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Abstract. Ice flow models are now routinely used to forecast
the ice sheets’ contribution to 21st century sea-level rise. For
such short term simulations, the model response is greatly af-
fected by the initial conditions. Data assimilation algorithms
have been developed to invert for the friction of the ice on
its bedrock using observed surface velocities. A drawback
of these methods is that remaining uncertainties, especially
in the bedrock elevation, lead to non-physical ice flux diver-
gence anomalies resulting in undesirable transient effects. In
this study, we compare two different assimilation algorithms
based on adjoints and nudging to constrain both bedrock fric-
tion and elevation. Using synthetic twin experiments with re-
alistic observation errors, we show that the two algorithms
lead to similar performances in reconstructing both variables
and allow the flux divergence anomalies to be significantly
reduced.

1 Introduction

Robustly reproducing the responsible mechanisms and fore-
casting the ice sheets’ contribution to 21st century sea-level
rise is one of the major challenges in ice sheet and ice flow
modelling as highlighted by community-organised efforts
such as SeaRISE (Sea-level Response to Ice Sheet Evolu-
tion) (Bindschadler et al., 2013; Nowicki et al., 2013a, b) or
ice2sea (e.g. Gillet-Chaulet et al., 2012; Shannon et al., 2013;
Edwards et al., 2014).

Such projections on decadal timescales are sensitive to
the model initial state which can account for an important
source of uncertainty in the model response (Aðalgeirsdóttir
et al., 2014). Improving the reliability of the model projec-

tions requires the model initial state to be better constrained
from observations. The problem is that observations are of-
ten uncertain, sparse in time and space, and indirect, so that
the model state depends on many poorly determined physi-
cal parameters and boundary conditions. Gradient-based op-
timisation methods, such as the control method (MacAyeal,
1993) or the Robin inverse method (Arthern and Gudmunds-
son, 2010), are efficient means to constrain such model pa-
rameters and boundary conditions. These methods have been
implemented and applied with success in ice flow models of
different complexity in order to infer the basal drag, one of
the most uncertain model parameters (e.g. Morlighem et al.,
2010; Jay-Allemand et al., 2011; Schäfer et al., 2012; Gillet-
Chaulet et al., 2012).

However, remaining uncertainties lead to non-physical ice
flux divergence anomalies (Seroussi et al., 2011) resulting
in undesirable transient effects in the free surface evolution.
A solution to dissipate these transients is to conduct a sur-
face relaxation step prior to the projections (Gillet-Chaulet
et al., 2012). This allows admissible flux divergence rates to
be reached but at the expense of the accuracy of the modelled
surface elevation and surface velocities which can then de-
part significantly from observations after the relaxation step.

Among the remaining uncertainties, one of the most im-
portant is the uncertainty related to the bedrock elevation.
The basal topography is derived from ice thickness mea-
surements, mostly obtained from airborne ice-penetrating
radars. These measurements can have large uncertainties and
are usually at a lower resolution than required model grids
(Durand et al., 2011). Standard bedrock elevation maps for
Antarctica and Greenland are then produced by interpolation
or Kriging, and report standard errors ranging from a few
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tens of metres to several hundreds of metres depending on
the distance to observations and local topographic variability
(Fretwell et al., 2013; Bamber et al., 2013). For comparison,
the uncertainty on the surface elevation is usually 1 order of
magnitude lower (Fretwell et al., 2013).

Because of theses large uncertainties, several methods
have been proposed to consider the bedrock elevation as an
optimisation variable. For example, Morlighem et al. (2011)
derived the adjoint of the continuity equation for the ice
thickness. The depth-averaged velocities and surface mass
balance are then optimised to minimise the mismatch be-
tween modelled and measured ice thicknesses. Surface ve-
locity measurements are used as initial guess for depth-
averaged velocities, and (by construction) the flux divergence
produced by this approach is in equilibrium with the pre-
scribed surface mass balance. However, there is no constraint
that the optimised velocities are a solution of the stress equi-
librium equations, so that, in general, the above method does
not guarantee that the flow divergence anomalies resulting
from an ice flow model initialised with the optimised fields
will be reduced.

In their work, van Pelt et al. (2013) developed an itera-
tive algorithm where the discrepancy between the surface el-
evation predicted by the model and the observations is used
to correct the bedrock elevation. Thus, the method does not
rely on the accurate computation of the derivative of a cost
function, as in a control method, and is then more similar
to nudging methods that have been widely studied in the
past decades in meteorology (e.g. Hoke and Anthes, 1976)
and later in oceanography (Verron, 1992; Blayo et al., 1994).
However, the method proposed by van Pelt et al. (2013) does
not use observed surface velocities to control the model pa-
rameters.

Several methods have been explored to construct model
states where both the basal friction and the basal topogra-
phy are treated as optimisation variables. In a pioneer work,
Thorsteinsson et al. (2003) developed a least-squares inver-
sion using analytical solutions for the transmission of small-
scale basal perturbations to the ice surface. This method has
been extended in a non-linear Bayesian framework by Ray-
mond and Gudmundsson (2009) and applied to an Antarc-
tic ice stream by Pralong and Gudmundsson (2011). Bonan
et al. (2014) have tested the performances of an ensemble
Kalman filter on twin experiments using a shallow-ice flow-
line model. The adjoint method has been tested by Goldberg
and Heimbach (2013) and Perego et al. (2014) with models
of different complexity. All these methods usually show good
performance in reconstructing both basal friction and basal
topography when using observations of both surface eleva-
tion and surface velocities, so that mixing between the two
variables does not seem to be too problematic for realistic ap-
plications (Gudmundsson and Raymond, 2008). In addition,
Pralong and Gudmundsson (2011) and Perego et al. (2014)
show better performance when the rates of surface elevation
change are also constrained from observations.

In this paper, we explore two different algorithms to in-
fer both the basal friction and the basal topography and ini-
tialise the model state using simultaneous observations at a
given time. The first algorithm is in line with Goldberg and
Heimbach (2013) and Perego et al. (2014) since it uses the
adjoint solution of the force balance equation. We use the
shallow shelf approximation to facilitate the derivation of
the adjoint. Indeed, in this case the ice thickness appears
as a state variable, while it changes the geometry of the do-
main for higher order approximations (Perego et al., 2014).
In its simplest formulation, the algorithm minimises the mis-
fit between model and observed surface velocities, but an
additional constraint where the flux divergence is close to a
given surface mass balance can be added. The second method
is an algorithm combining inversion of basal friction using
the adjoint method and nudging of the bedrock topography.
The control from the surface velocity observations is im-
posed by the adjoint step while the nudging step allows to
decrease the discrepancy between the flux divergence and
the surface mass balance. The main motivation of this sec-
ond algorithm is its ease of implementation as no inversion
of the model with respect to the ice thickness is required.
Our objective is then to illustrate its ability to reconstruct
the bedrock topography by comparison with the results of
the more mathematically founded first algorithm. Both al-
gorithms are implemented in the finite element ice sheet/ice
flow model Elmer/Ice (Gagliardini et al., 2013). The meth-
ods and algorithms are described in details in Sect. 2. To test
their performances, we design a twin experiment in Sect. 3.
The results are discussed in Sect. 4.

2 Methods

2.1 Direct model

For the force balance, we use the standard vertically
integrated shallow shelf approximation (SSA) equations
(MacAyeal, 1989). This approximation neglects the effects
of vertical shearing and is, hence, more adapted to model the
flow in areas where the friction is low, resulting in an ice mo-
tion dominated by sliding. The horizontal velocity field (u,v)
is a solution of
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where β is the friction coefficient, ν the vertically aver-
aged effective viscosity, ρi the ice density, g the gravity, and

Geosci. Model Dev., 9, 2549–2562, 2016 www.geosci-model-dev.net/9/2549/2016/



C. Mosbeux et al.: Initialisation of ice sheet model basal conditions 2551

H = zs− zb the thickness, with zs and zb the top and bottom
surface elevations, respectively.

Natural boundaries are the calving fronts where the Neu-
mann condition results from the difference between the ice
pressure and the sea water pressure:
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where ρw is the water density,H0 the ice thickness below sea
level, and nx and ny the two components of the horizontal
unit vector normal to the calving front. Dirichlet boundary
conditions are prescribed for other non-natural boundaries.
The continuity equation for the ice thickness is given by

∂H

∂t
+
∂(uH)

∂x
+
∂(vH)

∂y
= a, (3)

where a is the surface mass balance and accumula-
tion/ablation at the bedrock interface is neglected.

2.2 Inverse methods

The objective of the methods is to produce a model state from
Eq. (1) that best fits the observations of surface velocities and
the rates of change of ice thickness. To minimise the discrep-
ancy between the model and the observations, the optimisa-
tion parameter vector p contains both the basal friction coef-
ficient β and the bedrock elevation zb (p = (β,zb)).

2.2.1 Cost functions

The misfit between the model and the corresponding obser-
vations is evaluated using cost functions. The first cost func-
tion measures the difference between modelled (u) and ob-
served (uobs) surface velocities:

Jv =

∫
0

1
2
(|u−uobs|)

2d0, (4)

where 0 is the model domain.
The second cost function measures the misfit between

modelled and observed thickness rates of change:
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The modelled rate of change of ice thickness ∂H/∂t is
evaluated from Eq. (3) as the difference between the flux di-
vergence solution of Eq. (1) and the prescribed surface mass
balance. Observed rate of change of ice thickness (∂H/∂t)obs

can be estimated from surface elevation trends extracted from
radar altimetry measurements (Flament and Rémy, 2012).

In general, both Eqs. (4) and (5) could be weighted with
error covariance estimates such as the one of Flament and
Rémy (2012). However, this information is not often avail-
able. In this paper, observed ice surface velocities (uobs) and
observed rate of change of ice thickness (∂H/∂t)obs are con-
sidered perfectly known or perturbed with a Gaussian noise
which would make unnecessary the addition of a covariance
term.

The objective is then to find the parameter vector p that
minimises Jv and Jdiv. This can be achieved in different ways
as illustrated in the following sections.

2.2.2 Adjoint method

The two cost functions have an implicit dependence on the
parameter vector p through the model surface velocities u

which are solutions of Eq. (1). The gradient of the cost func-
tions with respect to p can be computed efficiently using the
adjoint equations of Eq. (1). The derivation of the continuous
adjoint equations and the gradient of Jv with respect to the
friction coefficient β can be found in MacAyeal (1993). This
can be easily extended for the computation of the gradient
with respect to H .

The implementation in Elmer/Ice is carried out in a way
that stays as close as possible to the differentiation of the
discrete implementation of the direct equations. This method
should lead to a better accuracy on the gradient computation
than the discretisation of the continuous equations. Elmer/Ice
uses programming features that are not supported by auto-
matic differentiation tools and the differentiation of the cru-
cial parts of the discrete source code (e.g. cost function com-
putation, matrix assembly) has been done manually. If the
problem is non-linear, as here due to the dependence of the
viscosity to the strain rate, and the non-linearity solved using
a Picard iterative scheme, the iterations should be reversed (at
least partially) in the adjoint code to achieve a good accuracy
of the computed gradient (Martin and Monnier, 2013). How-
ever, as the present direct solver is equipped with a Newton
linearisation of the ice viscosity so that it remains self-adjoint
(Petra et al., 2012), the Newton iterations are not reversed in
the adjoint code and we only keep the last iteration. The ad-
joint code has been validated on standard tests by compar-
ing the gradients with those obtained from a finite difference
evaluation. The agreement is usually better than 0.1 %.

Inverse problems are often ill-posed, leading to instabil-
ities. It is then necessary to add regularisation terms to the
cost function to avoid overfitting of data. This can be done in
the form of a Tikhonov regularisation. Here, we define two
different regularisations. The first one measures the norm of
the first spatial derivative of the component pi of p, thus al-
lowing to give preference to smooth solutions:
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The second forces the optimisation variables to stay close
to a certain prior or background information pb. This back-
ground can be based on observations or on empirical knowl-
edge. This second regularisation term is written as

Jbi =
1
2

∫
0
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p
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2d0, (7)

where σp is a spatial parameter allowing to give more or less
weight to the prior information pi,b.

The computation of the gradients of these two functionals
with respect to p is trivial. How these regularisation terms
are weighted with respect to the model–data misfit function-
als Eqs. (4) and (5) is described in more details with the de-
scription of the algorithms in Sec. 2.3.

This minimisation is achieved using the quasi-Newton
routine M1QN3 (Gilbert and Lemaréchal, 1989) imple-
mented in Elmer/Ice. This method uses an approximation of
the second derivatives of the cost function and is therefore
more efficient than a fixed-step gradient descent.

2.2.3 Nudging method

By definition, the steady-state solution of Eq. (3) where a
is replaced by the apparent mass balance a− (∂H/∂t)obs is
the minimum for Jdiv. Running the model forward in time
with a constant forcing is then a simple way to minimise
Jdiv, equivalent to a relaxation step. Here, we assume that the
surface elevation is known so that computed changes in ice
thickness are used to correct the bedrock elevation zb. Dur-
ing this process, the ice thickness can substantially deviate
from observations. Nudging methods, also called Newtonian
relaxation, can remedy to this problem by constraining the
thickness to fit observations through an additional callback
term in Eq. (3), which now writes

∂H
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∂(uH)
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+
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= a−
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∂t

)
obs
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where the coefficient k defines the amplitude of the callback
at each node of the model. These methods imply a trade-off,
adjustable through k, between model physics and observa-
tions. The callback term can depend on many different crite-
ria such as observation accuracy or distance to observation
(Hoke and Anthes, 1976). Here, we take k as a Gaussian
function of the distance to the closest observation so that the
callback is maximum where an observation is available and
decreases to zero far from all observations. The choice of the
variance for the Gaussian function is discussed in Sect. 4.2.

2.3 Algorithms

From the methods presented in the previous section we de-
sign two algorithms to infer simultaneously the friction co-
efficient β and the bedrock elevation zb. To ensure that the
friction coefficient remains positive during the inversion, we
use the following change of variable

β = 10α. (9)

2.3.1 Adjoint method with two parameters (ATP)

This algorithm uses the gradients of the cost functions de-
rived using the adjoint method to optimise both α and zb. For
the regularisation, a constraint on the smoothness is imposed
for α using Eq. (6) while a constraint on the background in-
formation is imposed for zb using Eq. (7). The total cost func-
tion then writes

JATP(α,zb)= Jv+ γ Jdiv+ λαJregα + λzbJbzb , (10)

where γ is a constant fixed to give a similar weight to Jv and
Jdiv while λα and λzb are two constants allowing to adjust
the weight given to the regularisation terms. Following Fürst
et al. (2015), several pairs (λα , λzb ) are tested using a L-curve
approach, and optimal values are taken from the combina-
tions that avoid two extremes: overfitting of the observations
or excessive regularisation.

2.3.2 Adjoint-nudging coupling (ANC)

In this algorithm, the adjoint method is first used to optimise
α only by minimising the following total cost function

JANC(α)= Jv+ γ Jdiv+ λαJregα . (11)

The bedrock elevation is then updated using the nudging
method by solving Eq. (8) for a given time period T . T
should be neither too short nor too long to allow to reduce
Jdiv without overfitting observations. The sensitivity of the
method to T is discussed in the results section.

These two steps are then repeated iteratively until changes
in Jv and Jdiv between two iterations are less than 1 %.

3 Manufactured data sets

A twin experiment is designed to investigate the ability of
the two methods to reproduce simultaneously good estimates
of the basal friction coefficient and the bedrock elevation. A
flowline geometry is preferred to reduce the computational
cost and easily test the method, however all the algorithms
can be applied to 2-D plane view simulations. A reference
experiment for which all the model parameters are prescribed
is produced to generate synthetic observations. These obser-
vations are then used to test the performances of the two al-
gorithms.
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Figure 1. Reference (solid lines) and initial (dashed lines) state for (a) the bedrock elevations zb, (b) the estimated basal traction τb = βu,
and (c) the surface velocities. In (a), synthetic observations every 10 km are the plain black circles. In (c) the observed velocities are depicted
by the circles and the shaded green curve is the absolute difference between observed and reference surface velocities (right axis).

3.1 Reference experiment

A flowline of Jakobshavn Glacier, Greenland, is used to test
the two algorithms with realistic conditions. Jakobshavn Is-
brae is one of Greenland’s three largest outlet glaciers and
has one of the largest drainage basin on the ice sheet’s west-
ern margin (Bindschadler, 1984). It is also the fastest Green-
land glacier with a terminus velocity greater than 13 kma−1

(Joughin et al., 2008, 2014). The flowline is 550 km long and
runs from the ice divide to the ice front. The surface and
bedrock elevations are taken from available digital elevation
models (Bamber et al., 2013). The basal friction coefficient
field is first adjusted so that the model velocities fit observed
velocities (Joughin et al., 2010). To have realistic thickness
rates of change, the free surface is relaxed to steady state.
The surface mass balance a in Eq. (3) has been calibrated
so that the steady state is close to the initial geometry, and
is meant to take into account the flow convergence or diver-
gence along the flowline. The steady-state solution is used as
the reference of the twin experiment.

The geometry is discretised through a mesh of 500 linear
elements, increasingly refined to the front of the glacier. The
element size decreases from ∼ 2 km in the upper part of the
glacier to ∼ 400 m down to the front.

Results will only be presented on the first 100 km upstream
of the glacier front where velocities are above 100 m a−1 and
where the SSA is more appropriate but the inversion is done
all along the flowline up to the ridge.

3.2 Synthetic observations

Synthetic observations are generated by sampling and/or
adding noise to the reference simulation. Details for each
required field are given below. These synthetic observations
and initial fields for the inverse methods are compared to the
reference in Fig. 1.

3.2.1 Surface velocities

Surface velocities are assumed to be observed at the same
resolution as the reference simulation but with a white Gaus-
sian noise with a mean µ= 0 and a standard deviation σ =
50 ma−1. This corresponds to a root mean squared (rms) er-
ror of 47.8 ma−1 for the entire flowline. The reference and
noisy observed surface velocities are shown in Fig. 1c to-
gether with their absolute difference.

3.2.2 Surface mass balance and thickness rate of
change

The surface mass balance, a, and thickness rate of change,
(∂H/∂t)obs, in Eq. (5) are assumed to be perfectly observed.
As the reference simulation corresponds to a steady state,
(∂H/∂t)obs = 0. However, the methods are also tested in
Sect. 4.3 for cases where (∂H/∂t)obs 6= 0 to show their abil-
ity to initialise the model when the flux divergence is not in
equilibrium with the surface mass balance.
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Figure 2. Mean error on the thickness rate of change (rmsdiv) as a function of the mean error on velocity (rmsu) for the 255 pairs of
regularisation parameters (λα , λzb ). Colour scales show the normalised regularisation terms (a) Jregα and (b) Jzb (0 corresponds with the
lowest value and 1 with the highest value obtained with the 255 pairs). The chosen value (λα = 1011, λzb = 107) is shown with a black circle.

3.2.3 Surface and bedrock elevations

The surface elevation is assumed to be perfectly observed.
For the bedrock elevation zb, we simulate observations rep-
resenting airborne radar measurements crossing the flowline.
Bedrock elevations are sampled every 10 km with a Gaus-
sian noise centred on zero and with a standard deviation of
σ = 50 m. This leads to a rms error of 62.4 m on the 55 ob-
servation points of the entire flowline. This error is similar to
the errors given in practice on recent bedrock elevation maps
(Fretwell et al., 2013; Bamber et al., 2013). For the mesh
nodes between the observations, the bedrock is linearly in-
terpolated as shown in Fig. 1a. This is used as the first guess
for the inverse methods and as the background information
for the regularisation in Eq. (7).

3.2.4 Model parameters

The ice viscosity is assumed to be perfectly known and cor-
responds to the viscosity used in the reference experiment.

Assuming that no observation of the friction coefficient is
available, an initial solution has to be postulated. A good first
guess for β is provided by using the driving stress to estimate
the basal shear stress:

βini(x)=
ρigH(x)|θ(x)|

|u(x)|
, (12)

where H(x), θ(x), and u(x) are, respectively, the ice thick-
ness, the surface slope and the surface velocity at position x.
The reference and initial values are shown in Fig. 1b.

The rms errors on the surface velocities and the rate of
change of ice thickness between the initial state and the syn-
thetic observations are, respectively, 761 and 357 m a−1.

The average relative error on the basal shear stress is mea-
sured as

ετb =
1
L

∫
0

|τb| − |τb,ref|

|τb,ref|
d0, (13)

where τb,ref is the basal shear stress in the reference experi-
ment and L the length of the flowline. The relative error on
the basal shear stress with our initial estimate of the basal
friction βini is 394 %. The performances of the two algo-
rithms in reducing these initial errors are presented in the
following section and will be compared to these initial er-
rors.

4 Results

4.1 Adjoint method with two parameters (ATP)

A set of 255 pairs (λα , λzb ) is tested to adjust the weighting
of the regularisation terms of Eq. (10). The misfits on the dif-
ferent cost functions of Eq. (10) for the different pairs (λα ,
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Figure 3. Results of the ATP algorithm with (orange) and without (red) optimisation of Jdiv, i.e. γ = 1 or γ = 0, respectively, in Eq. (10):
(a) absolute difference between observed and model velocities, (b) estimated basal traction, and (c) estimated bedrock elevation. The green
shaded area is the difference between the noisy reference velocities and the true velocities. The green solid lines are the reference values and
the black dashed line is the initial guess for the bedrock elevation.

λzb ) is given in Fig. 2. Both graphs show that most of the
pairs fitting well the observed velocities can also adequately
reproduce the observed rate of change of the ice thickness.
Figure 2b also shows that smaller misfits on Jzb clearly in-
volve higher rms misfits on the ice surface velocities (rmsu)
and on the rate of change of the ice thickness (rmsdiv). On
the contrary, Fig. 2a does not show a clear relation between
the magnitude of Jregα and the magnitude of rmsu and rmsdiv.
Both graphs also show a high density of pairs for small rmsu
and rmsdiv. However, the pair (λα = 1011, λzb = 107) seems
to come off the others, giving a good trade off between data
fitting and regularisation. Notice that the constant γ is fixed
to 1 since Jv and Jdiv have the same order of magnitude.

The optimisation of both α and zb simultaneously allows
a rms misfit of 49.7 m a−1 on velocities to be reached, very
similar to the observation rms error, showing no overfitting
of velocity data. The rate of change of ice thickness misfit is
also largely decreased with a rms value of 19.2 m a−1. The
resulting basal traction τb and zb as well as the misfit for
the surface velocities are given in Fig. 3. The basal traction
variability is accurately reproduced with a corresponding av-
erage relative misfit of only 25 % along the entire flowline
with respect to the reference basal shear stress τb,ref, i.e. more
than a 10-fold decrease of the initial misfit. We only notice
local overestimations of slipperiness in bedrock pits without
significant impacts on the flow velocities. Indeed, under a de-
fined value of β corresponding to a nearly perfectly sliding

case, an additional reduction in friction has no impact on the
flow. The same reasoning applies to a nearly perfectly sticky
case, where an increased friction would not involve more de-
crease of the velocity. The bedrock elevation zb is well recon-
structed in the first 50 km upstream of the glacier front. The
discrepancy with respect to the reference bedrock is larger
upstream where the cost function Jv is less sensitive because
of lower velocities. This could possibly be improved by us-
ing a cost function measuring the logarithm of the misfit as
in Morlighem et al. (2010), but with a greater risk of fitting
noise since the relative observation error is higher in these
regions.

In order to assess the influence of accounting for Jdiv on
the method, the optimisation is repeated without the Jdiv term
in the total cost function Eq. (10). The pair (λα , λzb ) is kept
equal to the previous case since the optimum is hardly af-
fected by the absence of Jdiv in the total cost function. The
result is given and compared to the previous one in Fig. 3.
The friction coefficient β is again pretty well reconstructed,
with a corresponding relative average misfit of 31 % on basal
shear stress τb to be compared to the 25 % obtained with
the optimisation of the Jdiv term. However, zb shows non-
consistent high frequencies involving a higher discrepancy
with respect to the reference bedrock elevation in the case of
optimising Jdiv. Therefore, the optimisation Jdiv has a clear
regularisation effect on the parameter zb, by reducing the
non-consistent high-frequency oscillations of the solution.
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Figure 4. Results of the ANC algorithm (purple): (a) absolute difference between observed and model velocities, (b) estimated basal traction,
and (c) estimated bedrock elevation. The green shaded area is the difference between the noisy reference velocities and the true velocities.
The green solid lines are the reference values and the black dashed line is the initial guess for the bedrock elevation.

Introduction of a Gaussian noise on (∂H/∂t)obs has been
investigated in order to assess its effect on the optimisation
of Jdiv. Different levels of standard deviation σ have been
tested. Results show that the optimisation is little affected
by this noise even for standard deviations σ going up to the
same order of magnitude as the surface accumulation a. In-
troduction of systematic bias on (∂H/∂t)obs in a physically
acceptable range, i.e. of the same order of magnitude as sur-
face accumulation a, also have few consequences on the op-
timisation.

4.2 Adjoint-nudging coupling (ANC)

The steps for the optimisation of α only are conducted with a
value λα = 5×109, which allows a good agreement between
the different cost functions and a value γ = 1.

In addition to the regularisation parameters of Eq. (11),
ANC algorithm depends on the time period for the nudg-
ing steps T and the variance of the Gaussian k in Eq. (8).
The nudging period T impacts the convergence on Jv and
Jdiv after each cycle. The convergence is substantially simi-
lar for T from 1 to 4 years. Longer periods mainly involve
a worse minimisation of Jv since there is no control on ve-
locities during nudging. Shorter relaxation times do not in-
volve sufficient change of zb inducing a lower minimisation
of Jdiv for a given number of cycles. Therefore, a relaxation
time T = 1 year is adopted, which seems sufficient to allow
significant changes of zb without too much adaptation to the

previous intermediate value of the friction coefficient. The al-
gorithm is stopped after 10 cycles, corresponding to the stop-
ping criterion of Sect. 2.3.2. For a given T period, tests show
that variance values of the Gaussian k in Eq. (8) larger than
1 km are excessive and induce non-physical callback ampli-
tudes when departing from observations. After a few cycles,
the resulting bedrock induces an increase between modelled
and observed velocities that cannot be overcome by the basal
drag inversion. Variance smaller than 1 km has little impact
on the final result in terms of cost functions. However, among
the acceptable values, the 1 km variance gives the best agree-
ment between misfit on the surface velocities and misfit on
the rate of change of the ice thickness.

The model is in good agreement with observations with
a rms misfit of 46.1 ma−1 in the range of observation noise
for velocities, and 15.8 ma−1 for thickness rates of change.
The basal shear stress τb is close to the reference one despite
exacerbated variations at some locations. The corresponding
relative average misfit with respect to the reference τb,ref is
30 % for the entire flowline. The reconstructed bedrock el-
evation zb is also close to the reference on almost 100 km
upstream of the front of the glacier. This reflects, especially
in fast flowing region, a real improvement of the basal knowl-
edge with respect to the first guess. Moreover, the use of
nudging, instead of the adjoint method, does not show the
same problem of non-sensitivity in regions of slower flow ve-
locities, as mentioned in Sect. 4.1. Note, however, that zb sig-
nificantly departs from the reference bedrock elevation from
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Figure 5. The five new references build from a 5-year perturbation of the initial reference by an increase of the friction parameter: β = 2βref
(green), β = 3βref (red), β = 4βref (blue lines), β = 5βref (purple), and β = 10βref (orange). New references for (a) the thickness rate of
change for the different perturbations, (b) velocities (without observation noise), and (c) friction coefficients β.

80 to 100 km to the front, strongly linked to the poorer fit of
β (see Fig. 4).

As for ATP, introduction of a Gaussian noise in the ob-
served thickness rate of change (∂H/∂t)obs has also been
tested. Results show no significant impacts on the opti-
misation. Nevertheless, introduction of systematic bias in
(∂H/∂t)obs has direct consequences on the nudging steps
inducing an offset of zb of the range of the systematic bias
cumulated on the nudging period T . ANC is therefore more
sensitive to systematic bias than ATP.

4.3 Further sensitivity experiments

In order to evaluate the efficiency of both algorithms in
transient states, we construct new reference cases where
(∂H/∂t)obs 6= 0. This is achieved by multiplying βref by a
factor of 2, 3, 4, 5, and 10. As a consequence, increasing the
basal friction involves a disequilibrium of the glacier, an ice
thickening, and a decrease of ice flow velocities.

The time period for the glacier to come back to equi-
librium, after this change of friction parameter, depends on
the amplitude of the perturbation. Here, the perturbation
is only applied during 5 years in order to keep the five
cases in disequilibrium. Resulting thickness rates of change
(∂H/∂t)obs 6= 0 are in the same order of magnitude as the
tuned surface mass balance a. The five new reference cases
are presented in Fig. 5.

The results of the optimisations for the five cases of per-
turbation are shown in Fig. 6 for ATP and Fig. 7 for ANC.
The velocity misfit for ATP increases with the amplitude of
perturbation with rms values between 47.8 and 52.3 ma−1

while the rms misfit for thickness rate of change increases
from 12.7 to 21.8 ma−1. ANC reaches rms misfits from 45.9
to 47.2 ma−1 for velocities and 12.5 to 21.5 ma−1 for thick-
ness rate of change. The friction coefficient β is well recon-
structed for both methods. The corresponding average rel-
ative error (with respect to each reference) on basal shear
stress varies from 22 to 30 % for ANC and 20 to 28 % for
ATP, still according to the amplitude of the perturbation.
Both algorithms also allow to improve the knowledge of the
bedrock elevation zb with regard to the first guess. We no-
tice a tendency to overestimate the amplitude of bumps and
pits in some locations which generally corresponds to an un-
derestimation in the amplitude of variations of β. This latter
behaviour highlights the limits of the algorithms and the dif-
ficulty of distinguishing the effects of two basal parameters
as closely linked as the friction and the bedrock topography.
This behaviour had been already highlighted in Goldberg and
Heimbach (2013) and Gudmundsson and Raymond (2008)
where a higher ice thickness with respect to the reference
is compensated by a higher basal friction, and conversely as
well.
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Figure 6. Range of values for ATP algorithm for the five perturbations of the friction coefficient β. (a, b) Minimum (dark orange shade) and
maximum (light orange shade) of absolute difference between observed and model velocities and relative error for τb, respectively. (c) Range
of values for bedrock elevation zb (orange shade). The green solid line is the reference value and the black dashed line is the initial guess for
the bedrock elevation.

Figure 7. Same as Fig. 5 but for the ANC algorithm.
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Figure 8. Evolution of ∂H/∂t after 1 year (a) and 10 years (b) of prognostic simulation and the resulting mismatch after 10 years between
surfaces obtained with three different initial states and reference surface (c). The orange and purple lines give the results for ATP and ANC.
The red line gives the result for inversion of β only.

4.4 Flow divergence in transient model

In this section, we assess the impact of our initialisation al-
gorithms on the prognostic response of the model forward in
time assuming the same constant forcing used to build the
reference state. By doing so, if the initialisation was per-
fect, one would expect no change of the geometry and ice
flow during this prognostic simulation. The experiment is
performed from ATP and ANC initial states. A third initial-
isation state is constructed for which only the friction coef-
ficient has been optimised, keeping zb equals to the a priori
zbb . This third initialisation, called “β only” involves a rms
misfit on velocities of 43.3 ma−1 and an average relative er-
ror ετb,ref of 36 % on basal shear stress, similar to the ATP and
ANC initial states. However, the rms misfit on the thickness
rate of change is significantly higher, 147.8 m a−1.

The prognostic simulations are conducted during a 10-year
period in order to see how the initial thickness rate evolves
during this time and how it impacts the final ice thickness and
ice surface. The thickness rates of change after 1 and 10 years
of simulation are shown in Fig. 8a and b, respectively, while
the mismatch on the surface elevation after 10 years is shown
in Fig. 8c.

ANC and ATP initial states involve thickness rates of
change much closer to zero than the optimisation of “β only”.
This also leads to a lower mismatch εs on the surface eleva-
tion with respect to the reference after 10 years of simula-
tion. Indeed, this mismatch is well below 20 m for both ANC

Figure 9. Ice surface elevation zs after 10 years of prognostic sim-
ulation for three different initial states: initialisation with ATP algo-
rithm (orange line), with ANC algorithm (purple line), and with the
inversion of β only (red line). The green line is the reference surface
elevation. The figure focuses on the first 50 km next to the front of
the glacier.

and ATP, except on a few kilometres in the upstream region,
whereas the optimisation of β only gives rise to a mismatch
globally above 20 m with some regions exceeding 50 m.

In that way, the two algorithms implemented in this study
show substantial improvements compared to the optimisa-
tion of “β only”. We especially notice a better reproduction
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of low-scale variations of the surface elevation due to the
transfer of similar variations from the bedrock elevation zb
(Fig. 9). These variations tend to disappear with the optimi-
sation of the friction only, giving rise to a lower resolution
of the surface. However, we should point out that this direct
transfer of bedrock variations to the surface is a consequence
of the SSA ice flow model used and that a full Stokes model
would produce a more diffusive transfer response.

5 Conclusions

The presented algorithms allow the reconstruction of two
poorly known parameters: the bedrock topography zb and the
friction coefficient β at the same time.

The optimisation of these two parameters mainly relies on
the knowledge of some other data that are easier to measure:
ice surface velocities and thickness rates of change. Some lo-
cal measurements of bedrock elevation and associated errors
are necessary in order to define a background zb. The two al-
gorithms aim to infer the set of parameters which minimises
the misfit between the model and the corresponding observa-
tions of ice surface velocities and thickness rates of change. If
the optimisation of ice surface velocities is usually sufficient
to infer β, the inference of a second parameter requires more
information to distinguish the effects of each parameters on
the flow. Observations of rates of change of ice thickness are
necessary to allow optimising zb as well.

The two algorithms are based on the optimisation of the
friction coefficient β with the adjoint method. The bedrock
geometry zb is reconstructed in two different ways, again
with the adjoint method for the first algorithm (ATP) and with
a nudging method based on mass conservation equation for
the second one (ANC).

We have shown that the ATP algorithm is capable to
well reproduce β and the corresponding basal shear stresses,
while the bedrock elevation zb is only well reproduced in
high velocities regions. The lower the velocity, the harder for
zb to depart from its initial background value. The iterative
algorithm coupling adjoint method and nudging (ANC) gives
results that are just as good. Moreover, ANC allows a better
reconstruction of the bedrock geometry zb in most regions.
This is a very good sign for an adaptation of the method to
non-depth-integrated flow models such as full Stokes mod-
els where the bedrock topography is no more a state variable
but affects the domain geometry making the derivation of the
adjoint even more demanding (Perego et al., 2014). Indeed,
there is no need to inverse a shape variable like bedrock to-
pography which is a usual obstacle to adjoint-based methods.

Furthermore, the transient simulations over 10 years from
initial states reconstructed with the two algorithms devel-
oped give very encouraging results. The model divergence
is clearly decreased with respect to usual inversion methods
of the friction coefficient only. The integration of observa-
tions like thickness rates variation through an optimisation

of the divergence during inversion or nudging steps, allows
to regularise the solution in a physical way and also clearly
improves the results.

Finally, the sensitivity experiments shows that the differ-
ent algorithms can take into account the disequilibrium of
mass balance, which is particularly interesting considering
that a large amount of outlet glaciers in both Greenland and
Antarctica present this feature.

6 Data availability

The construction of the twin experiment presented in this ar-
ticle is partially based on real data. Surface velocities come
from Joughin et al. (2010), while surface and bedrock ge-
ometries come from Bamber et al. (2013). Notice that sur-
face topography slightly differs from Bamber et al. (2013) in
order to reach steady state. The simulations were performed
using the Elmer/Ice finite element model (https://github.com/
ElmerCSC/elmerfem). Some modules were specially devel-
oped for this application.
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