for the BIAS (Fig. 12c) is at the 4th hour, and
the improvement is distinct until the end of forecasts. These
improvements indicate that the balance constraint is positive
for the subsequent forecasts, which derives from the balanced
initial distribution among species.

6 Summary and discussion

We examined the BEC in a 3DVAR system, which uses five
control variables (EC, OC, NO3, SO4 and OTR) that are de-
rived from the MOSAIC aerosol scheme in the WRF/Chem
model. Based on the NMC method, differences within a
month-long period between 24 and 48 h forecasts that are
valid at the same time were employed in the estimation and
analyses of the BEC. The background errors of these five
control variables are highly correlated. Especially between
EC and OC, their correlation is as large as 0.9.

A set of balance constraints was developed using a re-
gression technique and incorporated in the BEC to account
for the large cross-correlations. We employ the balance con-
straint to separate the original full variables into balanced
and unbalanced parts. The regression technique is used to
express the balanced parts by the unbalanced parts. These
unbalanced parts can be assumed independent. Then, the un-
balanced parts are employed as control variables in the BEC
statics. Accordingly, the standard deviations of these unbal-
anced variables are less than the standard deviations of the
original variables. The horizontal correlation scales of un-
balanced variables are closer than that of full variables on the
effect of the balance constraints, and the vertical correlations
of unbalanced variables show a similar trend.

To evaluate the impact of the balance constraints on the
analyses and forecasts, three groups of experiments, includ-
ing a control experiment without data assimilation and two
data assimilation experiments with and without balance con-
straints (DA-full and DA-balance), were performed. In the
data assimilation experiments, the observations of surface
PM2.5 concentration and aircraft-speciated concentration of
OC, NO3 and SO4 were assimilated. The observations of
these three variables can spread to the two remaining vari-
ables in the increments of the DA-balance, which results
in a more complex distribution. The evaluations of CORR,
RMSE and BIAS for the initial analysis fields show more
improvement in the DA-balance experiments, compared with
the DA-full experiments, although some of these improve-
ments are slight. An important reason is that the surface
PM2.5 observations are independent from the aircraft obser-
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Figure 11. Scatter plots of observed concentrations of PM2.5 vs.
simulated PM2.5 concentrations of the experiments of (a) Control,
(b) DA-full, and (c) DA-balance for all nine cases.

vations. If we evaluate the analysis fields by the species ob-
servation of aircraft, there may be more significant improve-
ments in the DA-balance experiments.

While the improvements increase after the first forecasting
hour in the DA-balance experiments, compared with fore-
casts of the DA-full experiments, the improvements persist
to the end of forecasts, and are substantial from the 2nd hour
to the 16th hour (Fig. 12). These results suggested that the
balance constraints can serve an important role for continu-
ally improving the skill of sequent forecasts. Note that some
aircraft data are relatively few, and some flight tracks are not
around Los Angeles in some cases (Fig. 8). If there are more
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Figure 12. The averaged (a) correlations, (b) root mean square er-
rors (RMSE in µg m−3) and (c) mean bias (BIAS in µg m−3) of the
PM2.5 concentration forecasts against observations as a function of
forecast duration.

aircraft observations, the improvements of the DA-balance
experiments should be more significant and durable.

The developed method for incorporating balance con-
straints in aerosol data assimilation can be employed in
other areas or other applications for different aerosol mod-
els. For the aerosol variables in different models, some cross-
correlations between different species or size bins should ex-
ist because their common emissions and diffusion processes
are controlled by the same atmospheric circulation. Although
these cross-correlations may be stronger than the cross-
correlations of atmospheric or oceanic model variables, the-
oretic balance constraints, such as geostrophic balance or
temperature–salinity balance, do not exist. We expected to
discover a universal balance constraint that can describe the
physical or chemical balanced relationship of aerosol vari-
ables, and utilize it in the data assimilation system. In ad-
dition, we expected to expand the balance constraint to in-
clude gaseous pollutants, such as nitrite (NO2), sulfur diox-
ide (SO2) and (carbon monoxide) CO. These gaseous pollu-
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tants are correlated with some aerosol species, such as NO3,
SO4 and EC, which can improve the data assimilation analy-
sis fields of aerosols by assimilating these gaseous observa-
tions. The assimilation of aerosol observations may improve
the analysis fields of gaseous pollutants.

7 Code availability

This data assimilation system is established by ourself. The
code of this system can be obtained on request from the first
author (zzlqxxy@163.com).
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