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Abstract. This paper presents the first known application
of multi-model ensembles to the forecasting of the thermo-
sphere. A multi-model ensemble (MME) is a method for
combining different, independent models. The main advan-
tage of using an MME is to reduce the effect of model errors
and bias, since it is expected that the model errors will, at
least partly, cancel. The MME, with its reduced uncertainties,
can then be used as the initial conditions in a physics-based
thermosphere model for forecasting. This should increase the
forecast skill since a reduction in the errors of the initial con-
ditions of a model generally increases model skill. In this
paper the Thermosphere–Ionosphere Electrodynamic Gen-
eral Circulation Model (TIE-GCM), the US Naval Research
Laboratory Mass Spectrometer and Incoherent Scatter radar
Exosphere 2000 (NRLMSISE-00), and Global Ionosphere–
Thermosphere Model (GITM) have been used to construct
the MME. As well as comparisons between the MMEs and
the “standard” runs of the model, the MME densities have
been propagated forward in time using the TIE-GCM. It is
shown that thermospheric forecasts of up to 6 h, using the
MME, have a reduction in the root mean square error of
greater than 60 %. The paper also highlights differences in
model performance between times of solar minimum and
maximum.

1 Introduction

1.1 Background

NASA predicts that, by 2030, orbital collisions could be-
come frequent enough to cause a cascade (Kessler et al.,
2010), with the potential to prevent the use of low Earth orbit

(LEO) (Koller, 2012). One way to prevent a Kessler cascade
is to more accurately predict orbital trajectories to better plan
satellite collision avoidance manoeuvres. A key component
in orbital trajectory predictions is an accurate description of
the upper atmosphere, in particular the thermosphere, since
drag due to atmospheric density is one of the main forces that
affect the orbit of satellites and space debris. The neutral air
density from 200 to 1000 km altitude (LEO) can change by
80 % diurnally as well as by at least 1 to 2 orders of mag-
nitude during geomagnetic storms; sometimes in just a few
hours (Sutton et al., 2005; Lei et al., 2010). The upper atmo-
sphere forecast models currently in use for orbit prediction
are empirical and include US Naval Research Laboratory
Mass Spectrometer and Incoherent Scatter radar Exosphere
2000 (NRLMSISE-00), the Jacchia Reference Atmosphere
(Jacchia, 1977), and the NASA/MSFC Global Reference At-
mospheric Model-1999 Version (Justus and Johnson, 1999).
They are finely tuned, but when applied to satellite orbit fore-
casts they can result in large uncertainties in the orbital pa-
rameters. Often resulting in positional errors on the order of
kilometres after a day (McLaughlin et al., 2011; Vallado and
Finkleman, 2008).

One way to decrease the errors in satellite orbit forecasts is
to reduce errors in thermospheric density forecasting. It has
been previously suggested that ensemble modelling could
improve space weather forecasts (Schunk et al., 2014). In this
paper, multi-model ensembles (MMEs) are shown to enhance
forecasts of the thermospheric density. The main objective is
to minimize the prediction errors and bias of the forecasts by
improving the initial conditions of the model.
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1.2 Multi-model ensembles

The idea of improving model forecasts by combining two or
more independent models is based on a short note by Thomp-
son (1977). Since then, MMEs have been extensively used in
the climatology community with great success. For exam-
ple, Doblas-Reyes et al. (2000) showed that using three cli-
mate models in an MME improved forecast skill. They also
noted that the mean of an ensemble of forecasts has a smaller
mean square error than any individual forecast. Evans et al.
(2000) showed that the use of MMEs for both determinis-
tic and probabilistic climate forecast verification significantly
outperformed the individual models. Rozante et al. (2014)
showed that an MME approach to forecasting had smaller
root mean square errors (RMSEs) than any of the constituent
models for most variables across their whole test scenario.

An MME relies on the idea that model forecasting can
be improved by combining independent models (Thompson,
1977) and thereby reducing the impact of errors from in-
dividual models. Model errors arise in a variety of forms
and include computational errors in physics model solvers
(Rozante et al., 2014). For example, many physical systems
can be described by a series of partial differential equa-
tions. Yet, in order to solve them, they have to be reduced to
finite-dimensional ordinary differential equations to be inte-
grable on a computer. Whilst necessary, this reduction intro-
duces inaccuracies. Ridley et al. (2010) showed that solving
the magnetohydrodynamics (MHD) equations numerically
rather than analytically can cause significant differences in
global MHD code. The same piece of code can give very dif-
ferent results by simply altering the numerical settings.

It is clear that an MME cannot give a result better than
the best individual model in all circumstances. For a hypo-
thetically perfect model of a system forming an MME will
always add worse information. However in reality such per-
fect models do not exist and a successful MME should use
independent, skilful models. It is important to use indepen-
dent models since models with similar error characteristics
can find such characteristics amplified in the MME. It is im-
possible for the MME to be worse than all of the individual
models (Hagedorn et al., 2005). However, if one model is
shown to consistently perform less well than all other mod-
els, then this should be excluded from the MME as it does
not add useful information.

Although an MME may reduce the reported thermospheric
density errors; it cannot alone forecast densities and thus can-
not be directly used to improve satellite orbit forecasts. Er-
rors in the forecasts given by thermospheric models are due
to approximations in the modelled physics and uncertainties
in the initial and boundary conditions. Pawlowski and Ri-
dley (2009) showed that using different parameters within
a global ionosphere–thermosphere model can cause differ-
ences in the reported temperatures and densities. As such
some biases are expected in the models due to uncertainties
in the parameters. Since MMEs are expected to reduce errors

in the densities, these improvements can be used as the initial
conditions for a forecast run of a physics model. Reducing
the errors in the initial conditions is then expected to reduce
the errors in the forecasted thermospheric densities. This pa-
per will explore the effectiveness of MMEs using both the a
posteriori knowledge and as an initial condition in a forecast
model run.

One can construct an MME using a variety of different
approaches, but they fall into two main categories, equal and
unequal weightings.

1.3 Equally weighted MMEs

There are a number of difficulties in constructing an MME.
These include how the models should be combined and the
fact that different models do not all share common output
variables. A further problem is that there may not be obser-
vational data for each parameter, making it difficult to as-
sess model performance for all parameters. One way to re-
solve the latter problem is to not take model performance into
account and use an equally weighted average. Such a sim-
ple method for MME generation has been shown to increase
model skill in climate studies. For example, Christensen et al.
(2010) found that using a variety of different weight schemes
for the construction of the MME did not provide consistent
superiority over a simple averaging approach. Using a small
data set, Weisheimer et al. (2009) commented that finding
a robust weighting system was difficult and suggested ap-
plying equal weights to the models. Their approach, using
five models in the MME, led to a significant improvement
in seasonal-to-annual climate forecasts compared to any one
individual model.

1.4 Weighted MMEs

Alternatively, the MME can use different weights for each
model. There are different approaches for estimating the
weights to be applied to individual models. These include a
least-squares minimization of differences between the model
and observations (Krishnamurti, 1999), a best linear unbi-
ased estimate (BLUE) (Pavan and Doblas-Reyes, 2000) and
a weighting scheme based upon the maximization of a pos-
terior likelihood function (Rajagopalan et al., 2002). All of
the approaches depend on some measure of model skill. An
appropriate skill measure must be chosen for each particu-
lar use of the MME. For example, Tebaldi and Knutti (2007)
stated that the skill of a (climate) model should not be judged
from its ability to predict the future, but instead from its
ability to predict mean conditions, variability, and transient
changes.

In the absence of existing MME work in the thermospheric
literature, a sample mean square error (MSE) has been used
in this work:

Skill=MSE= (µ2
+ σ 2), (1)
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where µ is the mean of the time series of errors (model mi-
nus observation) and σ is the standard deviation of the errors.
Weigel et al. (2008) has previously shown that the MSE can
effectively be used in a weighting scheme for MMEs to in-
crease climate model forecast skill.

2 Models and observations

For this study three atmospheric density models have been
used: NRLMSISE-00, Thermosphere–Ionosphere Electrody-
namic General Circulation Model (TIE-GCM), and Global
Ionosphere–Thermosphere Model (GITM). NRLMSISE-00
is an empirical density model, whereas GITM and TIE-GCM
are physics-based models. The models are driven using stan-
dard geophysical indices: i.e. F10.7, which is the solar flux
at a wavelength of 10.7 cm at the Earth’s orbit and is used
as a proxy for solar output, and Kp or Ap, which indicate
the severity of the magnetic disturbances in near-Earth space.
Physics models of the ionosphere–thermosphere often suffer
from biases. These can usually be attributed to the uncertain-
ties in the model parameters, which have a large impact on
the final results (Pawlowski and Ridley, 2009). These biases
can be reduced by modifying particular parameters. For ex-
ample Burrell et al. (2015) showed that changing the photo-
electron heating in GITM moves the baseline up and down.
For this study the models are compared to observations from
the CHAllenging Minisatellite Payload (CHAMP) satellite.
Each model and the CHAMP data are described in the fol-
lowing sections.

2.1 NRLMSISE-00

The NRLMSISE-00, is a global, empirical model of the at-
mosphere. It uses the 81-day average of F10.7, the daily
F10.7 solar flux value of the previous day, and 3-hourly Ap
to model the density and temperature of atmospheric compo-
nents (Picone et al., 2002). It is based on the earlier MSIS-
86 (Mass Spectrometer and Incoherent Scatter radar 1986)
(Hedin, 1987) and MSISE-90 (Mass Spectrometer and Inco-
herent Scatter radar Exosphere 1990) (Hedin, 1991) models.

The model outputs number densities of helium, atomic
oxygen, molecular oxygen, atomic nitrogen, molecular ni-
trogen, hydrogen, and argon, as well as total mass density
and the temperature at a given altitude. NRLMSISE-00 has
been shown to offer a noticeable improvement over MSISE-
90 (Picone et al., 2002) and Jacchia-70 (Jacchia, 1977).

2.2 TIE-GCM

The National Center for Atmospheric Research (NCAR)
TIE-GCM is a three-dimensional model of the coupled ther-
mosphere ionosphere system (Richmond et al., 1992). At
each time step the continuity, energy, and momentum equa-
tions are solved for neutral and ion species using a fourth-
order, centred finite difference scheme (Roble et al., 1988).

TIE-GCM has two different grid settings: single and double
resolution. The latitude values range from −87.5 to 87.5 in
5◦ steps at single resolution and 2.5◦ at double. In longitude
it ranges from −180 to 180◦. Altitude is calculated in pres-
sure levels with half scale height for single resolution and
quarter scale height for double. These correspond to heights
from approximately 95 to 550 km. For this work the single-
resolution grids have been used.

The model takes as input the daily F10.7, the 81-day F10.7
average and the Ap. It uses either the Weimer or Heelis mod-
els for the ionospheric electric fields at high latitudes (Heelis
et al., 1982; Weimer, 2005). Throughout this work, the Heelis
model has been used. The lower boundary condition (at-
mospheric tides) is given by the Global Scale Wave Model
(GSWM) (Hagan et al., 1999).

2.3 GITM

GITM is a physics-based three-dimensional global model
that solves the full Navier–Stokes equations for density, ve-
locity, and temperature for a number of neutral and ion
species (Ridley et al., 2006). The model also provides the
total neutral density, electron density, electron, ion and neu-
tral temperatures, neutral wind speed, and plasma veloci-
ties. For inputs, GITM uses F10.7 solar flux, hemispheric
power (Emery et al., 2008) (available from the National
Oceanic and Atmospheric Administration (NOAA) website
(U.S. Dept. of Commerce, NOAA, 2015)), interplanetary
magnetic field (IMF) data, and solar wind velocity. The
model allows the user to select latitude and longitude grids
and uses a static altitude grid for the height profile, which is
set at initialization. For this work 5◦ grids have been used to
coincide with the TIE-GCM grids.

To solve the continuity, energy and momentum equations,
GITM uses an advection solver, whilst the ion momentum
equation is solved assuming a steady state (Ridley et al.,
2006). GITM inherently allows for non-hydrostatic solutions
to develop, which allows for realistic dynamics in the auroral
zones (Ridley et al., 2006).

2.4 CHAMP

The performance of each model is compared against the at-
mospheric density fields derived from the CHAMP satel-
lite (Reigber et al., 2002). CHAMP was in operation from
July 2000 to September 2010 and the reported neutral den-
sities were derived from accelerometer data (Sutton, 2009).
CHAMP was launched into a near-polar orbit (87◦) with an
orbital period of approximately 90 min. The initial altitude of
the orbit was 454 km, which decayed during the lifespan of
the mission to 296 km by February 2010 due to atmospheric
drag. Neutral densities were recorded approximately every
45 s. Accelerometer data were recorded every second and
averaged such that neutral densities were reported approxi-
mately every 45 s.
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Table 1. Test scenario descriptions. The CHAMP average altitudes and average F10.7 values are taken from across the 5-day test scenarios.

Scenario Start time Stop time CHAMP average Average
number altitude F10.7

1 28 August 2009 1 September 2009 325 km 68
2 19 November 2008 23 November 2008 333 km 69
3 22 November 2001 26 November 2001 431 km 179

Figure 1. Ap, F10.7, and DST index values for the three test sce-
narios. The spikes in Ap for the 2009 and 2001 test scenario seem
to be due to a geomagnetic storms.

3 Test scenarios

Three separate test scenarios were used during this study (Ta-
ble 1). For each of the test scenarios TIE-GCM and GITM
were run for 2 days prior to the start date so that the “spin-
up” period did not affect the final results. Test scenario 1 was
chosen since it included a geomagnetic storm, which took
place on 30 August. The Ap index reached a high of 67 be-
tween 15:00 and 18:00 UT, 30 August, whilst staying below
10 at other times. The F10.7 showed little variability through-
out the whole test period (Fig. 1). To further verify the results
a second solar minimum test scenario was explored (scenario
2, 19 to 23 November 2008). Finally, a solar maximum test
(scenario 3) was also used. This test scenario also includes
a large geomagnetic storm in the middle of the test period,
where the Ap reached a high of 236.

Figure 2. Modified Taylor diagram (Elvidge et al., 2014) for
NRLMSISE-00 (MSIS), TIE-GCM, and GITM for neutral density,
compared with CHAMP for each of the three test scenarios. The az-
imuthal angle represents the correlation of the models neutral den-
sity time series with the CHAMP observation. The radial distance
shows the standard deviation of the model time series and the semi-
circles, centred at a standard deviation of 1, is the standard deviation
of the errors (model minus observation). The colour scale shows the
bias (mean of model minus mean of truth). Each quantity is normal-
ized and the original values can be reformed using the correspond-
ing “factor” in the top right of the diagram.

4 Results

4.1 Initial model comparisons

To compare NRLMSISE-00, TIE-GCM, and GITM with
CHAMP, the output of each model was spatially mapped
to the CHAMP position using tri-linear interpolation. The
model files were output every 30 min and the CHAMP ob-
servation closest to the model time was used. Figure 2 shows
the modified Taylor diagram (Elvidge et al., 2014) for to-
tal neutral density for NRLMSISE-00, GITM and TIE-GCM
compared to the CHAMP observations for each of the test
studies. Figure 3 is the time series plot for the first test sce-
nario (2009; solar minimum) of neutral density of the models
and CHAMP for the same time period.

The NRLMSISE-00 empirical model results, as expected,
show a reasonable mean approximation to the observed state,
with the least bias of the tested models. However, the model
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Figure 3. CHAMP, GITM, TIE-GCM, and NRLMSISE-00 reported
neutral densities for the first test scenario (2009; solar minimum).
The fast oscillations are due to CHAMPs orbit (∼ 90 min).

shows a larger variability in its output than the CHAMP ob-
servations. GITM shows a negative bias with a very small
standard deviation compared to the observations (Fig. 2); i.e.
the range of values that GITM produces is smaller than the
observations. GITM and NRLMSISE-00 have a very similar
correlation, but GITM has the smaller error standard devia-
tion. TIE-GCM has the strongest correlation of the models,
but does show a positive bias and a standard deviation greater
than that of the observation. TIE-GCM is also the only model
to show some reaction to the storm. Although there is no in-
crease in the maximum reported values, there is an increase
in the minimum values (Fig. 3).

The results from the second test scenario (2008; solar min-
imum) are similar to the first (Fig. 4). TIE-GCM again has a
positive bias and its standard deviation is greater than the
CHAMP observations. TIE-GCM has a correlation to the
CHAMP observations of ∼ 0.5, the worst of the tested mod-
els. GITM and NRLMSISE-00 perform quite similarly in
this test, albeit with GITM showing a negative bias. They
have correlation coefficients compared to CHAMP of 0.87
and 0.89 (not statistically significantly different). Both mod-
els have normalized standard deviations less than unity (they
underestimate the range of observations).

Finally, the third test scenario (2001; solar maximum) has
results that are considerably different to the other two test
scenarios. The reported neutral densities compared to the
CHAMP observations can be seen in Fig. 5. The variabil-
ity between the models, seen previously in Figs. 3 and 4, is
greatly reduced in this test scenario. During quiet times the
models all perform very similarly. There is some variability
in the models during the peak of the storm, with GITM in par-
ticular not responding as much as TIE-GCM or NRLMSISE-
00. None of the models show any real bias, with standard
deviations close to the observations and similar error stan-
dard deviations. NRLMSISE-00 has the strongest correlation

Figure 4. CHAMP, GITM, TIE-GCM, and NRLMSISE-00 reported
neutral densities for the second test scenario (2008; solar mini-
mum).

Figure 5. CHAMP, GITM, TIE-GCM, and NRLMSISE-00 reported
neutral densities for the third test scenario (2001; solar maximum).

with the observations (0.73), whilst TIE-GCM and GITM are
not significantly different (∼ 0.5). This behaviour is to be ex-
pected since during solar maximum the solar drivers, which
are at a much higher level (Table 1), become dominant in
the models. At solar minimum other internal and external
dynamics dominate the evolution of the thermosphere den-
sities. These other drivers are what cause the variability be-
tween the models in the other two test scenarios. It should be
noted that the thermospheric densities during the extreme so-
lar minimum of 2008/2009 were considerably lower than one
would expect from the F10.7 levels (Solomon et al., 2010).
This could contribute to the poorer performance of the mod-
els compared to the CHAMP observations for the first two
test scenarios.

The results from these test scenarios show that the models
suffer from errors and biases, and are unable to exactly match
the observed density field from CHAMP. In order to provide
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Figure 6. Neutral density values of the three MMEs for the first
test scenario, equally weighted, quiet-time weighted, and all-times
weighted.

better forecasting abilities, MMEs can be used to combine
the model output to minimize the impact of model errors and
bias.

4.2 Multi-model ensembles

As described in Sect. 1.3 and 1.4 there are two approaches to
constructing MMEs, simple averaging and more complicated
weighting schemes. The mean square error has been chosen
for the weighting scheme (Eq. 1) in this paper. The MSE was
calculated using the models’ neutral density time series com-
pared to the CHAMP observations. The model weights for
the MME were then based on the model skill. The inverse
of the model skill was used to weight the models, so that the
model with the lowest MSE was weighted most heavily. That
is, given that the model skill of NRLMSISE-00, GITM and
TIEGCM is SM, SG, and ST respectively, the weighting of
model i was calculated using:

Weighting of model i =
1

Si

(
1
SM
+

1
SG
+

1
ST

) . (2)

The model skills and weighting of each model, for each
test scenario, are given in Table 2. The large differences
in model weightings between the different scenarios indi-
cate that weighting the MMEs based on short-term historic
performance is heavily dependent on the current conditions.
Such an approach may not be suitable to forecasting.

For the first test scenario a further weighting scheme was
used whereby before calculating the MSE the model time
series were restricted to times of low geomagnetic activity.
Fuller-Rowell and Rees (1981) defined quiet geomagnetic
conditions as when the Kp index is between 0 and 1. In this
study Ap values between 0 and 3 were used, which corre-

Figure 7. Modified Taylor diagram for the three MMEs: equal,
quiet-time weighted, and all-time weighted as well as GITM, TIE-
GCM, and NRLMSISE-00 (MSIS) compared to the CHAMP obser-
vations for the first test scenario. Details of how to read the diagram
are described in Fig. 2.

sponds to a Kp of 0 to 1−. However, restricting the time se-
ries greatly reduces the number of data points (from 240 to
50). This means the weights may not be generally applica-
ble to the full time series (Hagedorn et al., 2005). It should
be noted that the weightings used here are calculated using
the same data set as is used in the test scenarios. In an ideal
situation weightings should be calculated using a different
(historic) data set and then used.

Figure 6 shows the neutral density time series of the ob-
servations, average, and weighted MMEs for the first test
scenario. Figure 7 is the modified Taylor diagram for the
same test. It is clear that the MMEs perform better than
any of the individual models. The MME weighted across
the whole time period performs the best of the MMEs. The
MMEs all have little or no bias, and have a correlation to
the CHAMP observations similarly to TIE-GCM. The all-
times-weighted MME in particular has a standard deviation
close to the observations. The quiet-time-weighted MME is
the worst of the three MMEs and performs worse than the
equally weighted MME. Therefore, the quiet-time-weighted
MME was dropped from the analysis for the other two test
scenarios.

The time series and modified Taylor diagram for the sec-
ond test scenario are shown in Figs. 8 and 9. In this case the
weighted MME performs as well as the best of the individual
models (NRLMSISE-00 in this case). Although the equally
weighted MME performs worse in terms of correlation com-
pared to GITM and NRLMSISE-00, it still provides a signifi-
cant improvement over TIE-GCM and GITM in other regards
(such as bias and standard deviation).

Geosci. Model Dev., 9, 2279–2292, 2016 www.geosci-model-dev.net/9/2279/2016/
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Table 2. Model skill and associated weighting (calculated by the inverse of model skill, Eq. 2) for use in the weighted MMEs for the three
test scenarios.

Test scenario 1 Test scenario 2 Test scenario 3
Model skill Weight Model skill Weight Model skill Weight

NRLMSISE-00 2.6× 10−24 49.0 % 3.08× 10−24 21.2 % 2.26× 10−25 85.1 %
GITM 4.52× 10−24 28.3 % 1.77× 10−24 36.9 % 3.01× 10−24 6.4 %
TIE-GCM 5.61× 10−24 22.7 % 1.56× 10−24 41.9 % 2.25× 10−24 8.5 %

Figure 8. Neutral density values of the two MMEs for the second
test scenario, equally weighted and all-times weighted.

Figure 9. Modified Taylor diagram for the two MMEs: equal and
all-time weighted as well as GITM, TIE-GCM, and NRLMSISE-00
(MSIS) compared to the CHAMP observations for the second test
scenario. Details of how to read the diagram are described in Fig. 2.

Figure 10. Neutral density values of the two MMEs for the third
test scenario, equally weighted and all-times weighted.

Figures 10 and 11 show the results for the third test sce-
nario. The MMEs have the same correlation as the best of the
models (NRLMSISE-00) but also show a positive bias for the
weighted MME in particular. This is because NRLMSISE-00
itself has a large bias, but is heavily weighted (85.1 %) in the
MME. The MMEs offer some improvements in this test sce-
nario (in correlation in particular) but the improvement is not
as pronounced as in the other scenarios. This is due to the
dominant forcing of the solar drivers at solar maximum.

It has been shown, in these test scenarios, that combin-
ing model results leads to increased skill at matching the
CHAMP-derived data. In the following section this reduced
uncertainty in atmospheric densities is used to provide the
initial conditions of a forecast run of a model. Such an ap-
proach has been previously shown to increase climate model
forecast skill (Tebaldi and Knutti, 2007).

4.3 Using the MME for forecasting with TIE-GCM

The objective is to use the MME, with its reduced uncer-
tainties, as the initial conditions for TIE-GCM. With the bet-
ter initial conditions, it is expected that the forecast skill of
TIE-GCM will be increased. In order to use an MME as
the initial conditions for a physics-based model (i.e. TIE-

www.geosci-model-dev.net/9/2279/2016/ Geosci. Model Dev., 9, 2279–2292, 2016
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Table 3. NRLMSISE-00, TIE-GCM, and GITM model outputs. mmr is the mass mixing ratio.

NRLMSISE-00 TIE-GCM GITM

He (cm−3) He (m−3)
O (cm−3) O (mmr) O (m−3)
O2 (cm−3) O2 (mmr) O2 (m−3)
N (cm−3) N (mmr) N (m−3)
N2 (cm−3) N2 (mmr) N2 (m−3)
Ar (cm−3)
H (cm−3) H (m−3)

NO (mmr) NO (m−3)
O+ (cm−3) O+ (m−3)
O+2 (cm−3) O+2 (m−3)

N+ (m−3)
N+2 (m−3)

NO+ (cm−3) NO+ (m−3)
Ne (cm−3) Ne (m−3)

Neutral temp. (K) Neutral temp. (K) Neutral temp. (K)
Ion temp. (K) Ion temp. (K)
Electron temp. (K) Electron temp. (K)
Neutral meridional wind (cms−1) Neutral velocity (east) (ms−1)
Neutral zonal wind (cms−1) Neutral velocity (north) (ms−1)
Neutral vertical wind (cms−1) Neutral velocity (up) (ms−1)

Ion velocity (east) (ms−1)
Ion velocity (north) (ms−1)
Ion velocity (up) (ms−1)
O velocity (up) (ms−1)
O2 velocity (up) (ms−1)
N velocity (up) (ms−1)
N2 velocity (up) (ms−1)
NO velocity (up) (ms−1)

GCM) more than just the combined neutral density is re-
quired. The MME of each density required by TIE-GCM
(Table 3) has to be calculated. Where possible, the density
for each model species required by TIE-GCM (e.g. oxygen;
O) was found by combining the densities from NRLMSISE-
00, GITM, and TIE-GCM. However, for certain species (e.g.
nitric oxide; NO) not all the models provide a density (in this
case NRLMSISE-00). In these cases, just the models that do
provide a density value were used. In cases where TIE-GCM
has a density that no other model provides, the original data
are used on their own. A similar approach is used for the
temperatures and velocities.

To combine densities, temperatures, and velocities from
multiple models, the data must be interpolated to com-
mon latitude, longitude, and altitude grids. Therefore,
NRLMSISE-00 and GITM grids were tri-linearly interpo-
lated to the TIE-GCM grid. The grids were then combined
to form an MME. Since TIE-GCM uses pressure levels in-
stead of altitude grids the MME values needed to be mapped
back onto pressure levels. TIE-GCM provides a mapping be-
tween the pressure levels and geometric height for a given

time step. This mapping was used in reverse to morph the
altitude grids to TIE-GCM readable pressure levels.

For the new TIE-GCM run, the model was restarted us-
ing the MME state-vector as the initial condition. TIE-GCM
was then run for 6 h with the model output recorded every
30 min. After the 6 h period, TIE-GCM was again restarted
using the MME grid for the next 6 h period. For the fore-
cast run, the model only used the values of Kp and F10.7
corresponding to the initial conditions; i.e. they were not up-
dated at each time step, but they were updated every 6 h. This
was so that a true forecast could be simulated. The equally
weighted MME uses no prior information so can be treated
as a true forecast. However, it should be noted that when us-
ing the weighted MME, a true forecast is not obtained since
the weighted MME is generated using the information from
the CHAMP observations. Figure 12 is a flow-chart of the
process used to run TIE-GCM with the MME as its initial
conditions for a 6 h forecast, and Fig. 13 is the procedure
used for this test scenario.

Using the MME densities to initialize a run of TIE-GCM
will alter the outputs of the model. It was expected that over
time the two versions would converge. However, this does
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Figure 11. Modified Taylor diagram for the two MMEs: equal and
all-time weighted as well as GITM, TIE-GCM, and NRLMSISE-
00 (MSIS) compared to the CHAMP observations for the third test
scenario. Details of how to read the diagram are described in Fig. 2.

not seem to happen over the 6 h window used here. This is
likely due to the fact that the model biases have a longer
timescale than 6 h. Figure 14 shows the difference between
a standard run of TIE-GCM and one started with the MME
grid. It shows that the differences between the two models,
started with different initial conditions, are decreasing to-
wards zero, as expected, but it takes approximately 70 h to
reach these levels. The e-folding time of this is ∼ 30 h.

Figure 15 shows the modified Taylor diagram for neutral
density compared to the CHAMP observations for the orig-
inal TIE-GCM run, the NRLMSISE-00 (MSIS), GITM re-
sults, and the results of rerunning TIE-GCM using the av-
erage and both weighted MME (all times and quiet times
separately) as the initial condition every 6 h for the first test
scenario. Figure 16 is the reported time series of neutral den-
sities from the CHAMP observations, the original TIE-GCM
run and the results of rerunning TIE-GCM using the MMEs.

Using the MME densities as the starting densities for TIE-
GCM provides a clear improvement compared to the origi-
nal run of TIE-GCM. The reported densities show very low
bias and have variability close to the observations. In partic-
ular, the post-storm period is modelled very accurately in all
but the quiet-time-weighted MME. The average MME and
all-times weighted initial conditions for TIE-GCM improves
upon the original TIE-GCM correlation. Each of the TIE-
GCM MME runs significantly improved the bias and all but
the quiet times improved the standard deviation of the model.
The new TIE-GCM run (using the average MME) offers an
improvement in all tested parameters compared to the neutral
density MME calculated after the models were run (Fig. 7).
This is since the physics of one model, given initial condi-

Figure 12. Flow chart of the procedure for running TIE-GCM using
the MME as its initial conditions for a 6 h forecast.

tions with lower errors, can propagate densities better than
the average of three models, each with poor initial condi-
tions.

None of the contributing models, nor the MMEs, model
the peak of the storm period (∼ 65 h after 28 August 2009)
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Figure 13. Procedure for finding the TIE-GCM forecast using an
MME as its initial conditions. The “run TIE-GCM MME forecast”
process refers to the procedure described in Fig. 12.

with any accuracy. The best the models can do is to try and
model the post-storm period as well as possible. This is be-
cause the models do not react quickly enough to the sharp
increase in Ap (in terms of reported neutral densities).

The RMSE for each TIE-GCM MME run as well as the
original TIE-GCM run compared to the CHAMP observa-
tions are shown in Table 4. The 95 % confidence intervals
are also reported. These have been calculated in the standard

Figure 14. Differences between the standard TIE-GCM model run
and TIE-GCM ran using the MME as its initial conditions (at time
0). It can be seen that it takes over 70 h for the models to start to
converge again.

Figure 15. Modified Taylor diagram for NRLMSISE-00 (MSIS),
TIE-GCM, GITM, and for TIE-GCM using the MMEs (equal,
quiet-time weighted, and all-time weighted) for its initial conditions
every 6 h, compared with the CHAMP observations. Details of how
to read the diagram are described in Fig. 2.

way,√ n

χ2
1− α2 ,n

RMSE,
√

n

χ2
α
2 ,n

RMSE

 , (3)

where n is the sample size, and α is the required confidence
interval.

Figures 17 and 18 show the results of using the MMEs as
the initial conditions in TIE-GCM for test scenario 2. Again
the improvements can be seen. The original TIE-GCM run
had a correlation of ∼ 0.5 with a large positive bias. How-

Geosci. Model Dev., 9, 2279–2292, 2016 www.geosci-model-dev.net/9/2279/2016/



S. Elvidge et al.: Improved forecasting with multi-model ensembles 2289

Table 4. The RMSE of the original TIE-GCM run and running the model with the MME as the initial conditions. The 95 % confidence
intervals are also reported.

RMSE ×10−12 (kgm−3) 95 % confidence interval

Test scenario 1 (2009)

Equal MME 0.84 [0.78, 0.92]
Weight-quiet MME 1.2 [1.1, 1.3]
Weight-all MME 0.91 [0.83, 1.0]
TIE-GCM original 2.4 [2.2, 2.6]

Test scenario 2 (2008)
Equal MME 0.53 [0.49, 0.59]
Weight-all MME 0.53 [0.49, 0.59]
TIE-GCM original 1.5 [1.4, 1.7]

Test scenario 3 (2001)
Equal MME 1.2 [1.1, 1.4]
Weight-all MME 1.2 [1.1, 1.4]
TIE-GCM original 1.3 [1.1, 1.4]

Figure 16. Top panel shows the neutral density from the CHAMP
observations and the original TIE-GCM run. The subsequent pan-
els then show the CHAMP observations with each of the new TIE-
GCM outputs using the MMEs as the initial conditions every 6 h.

ever, when using the MME densities to initialize TIE-GCM
a correlation of∼ 0.9 and no significant bias is achieved. The
MME run provides results better than each of the constituent
models. The reduction in RMSE between the original TIE-
GCM run and the MME runs are shown in Table 4.

Finally Figs. 19 and 20 show the results for test scenario
3. In this case the NRLMSISE-00 model still provides the
overall best results. However, the TIE-GCM runs using the
MME have less bias than NRLMSISE-00. The MME runs
of TIE-GCM show an improvement in the post-storm mod-
elling of neutral densities (Fig. 20). The results from this test

Figure 17. Modified Taylor diagram for NRLMSISE-00 (MSIS),
TIE-GCM, GITM, and for TIE-GCM using the MMEs (equal and
all-time weighted) for its initial conditions every 6 h, compared with
the CHAMP observations. Details of how to read the diagram are
described in Fig. 2.

scenario once again highlight the weaknesses of this method
for solar maximum conditions. Even when using the MME to
initialize the model TIE-GCM still performs very similarly to
when the conditions had not been changed. This is due to the
dominance of the solar drivers.

It has been shown that the use of the MME as the initial
conditions in TIE-GCM improve the models forecast skill
considerably during solar minimum. The RMSE is reduced
by approximately 60 % (±6 % for the 95 % confidence inter-
val). However, no improvement to RMSE is achieved for the
third test scenario (solar maximum).
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Figure 18. Top panel shows the neutral density from the CHAMP
observations and the original TIE-GCM run. The subsequent pan-
els then show the CHAMP observations with each of the new TIE-
GCM outputs using the MMEs as the initial conditions every 6 h.

Figure 19. Modified Taylor diagram for NRLMSISE-00 (MSIS),
TIE-GCM, GITM, and for TIE-GCM using the MMEs (equal and
all-time weighted) for its initial conditions every 6 h, compared with
the CHAMP observations. N.B. The two markers for the MMEs
overlap each other. Details of how to read the diagram are described
in Fig. 2.

5 Discussion and conclusions

The work presented in this study shows the possibility of
using multi-model ensembles (MMEs) to enhance the fore-
cast skill of thermospheric models. Three models were used:

Figure 20. Top panel shows the neutral density from the CHAMP
observations and the original TIE-GCM run. The subsequent pan-
els then show the CHAMP observations with each of the new TIE-
GCM outputs using the MMEs as the initial conditions every 6 h.

an empirical model (NRLMSISE-00) and two physics-based
models (TIE-GCM and GITM). The models’ output density
has been compared to derived density fields from CHAMP,
where the models vary in performance compared to the ob-
servations depending on the test scenario. To improve the
density estimation, an MME averaging technique has been
applied and tested. Two approaches for the MME were used,
a simple average MME where all models have the same
weight, and a weighted MME, where each model is weighted
according to its skill. Three different test scenarios have been
used, two during solar minimum and one during solar maxi-
mum. The results show a significant improvement in both so-
lar minimum cases. The MME was then used to initialize one
of the physics-based models (TIE-GCM) to try and improve
its forecast skill. During solar minimum test scenarios using
the MME to initialize TIE-GCM shows a reduction in RMSE
in neutral density of ∼ 60 % (Table 4). For solar maximum
each of the models perform similarly and the MME provides
no improvement to the model results. However, it is impor-
tant to note that the MME also does not degrade the results.
It has been shown that using an equally weighted MME often
provides as good, if not better, results than using a weighted
MME. This is consistent with Hagedorn et al. (2005), who
argued that for small data sets the most appropriate way to
generate an MME is to use the unweighted average.

The results of this study show that the physics models
suffer from large biases, as was discussed in Sect. 2. How-
ever, these have been shown to not be systematic. For a given
model they could be positive or negative, depending on the
testing scenario. Burrell et al. (2015) argued that varying par-
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ticular parameters can move the biases up and down eas-
ily. This approach should be used in the construction of fu-
ture MMEs. If a number of model biases were of the same
sign then these would likely end up contributing a bias to
the MME. By running each model a number of times, with
varied input parameters, reduced-bias physics model results
could be found. One could then extend the MME into a
super-MME, which contains both different models and dif-
ferent model settings. This is similar to the approach used by
Palmer et al. (2000) in the climatology community, who used
nine instances of four different models in the construction of
their MME.

Figure 14 shows that the MME-started TIE-GCM run did
not merge completely with the standard model run within
5 days. It takes over 70 h for the two models to have zero
differences in places. Further work should investigate the
long-term model effects of the starting conditions for TIE-
GCM (and physics models in general). Ridley et al. (2010)
showed the influence of grid choice for global MHD code
and it seems that something similar is happening with global
ionospheric–thermospheric models.

A number of improvements could be implemented in gen-
erating the MME. First, a separate “training” data set should
be used to generate the model weights to make a fairer test.
A weighting scheme that varies based on longitude, latitude,
height, and time, could also be implemented, as in Rozante
et al. (2014, Eq. 1). A further approach would be to change
the weighting scheme altogether and adopt reliability en-
semble averaging, which is often used to generate MMEs in
climatology studies (Giorgi and Mearns, 2002). In order to
achieve this a larger number of models would be required.
Also, in order to further verify the results, longer test scenar-
ios should be used to reduce the uncertainties in the statistics.

6 Data availability

The CHAMP data were collected from http://sisko.colorado.
edu/sutton/data.html. TIE-GCM is developed by NCAR and
is available at http://www.hao.ucar.edu/modeling/tgcm/tie.
php. NRLMSISE-00 was developed by NRL and is avail-
able via the Community Coordinated Modeling Center
(CCMC) at ftp://hanna.ccmc.gsfc.nasa.gov/pub/modelweb/
atmospheric/msis/nrlmsise00/. GITM was developed at the
University of Michigan and provided by Aaron Ridley.
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