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S1 Notes

• Objective: This document expands on the model description present in the main
text. We aimed at presenting a single documentation of the model. Therefore,
we have duplicated parts of the methods here, to avoid multiple references to the
main document.

• Symbolic notation: The symbolic notation used here is listed in full in Table 1
of the main text.

• Numbering of equations: the three ‘key’ equations (and variations as a result
of substitution) are labelled a), b) and c) on the left hand side throughout the
document. The assumptions are labelled in Roman numerals on the left hand
side. All equations are numbered conventionally on the right hand side for ease of
reference.

• Potential enthalpy: the present ORCHIDEE uses the term ‘surface static energy’
as the potential for calculating sensible heat flux. This is defined in the model (for
the surface layer) as:

pssurf = Cair
p Tsurf

where pssurf is the surface static energy, Cair
p is the mass specific heat capacity of

air and Tsurf the surface temperature.

Now the enthalpy of a system (H) is defined H = U + pV , but over the height of
a surface model (< 30m approx), change in p and V is negligible, so:

�H = �U + p�V + V �p

= (�Q+ �W + �W 0) + p�V + V �p

(where we apply the first law of thermodynamics: dU = �Q� �W )

now �W = �p�V , so we can say:

�H = �Q+ �W 0 + V �p

= Q+W 0 +

Z p

p0

V �p ⇡ Q

⇡ Cair
p T

So here we can also assume a proportional relationship between enthalpy and
temperature over the vertical range of the model.

• Sign convention: For latent and sensible heat fluxes, an upward flux is positive
(so a positive flux from the ground is cooling the ground)
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S2 Key equations and schemes

The structure of the derivation here outlined is based on that of the LMDz transport
scheme (Dufresne & Ghattas, 2009), but extended to include interactions with the veg-
etation layer at each level.

S2.1 Leaf vapour pressure assumption

The air within leaf level cavities is assumed completely saturated. This means that the
vapour pressure of the leaf can be calculated as the saturated vapour pressure at that leaf
temperature. Therefore the change in pressure within the leaf is assumed proportional to
the di↵erence in temperature between the present timestep and next timestep, multiplied
by the rate of change in saturated pressure against temperature.

q0 ⌘ qt+1
L,i = q

T t
L,i

sat +
@qsat
@T

|T t
L,i

(T t+1
L,i � T t

L,i) (S2.1)

=
@qsat
@T

|T t
L,i

(T t+1
L,i ) +

✓
q
T t
L,i

sat � T t
L,i

@qsat
@T

|T t
L,i

◆
(S2.2)

= ↵iT
t+1
L,i + �i (S2.3)

where ↵
i

and �
i

are regarded as constants for each particular level and timestep so ↵i =
�qsat
�T |T t

L,i

and �i =

✓
q
T t
L,i

sat � T t
L,i

@qsat
@T |T t

L,i

◆

But to find a solution we still need to find an expression for the terms q
T t
L,i

sat and @qsat
@T |T t

L,i

in ↵i and �i above.

Using the empirical approximation of Tetens (e.g. as in Monteith and Unsworth (2008))
and the specific humidity vapour pressure relationship we can describe the saturation
vapour pressure to within 1 Pa up to a temperature of about 35 �C.

S2.2 Physical and biophysical parameters:

We here concentrate on the formulation of an implicit solution that assumes a parameter-
isation for Ri (the resistance to sensible heat flux at each level), R0

i (resistance to latent
heat flux at each level) and ki (transport coe�cients at each level). The derivation
of these coe�cients, based on literature study, will be described in a separate docu-
ment.
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S2.3 The leaf energy balance equation for each layer

Now at the leaf level, we assume the energy balance for each layer. It is assumed that
(for a leaf layer of volume �Vi, area �Ai and thickness �hi):

�Vi✓i⇢v
dTleaf,i

dt
= (�Hi � �Ei +RSW,i +RLW,i)�Ai (S2.4)

Dividing (S2.4) by �Vi:

✓i⇢v
dTleaf,i

dt
= (�Hi � �Ei +RSW,i +RLW,i)

✓
1

�hi

◆
(S2.5)

The source sensible heat flux from the leaf at level i is the di↵erence between the leaf
temperature and that above it, divided by Ri which is the leaf resistance to sensible heat
flux (a combination of stomatal and boundary layer resistance)). Similarly, the source
latent heat flux from the leaf at level i is the di↵erence between the leaf temperature
and that above it, divided by R0

i which is the leaf resistance to sensible heat flux. So the
terms of (S2.5) are defined (in units W/m2):

Hi = Cair
p ⇢a

(Tleaf,i � Ta,i)

Ri
(S2.6)

�Ei = �⇢a
(qleaf,i � qa,i)

R0
i

(S2.7)

- RLW is the sum total of longwave radiation - that is: downwelling LW radiation
from above the canopy, the LW radiation emitted from vegetation layer i and the LW
radiation reflected from the vegetation layers i+ 1 and i� 1.

- RSW is the sum of short radiation, that is to say radiation downwelling on a level,
but also that which is forward- of back- reflected from one level to another, or from the
soil surface. So we express the sensible and latent heat fluxes between the leaf and the
atmosphere respectively as:

a) ✓i⇢v
dTleaf,i

dt
=

✓
�Cair

p ⇢a
(Tleaf,i � Ta,i)

Ri
� �⇢a

(qleaf,i � qa,i)

R0
i

+RSW,i +RLW (tot),i

◆✓
1

�hi

◆

(S2.8)

S2.4 Sensible heat transport between each atmospheric layer

The sensible heat flux profile is not constant over the height of the canopy. The rate
of change of Ta,i (the temperature of the atmosphere surrounding the leaf at level i)
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is proportional to the rate of change of sensible heat flux with height and the source
sensible heat flux from the leaf at that level as in (S2.6) above:

b) Cair
p ⇢a

dTa,i

dt
�Vi = �@Ha,i

@z
�Vi +

✓
Tleaf,i � Ta,i

Ri

◆ 
Cair
p ⇢a

�hi

!
�Vi (S2.9)

nowHa,i = �(⇢aCair
p )ki

@Ta,i

@z (if the flux-gradient relation is assumed) so we can say:

b)
dTa,i

dt
�Vi =

@

@z

✓
ki
@�

@z

◆
�Vi +

✓
Tleaf,i � Ta,i

Ri

◆✓
1

�hi

◆
�Vi (S2.10)

S2.5 Latent heat transport between each atmospheric layer

The latent heat flux profile is also not constant over the height of the canopy. The rate
of change of qa,i (the specific humidity of the atmosphere surrounding the leaf at level
i) is proportional to the rate of change of latent heat flux with height and the source
latent heat flux from the leaf as in (S2.7):

c) �⇢a
dqa,i
dt

�Vi = �@(�E)a,i
@z

�Vi +

✓
qleaf,i � qa,i

R0
i

◆✓
�⇢a
�hi

◆
�Vi (S2.11)

= �@(�E)a,i
@z

�Vi +

✓
(↵Tleaf,i + �i)� qa,i

R0
i

◆✓
�⇢a
�hi

◆
�Vi(S2.12)

now (�E)a,i = �(�⇢a)ki
dqa,i
dz (again assuming the flux-gradient relation) so:

c)
dqa,i
dt

�Vi =
@

@z

✓
ki
@qa,i
@z

◆
�Vi +

✓
(↵Tleaf,i + �i)� qa,i

R0
i

◆✓
1

�hi
�Vi

◆
(S2.13)

S2.6 The ‘zero-leaf’ scenario

Canopy layers that do not contain foliage may be accounted for at a level by assuming
that Ri = R0

i = 1 for that level (i.e. an open circuit), and that the various coe�cients
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that relate to the leaf interactions at that level (RSW , RLW , CT,i, CT,i+1, Cq,i, Cq,i+1,
Di, Ei, Fi, Di+1, Ei+1, Fi+1) are zero.

S2.7 Radiation scheme

The radiation approach is the application of the longwave Radiation Transfer Matrix
(LRTM) (Gu (1988); Gu et al. (1999)), as applied in Ogée et al. (2003). This approach
separates the calculation of the radiation distribution completely from the implicit ex-
pression. Instead a single source term for the longwave radiation is added at each level.
This means that the distribution of radiation is no longer completely explicit (i.e. an
explicit scheme makes use of information only from the ‘present’ and not the ‘next’ time
step). However, an advantage of the approach is that it accounts for a higher order
of reflections from adjacent levels than the single order that is assumed in the process
above.

The components for longwave radiation are abbreviated as:

RLW,i = ⌘1,iT
t+1
leaf,i + ⌘2,i (S2.14)

The shortwave radiation component is abbreviated as:

RSW,i = ⌘3,iR
down
SW (S2.15)

where ⌘1,i, ⌘2,i and ⌘3,i are components of the radiation scheme. ⌘1,i accounts for the
components relating to emission and absorption of LW radiation from the vegetation
at level i (i.e. the implicit parts of the longwave scheme relating to the level i) and
⌘2,i the components relating to radiation from vegetation at all other levels incident on
the vegetation at level i (i.e. the non-implicit part of the longwave scheme), as well as
explicit parts from the level i.

⌘3,i is the component of the SW radiation scheme - it describes the fraction of the
total downwelling shortwave light that is absorbed at each layer, including over multiple
forward- and back-reflections, as simulated by the multilayer albedo scheme (McGrath
et al., 2015). The fraction of original downwelling SW radiation that is ultimately
reflected from the surface and from the vegetation cover back to the canopy can then be
calculated using this information.

S2.7.1 Longwave radiation

We applied a version of the Longwave Radiation Transfer Scheme of Gu (1988, 1999),
with some modifications that are summarised here. The method assumes that scattering
coe�cients for longwave radiation are very small (of the order of 0.05), and can thus be
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ignored. The basics of the scheme can be described by the matrix equation for a canopy
of m levels:

0

BBBBBBBB@

�@surf

�@1

.

.

.
�@m

�@above

1

CCCCCCCCA

=

0

BBBBBBBB@

↵LW
0,0 ↵LW

0,1 . . . ↵LW
0,m ↵LW

0,m+1

↵LW
1,0 ↵LW

1,1 . . . ↵LW
1,m ↵LW

1,m+1

. .

. .

. .
↵LW
m,0 ↵LW

m,1 . . . ↵LW
m,m ↵LW

m,m+1

↵LW
m+1,0 ↵LW

m+1,1 . . . ↵LW
m+1,m ↵LW

m+1,m+1

1

CCCCCCCCA

0

BBBBBBBBB@

�(T t
surf )

4

�(T t
leaf,1)

4

.

.

.
�(T t

leaf,m)4

RLW

1

CCCCCCCCCA

for which each element ↵LW
i,j is defined as:

↵i,j =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

�1, i = j = 0.

=(`t � `j�1)�=(`t � `j), i=0, j=1, 2, ...., m

=(`t), i=0, j=m+1

=(`j � `i�1)�=(`j�1 � `i�1)�=(`j � `i) + =(`j�1 � `i), i=1, 2, ..., m, j=1, 2, ...., i-1

2�=(`i)� 2, i=1, 2, ..., m, j=i

=(`i � `j�1)�=(`i � `j)�=(`i�1 � `j�1) + =(`i�1 � `j), i=1, 2, ..., m, j=i+1, i+2, ...., m

=(`t), i=m+1, j=0

=(`j)�=(`j�1), i=m+1, j=1, 2, ..., m

�1, i = m+1, j=m+1.

(S2.16)

Now, the column on the left hand side of the expression �@i represents the net longwave
radiation that is absorbed at each level vegetation i, as well as the soil surface layer
(@surf ) and the atmosphere directly above the canopy (@above). Ti, is the temperature
of each layer, and RLW represents the downwelling longwave radiation from above the
canopy. Here `i represents the cumulative leaf area index when working up to level i
from the ground, that is to say calculated as:

`i =
iX

1

LAIi (S2.17)

The function =(`) simulates the e↵ect of canopy structure on the passage of longwave
radiation, and is defined as:
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=(`) = 2

Z 1

0
e
�

`Gleaf (µ)

µ µdµ (S2.18)

Gleaf (µ) is a function that represents the orientation of the leaves. =(`) is then solved
from integrations. So multiplying out the terms, we have the an expression for �@ at
each level:

�@ = ↵LW
i,0 �(T t

surf )
4 + ↵LW

i,1 �(T t
leaf,1)

4..., ...+ ↵LW
i,i �(T t

leaf,i)
4

..., ... + ↵i,mLW�(T t
leaf,m)4 + ↵i,m+1

LW RLW (S2.19)

This part of the energy budget model is explicit, relying on temperature at the last time
step. However, for the level i in each case we can make the expression semi-implicit, by
expressing partly in terms of the leaf temperature at the next time step, through use a
truncated Taylor expansion, such that:

↵LW
i,i �(T t+1

leaf,i)
4 ⇡ ↵LW

i,i �((T t
leaf,i)

4 + 4(T t
leaf,i)

3(T t+1
leaf,i � T t

leaf,i)) (S2.20)

= ↵LW
i,i �(4(T t

leaf,i)
3T t+1

leaf,i � 3(T t
leaf,i)

4) (S2.21)

so, in e↵ect, (S2.19) can be expressed as:

�@ = ↵LW
i,0 �(T t

surf )
4 + ↵LW

i,1 �(T t
leaf,1)

4..., ...+ ↵LW
i,i �(4(T t

leaf,i)
3T t+1

leaf,i � 3(T t
leaf,i)

4)

..., ... + ↵i,mLW�(T t
leaf,m)4 + ↵i,m+1

LW RLW (S2.22)

and so we calculate the matrix (44) above with the central diagonal for which i = j set
to zero and designate the coe�cients (S2.14) as:

⌘1,i = ↵LW
i,i �(T t

leaf,i)
3 (S2.23)

⌘2,i = @i � 3↵LW
i,i �(T t

leaf,i)
4 (S2.24)

S2.7.2 Shortwave radiation

We implement the scheme from McGrath et al. (2015), which is a development of Pinty
et al. (2006). The scheme accounts for three-dimensional canopies through use of a
domain-averaged structure factor (the e↵ective Leaf Area Index). To summarise, in this
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approach the SW radiation is divided into several terms at each level expressed as a
fraction of the total SW downwelling radiation, as listed below.

We use the notation  to denote the fraction of the above canopy SW radiation that is
absorbed ( abs

i ), is incoming to each level i either by direct transmission (uncollided) or
by reflection (collided). The symbol ‘#’ refers to the sum of all downwelling shortwave
radiation (i.e. directly transmitted radiation, and second order reflected radiation),
whilst ‘"’ refers to the sum of all upwelling shortwave radiation (i.e. sum of first-order
and second-order reflected radiation from all levels).

•  uncollided
i,#,out - fraction corresponding to uncollided light transmitted through level i

without striking any element. This is also described as ‘unscattered, collimated
radiation’.

•  collided
i,# - fraction corresponding to collided, transmitted light transmitted through

level i after striking vegetation one or more times. This is also described as ‘forward
scattered isotropic radiation’.

•  collided
i," - fraction corresponding to collided light reflected upwards after striking

vegetation one or more times. This is also described as ‘back scattered isotropic
radiation’

Now, using these probabilities of the fate of the light, the equations of Pinty et al.
(2006) are applied to each layer of the canopy in turn, initially for the top layer, with
the assumption of a black background underneath. Some of the flux is reflected back
into the atmosphere, some absorbed, and some transmitted or forward scattered into
the level below. The nature of the light (collimated or isotropic) determines how it
interacts with the canopy, so these two types of light are accounted for separately in the
model. The calculations are repeated for this lower level, with this fraction of the light.
Calculations through all of the levels are continued as an iterative process until all light
is accounted for through either reflection (or back scatter) back to the atmosphere or
absorption by the vegetation or by the soil. McGrath et al. (2015) provides full details
of the iteration scheme, which produces as output  abs

i , which is the fraction of the
incident SW at the top of the canopy that is absorbed at each level at the end of the
convergence loop. Tests in that work demonstrate that results from a multi-level case
are in acceptable agreement with those from the single level.

Over the canopy vegetation levels, we can now define the coe�cient ⌘3,i in equation
(S2.15):

⌘3,i =  abs
i (S2.25)

⌘3,surf =  abs
surface (S2.26)
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S3 Derivation of implicit solution

S3.1 Write equations in implicit format

To maintain the implicit coupling between the atmospheric model (i.e. LMDZ) and
the land surface model (i.e. ORCHIDEE) we need to express the relationships that are
outlined above in terms of a linear relationship between the ’present’ timestep t and the
‘next’ timestep t+ 1.

We therefore re-cast equations a), b) and c) in implicit form (i.e. in terms of the ’next’
timestep, which is t+ 1, as below.

S3.2 Implicit form of the energy balance equation

We substitute the expressions (S2.14) and (S2.15) to the energy balance equation (S2.5),
which we rewrite in implicit form:

a) ✓i⇢v
(T t+1

leaf,i � T t
leaf,i)

�t
=

✓
1

�hi

◆ 
�Cair

p ⇢a
(T t+1

leaf,i � T t+1
a,i )

Ri

��⇢a
(↵iT

t+1
leaf,i + �i � qt+1

a,i )

R0
i

+ ⌘1T
t+1
leaf,i + ⌘2 + ⌘3R

down
SW

!
(S3.1)

Rearranging to isolate the state variables terms (temperature and specific humidity) at
the ‘next’ timestep:

a) T t+1
leaf,i � T t

leaf,i =
�⇢a�t�i

(⇢v�hi)R0
i✓i

+
⌘4R

down
SW �t

(⇢v�hi)✓i
+
⌘1R

down
LW �t

(⇢v�hi)✓i
+

⌘3�t

(⇢v�hi)✓i

+T t+1
leaf,i

✓
�Cair

p ⇢a
�t

(⇢v�hi)Ri✓i
� �⇢a

�t↵i

(⇢v�hi)R0
i✓i

+
⌘2�t

(⇢v�hi)✓i

◆

+ T t+1
a,i Cair

p ⇢a

✓
�t

Ri✓i(⇢v�hi)

◆
+ qt+1

a,i �⇢a

✓
�t

(⇢v�hi)R0
i✓i

◆
(S3.2)

S3.3 Implicit form of the sensible heat flux transport equation

We di↵erence (S2.10), and divide by �Vi:
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b)
T t+1
a,i � T t

a,i

�t
= ki

 
(T t+1

a,i+1 � T t+1
a,i )

�zi�hi

!
� ki�1

 
(T t+1

a,i � T t+1
a,i�1)

�zi�1�hi

!

+

✓
1

�hi

◆
(T t+1

leaf,i � T t+1
a,i )

Ri
(S3.3)

S3.4 Implicit form of the latent heat flux transport equation

We di↵erence (S2.13), and divide by �Vi:

c)
qt+1
a,i � qta,i

�t
= ki

 
(qt+1

a,i+1 � qt+1
a,i )

�zi�hi

!
� ki�1

 
(qt+1

a,i � qt+1
a,i�1)

�zi�1�hi

!

+

✓
1

�hi

◆
(↵iT

t+1
leaf,i + �i � qt+1

a,i )

R0
i

(S3.4)

S3.5 Solving the leaf energy balance equation by induction

We determine to solve these equations by assuming a solution of a particular form and
finding the coe�cients that are introduced in terms of the coe�cients of the layer above.
This is ‘proof by induction’. Now, for (S3.2) we want to express T t+1

a,i in terms of values
further down the column, to allow the equation to solved by ‘moving up’ the column, as
in Richtmyer and Morton (1967) and Dufresne and Ghattas (2009).

We assume that:

i) T t+1
a,i = AT,iT

t+1
a,i�1 +BT,i + CT,iT

t+1
leaf,i +DT,iq

t+1
a,i�1 (S3.5)

ii) qt+1
a,i = Aq,iq

t+1
a,i�1 +Bq,i + Cq,iT

t+1
leaf,i +Dq,iT

t+1
a,i�1 (S3.6)

These two expressions are the equivalent of equation 11.7 (from Richtmyer
and Morton (1967)) for the present system.

We also re-write these expressions in terms of the values of the next level:
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i) T t+1
a,i+1 = AT,i+1T

t+1
a,i +BT,i+1 + CT,i+1T

t+1
leaf,i+1 +DT,i+1q

t+1
a,i (S3.7)

ii) qt+1
a,i+1 = Aq,i+1q

t+1
a,i +Bq,i+1 + Cq,i+1T

t+1
leaf,i+1 +Dq,i+1T

t+1
a,i (S3.8)

where AT,i, BT,i, CT,i, DT,i, Aq,i, Bq,i, Cq,i and Dq,i are constants for that particular level
and timestep but are (as yet) unknown. We thus substitute (S3.5) and (S3.6) into (S3.2)
to eliminate T t+1

a,i

a) T t+1
leaf,i � T t

leaf,i = ��⇢a
�t�i

(⇢v�hi)R0
i✓i

+
⌘2�t

(⇢v�hi)✓i

+
⌘3R

down
SW �t

(⇢v�hi)✓i

+
T t+1
L,i

(⇢v�hi)

 
��⇢a�t↵i

R0
i✓i

�
Cair
p ⇢a�t

✓iRi
+
⌘1�t

✓i

!

+

 
Cair
p ⇢a�t

(⇢v�hi)Ri✓i

!
(AT,iT

t+1
a,i�1 +BT,i + CT,iT

t+1
leaf,i +DT,iq

t+1
a,i�1)

+

✓
�⇢a�t

(⇢v�hi)R0
i✓i

◆
(Aq,iq

t+1
a,i�1 +Bq,i + Cq,i(T

t+1
leaf,i) +Dq,iT

t+1
a,i�1)

(S3.9)

or, to rearrange again in terms of the unknown state variables (left hand side) and the
know variables (right hand side):

a) T t+1
L,i

 
1�

�tCair
p

(⇢v�hi)Ri✓i
CT,i +

�⇢a↵i�t

(⇢v�hi)R0
i✓i

� ⌘1�t

(⇢v�hi)✓i

+
Cair
p ⇢a�t

(⇢v�hi)✓iRi
� �⇢a�t

(⇢v�hi)R0
i✓i

Cq,i

!
=

T t
L,i + qt+1

a,i�1

 
�⇢a�tAq,i

(⇢v�hi)R0
i✓i

+
Cair
p ⇢a�tDT,i

(⇢v�hi)Ri✓i

!

+ T t+1
a,i�1

 
Cair
p ⇢a�tAT,i

(⇢v�hi)Ri✓i
+

�⇢a�tDq,i

(⇢v�hi)Ri✓i

!
+

⌘2�t

(⇢v�hi)✓i

+
⌘3R

down
SW,i�t

(⇢v�hi)✓i
+

Cair
p ⇢a�t

(⇢v�hi)Ri✓i
BT,i +

�⇢a�t

(⇢v�hi)R0
i✓i

Bq,i �
�⇢a�t

(⇢v�hi)R0
i✓i
�i (S3.10)
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So, to abbreviate (where Ei, Fi and Gi are known assumed constants for the level and
timestep in question, (S3.10) can be written as:

iii) T t+1
leaf,i = Eiq

t+1
a,i�1 + FiT

t+1
a,i�1 +Gi (S3.11)

so we define the coe�cients as:

Ei =

 
�tAq,i�⇢a
(⇢v�hi)R0

i✓i
+

�tDT,iC
air
p ⇢a

(⇢v�hi)Ri✓i

!
/

 
1 +

�t↵�⇢a
(⇢v�hi)R0

i✓i
+

�tCair
p ⇢a

(⇢v�hi)✓iRi
� ⌘1�t

(⇢v�hi)✓i
� �t�⇢a

(⇢v�hi)R0
i✓i

Cq,i �
�tCair

p ⇢a

(⇢v�hi)✓iRi
CT,i

!

(S3.12)

Fi =

 
�tAT,iC

air
p ⇢a

(⇢v�hi)Ri✓i
+

�tDq,i�⇢a
(⇢v�hi)R0

i✓i

!
/

 
1 +

�t↵�⇢a
(⇢v�hi)R0

i✓i
+

�tCair
p ⇢a

(⇢v�hi)✓iRi
� ⌘1�t

(⇢v�hi)✓i
� �t�⇢a

(⇢v�hi)R0
i✓i

Cq,i �
�tCair

p ⇢a

(⇢v�hi)✓iRi
CT,i

!

(S3.13)

Gi =

✓
T t
leaf,i +

⌘2�t

(⇢v�hi)✓i
+
⌘3R

down
SW �t

(⇢v�hi)✓i
� �⇢a�t�i

(⇢v�hi)R0
i✓i

+
�tCair

p ⇢a

(⇢v�hi)Ri✓i
BT,i +

�t�⇢a
(⇢v�hi)R0

i✓i
Bq,i

!

/

 
1 +

�t↵�⇢a
(⇢v�hi)R0

i✓i
+

�tCair
p ⇢a

(⇢v�hi)✓iRi
� ⌘1�t

(⇢v�hi)✓i
� �t�⇢a

(⇢v�hi)R0
i✓i

Cq,i �
�tCair

p ⇢a

(⇢v�hi)✓iRi
CT,i

!

(S3.14)

S3.6 Solving latent and sensible heat flux equations between layers by

induction

To prove by induction, we must express T t+1
a,i and qt+1

a,i in terms that are

identical to (S3.5) and (S3.6) We first seek to eliminate T t+1
a,i+1 from b) and c) We first
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substitute the assumed expressions for temperature and humidity in the layer above
or, that is to say, (equations (S3.7) and (S3.8) here) We substitute for T t+1

a,i+1 in b), to
eliminate that term:

b)
T t+1
a,i � T t

a,i

�t
= ki

AT,i+1T
t+1
a,i +BT,i+1 + CT,i+1T

t+1
leaf,i+1 +DT,i+1q

t+1
a,i

�zi�hi

�
kiT

t+1
a,i

�zi�hi
�

ki�1T
t+1
a,i

�zi�1�hi
+

ki�1T
t+1
a,i�1

�zi�1�hi
+

T t+1
leaf,i

�hiRi
�

T t+1
a,i

�hiRi
(S3.15)

b) T t+1
a,i

✓
1��t

✓
AT,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiRi

◆◆
= T t

a,i+
BT,i+1ki�t

�zi�hi

+T t+1
a,i�1

✓
ki�1

�zi�1�hi

◆
�t+qt+1

a,i

✓
kiDT,i+1

�zi�hi

◆
�t+T t+1

leaf,i

✓
�t

�hiRi

◆
+T t+1

leaf,i+1

✓
kiCT,i+1

�zi�hi

◆

(S3.16)

Similarly, we substitute for qt+1
a,i+1 in c), in order to eliminate that term:

c)
qt+1
a,i � qta,i

�t
= ki

(Aq,i+1q
t+1
a,i +Bq,i+1 + Cq,i+1T

t+1
leaf,i+1 +Dq,i+1T

t+1
a,i )

�zi�hi

�
kiq

t+1
a,i

�zi�hi
�

ki�1q
t+1
a,i

�zi�1�hi
+

ki�1q
t+1
a,i�1

�zi�1�hi
+
↵iT

t+1
leaf,i + �i � qt+1

a,i

�hiR0
i

(S3.17)

c) qt+1
a,i

✓
1��t

✓
Aq,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiR0
i

◆◆
=

qta,i +

✓
Bq,i+1ki�t

�zi�hi
+

��t

�hiR0
i

◆
+ qt+1

a,i�1

✓
ki�1

�zi�1�hi
�t

◆

T t+1
a,i

✓
kiDq,i+1

�zi�hi

◆
�t+ (T t+1

leaf,i+1)

✓
ki

�zi�hi

◆
Cq,i+1�t+ T t+1

leaf,i

✓
↵i

�hiR0
i

◆
�t

(S3.18)

Now, we substitute expression iii) for the leaf temperature in the layer above (S3.11).
This step is in order to eliminate the term T t+1

L,i+1 from both expressions:
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b) T t+1
a,i

✓
1��t

✓
AT,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiRi

◆◆
=

T t
a,i+

BT,i+1ki�t

�zi�hi
+T t+1

a,i�1

✓
ki�1

�zi�1�hi

◆
�t+qt+1

a,i

✓
kiDT,i+1

�zi�hi

◆
�t+T t+1

leaf,i

✓
�t

�hiRi

◆

+ (Ei+1q
t+1
a,i + Fi+1T

t+1
a,i +Gi+1)

✓
kiCT,i+1

�zi�hi

◆
�t (S3.19)

c) qt+1
a,i

✓
1��t

✓
Aq,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiR0
i

◆◆
=

qta,i +

✓
Bq,i+1ki�t

�zi�hi
+

��t

�hiR0
i

◆
+ qt+1

a,i�1

✓
ki�1

�zi�1�hi
�t

◆

T t+1
a,i

✓
kiDq,i+1

�zi�hi

◆
�t+ (Ei+1q

t+1
a,i + Fi+1T

t+1
a,i +Gi+1)

✓
ki

�zi�hi

◆
Cq,i+1�t

+ T t+1
leaf,i

✓
↵

�hiR0
i

◆
�t (S3.20)

We now abbreviate equation a) as:

b) T t+1
a,i X1,i = X2,i +X3,iT

t+1
a,i�1 +X4,iq

t+1
a,i +X5,iT

t+1
leaf,i (S3.21)

and abbreviate equation b) as:

c) qt+1
a,i Y1,i = Y2,i + Y3,iq

t+1
a,i�1 + Y4,iT

t+1
a,i + Y5,iT

t+1
leaf,i (S3.22)

where:

X1,i = 1��t

✓
AT,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiRi

◆

� Fi+1

✓
kiCT,i+1

�zi�hi

◆
�t (S3.23)

X2,i = T t
a,i +

BT,i+1ki�t

�zi�hi
+Gi+1

✓
kiCT,i+1

�zi�hi

◆
�t (S3.24)

X3,i =

✓
ki�1

�zi�1�hi

◆
�t (S3.25)

15



X4,i =

✓
kiDT,i+1

�zi�hi

◆
�t+ Ei+1

✓
kiCT,i+1

�zi�hi

◆
�t (S3.26)

X5,i =

✓
�t

�hiRi

◆
(S3.27)

Y1,i = 1��t

✓
Aq,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiR0
i

◆

� Ei+1

✓
ki

�zi�hi

◆
Cq,i+1�t (S3.28)

Y2,i = qta,i +

✓
Bq,i+1ki�t

�zi�hi
+

�i�t

�hiR0
i

◆
+Gi+1

✓
ki

�zi�hi

◆
Cq,i+1�t (S3.29)

Y3,i =

✓
ki�1

�zi�1�hi
�t

◆
(S3.30)

Y4,i =

✓
kiDq,i+1

�zi�hi

◆
�t+ Fi+1

✓
ki

�zi�hi
Cq,i+1

◆
�t (S3.31)

Y5,i =

✓
↵i

�hiR0
i

◆
�t (S3.32)

We then cross-substitute for qt+1
a,i from c) to b), to eliminate that term:

b) T t+1
a,i X1,i = X2,i+X3,iT

t+1
a,i�1+X4,i

✓
Y2,i
Y1,i

+
Y3,i
Y1,i

qt+1
a,i�1 +

Y4,i
Y1,i

T t+1
a,i +

Y5,i
Y1,i

T t+1
leaf,i

◆

+ X5,iT
t+1
leaf,i (S3.33)

b) T t+1
a,i

✓
X1,i �X4,i

Y4,i
Y1,i

◆
= T t+1

a,i�1X3,i +

✓
X2,i +X4,i

Y2,i
Y1,i

◆

+ T t+1
L,i

✓
X4,i

Y5,i
Y1,i

+X5,i

◆
+ qt+1

a,i�1

✓
X4,i

Y3,i
Y1,i

◆
(S3.34)

similarly, we cross-substitute for T t+1
a,i from b) to a), to eliminate that term:

c) qt+1
a,i Y1,i = Y2,i+Y3,iq

t+1
a,i�1+Y4,i

✓
X2,i

X1,i
+

X3,i

X1,i
T t+1
a,i�1 +

X4,i

X1,i
qt+1
a,i +

X5,i

X1,i
T t+1
leaf,i

◆

+ Y5,iT
t+1
leaf,i (S3.35)
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c) qt+1
a,i

✓
Y1,i � Y4,i

X4,i

X1,i

◆
= qt+1

a,i�1Y3,i +

✓
Y2,i + Y4,i

X2,i

X1,i

◆

+ T t+1
leaf,i

✓
Y4,i

X5,i

X1,i
+ Y5,i

◆
+ T t+1

a,i�1

✓
Y4,i

X3,i

X1,i

◆
(S3.36)

So this demonstrates the expressions b) and c) can be described in terms of
the respective original substitutions (S3.5) and (S3.6). The respective coe�cients
from (S3.5) and (S3.6) may be described as:

AT,i =
X3,i

X1,i �X4,i

⇣
Y4,i

Y1,i

⌘ (S3.37)

BT,i =
X2,i +X4,i

⇣
Y2,i

Y1,i

⌘

X1,i �X4,i

⇣
Y4,i

Y1,i

⌘ (S3.38)

CT,i =

⇣
X4,i

⇣
Y5,i

Y1,i

⌘
+X5,i

⌘

X1,i �X4,i

⇣
Y4,i

Y1,i

⌘ (S3.39)

DT,i =
X4,i

⇣
Y3,i

Y1,i

⌘

X1,i �X4,i

⇣
Y4,i

Y1,i

⌘ (S3.40)

and:

Aq,i =
Y3,i

Y1,i � Y4,i

⇣
X4,i

X1,i

⌘ (S3.41)

Bq,i =
Y2,i + Y4,i

⇣
X2,i

X1,i

⌘

Y1,i � Y4,i

⇣
X4,i

X1,i

⌘ (S3.42)

Cq,i =

⇣
Y4,i

⇣
X5,i

X1,i

⌘
+ Y5,i

⌘

Y1,i � Y4,i

⇣
X4,i

X1,i

⌘ (S3.43)

Dq,i =
Y4,i

⇣
X3,i

X1,i

⌘

Y1,i � Y4,i

⇣
X4,i

X1,i

⌘ (S3.44)

Now, all of the coe�cients X1,i, X2,i, X3,i, X4,i, X5,i, Y1,i, Y2,i, Y3,i, Y4,i and Y5,i and,
in turn, the coe�cients AT,i, BT,i, CT,i, DT,i, Aq,i, Bq,i, Cq,i and Dq,i can be described
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in terms of the coe�cients from the level above and the potentials (i.e. T and q) at the
previous timestep.

So we have a set of coe�cients that may be determined for each time-step, and we have
the means to determine Tsurf (and qsurf via the saturation assumption). We thus have a
process to calculate the temperature and humidity profiles for each timestep by system-
atically calculating each of the coe�cients from the top of the column (the ‘downwards
sweep’) then calculating the ‘initial value’ (the surface temperature and humidity) and
finally calculating each Ta, qa and Tleaf by working up the column (the ‘upwards sweep’).

The term T t+1
leaf,i+1 can also be described in terms of the variables at the level below by

using equation iii) and its terms Ei, Fi and Gi. We can therefore describe the changes
in the canopy between the present timestep t and the next timestep t + 1 by ‘working
down’ the column from the interaction with the LMDZ atmospheric model to determine
the coe�cients AT , BT , CT etc. and then ‘working up’ the column to determine the
potentials T and q.
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S3.7 Alternative derivation

A more direct method of derivation is to assume solutions of the form:

~ui
t+1 = E0

i ~ui+1
t+1 + F 0

i (S3.45)

where we define the vector ~ui
t+1 such that:

~ui
t+1 =

✓
T t+1
a,i

qt+1
a,i

◆

Now, the original expression for the leaf temperature is:

a) ✓i⇢v
(T t+1

leaf,i � T t
leaf,i)

�t
=

✓
1

�hi

◆ 
�Cair

p ⇢a
(T t+1

leaf,i � T t+1
a,i )

Ri

��⇢a
(↵iT

t+1
leaf,i + �i � qt+1

a,i )

R0
i

+ ⌘1T
t+1
leaf,i + ⌘2 + ⌘3R

down
SW

!
(S3.46)

which we can abbreviate (with a change of variable label here, to reduce confusion)
as:

a) T t+1
L,i = Xiq

t+1
a,i + YiT

t+1
a,i + Zi (S3.47)

The original expression for the temperature column is:

b)
T t+1
a,i � T t

a,i

�t
= ki

 
(T t+1

a,i+1 � T t+1
a,i )

�zi�hi

!
� ki�1

 
(T t+1

a,i � T t+1
a,i�1)

�zi�1�hi

!

+

✓
1

�hi

◆
(T t+1

leaf,i � T t+1
a,i )

Ri
(S3.48)

The original expression for the specific humidity column is:

c)
qt+1
a,i � qta,i

�t
= ki

 
(qt+1

a,i+1 � qt+1
a,i )

�zi�hi

!
� ki�1

 
(qt+1

a,i � qt+1
a,i�1)

�zi�1�hi

!

+

✓
1

�hi

◆
(↵iT

t+1
leaf,i + �i � qt+1

a,i )

R0
i

(S3.49)

which we abbreviate to the form of Richtmyer and Morton (1967), equation 11.7, sub-
stituting for T t+1

L,i from a), above:

b) �A0
i ~ui+1

t+1 +B0
i ~ui

t+1 �C0
i ~ui�1

t+1 = D0
i (S3.50)
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Now, directly from Richtmyer and Morton (1967), we can substitute for ~ui�1
t+1 =

E0
i�1 ~ui

t+1 + F 0
i�1. This results in a pair of expressions of the form:

~ut+1
a,i = (B0

i � C0
iE

0
i�1)

�1A0
i~u

t+1
a,i+1 +B0

i � C0
iE

0
i�1)

�1D0
i + C0

iF
0
i�1( (S3.51)

So we can describe the variables for (S3.45) as:

E0
i = (B0

i � C0
iE

0
i�1)

�1A0
i (S3.52)

F 0
i = (B0

i � C0
iE

0
i�1)

�1(D0
i + C0

iF
0
i�1) (S3.53)

Now A0
i, B

0
i, C

0
i and D0

i may be described from substitution of the equations (S3.47),
(S3.48) and (S3.49).

We thus have a set of two equations to solve simultaneously, which is possible starting
from the upper boundary conditions, as laid out in section S4.1. However, we still need
to describe E0

i and F 0
i which can be achieved by rearranging equations (S4.3), (S4.4),

(S4.7), (S4.30) and (S4.31), so that we have two expressions of the form:

~ut+1
surf = E0

0u
t+1
1 + F 0

0 (S3.54)

So if we can describe E0
0 and F 0

0 from use of (S3.52) and (S3.53), we can then derive
the value of these variables working up the column.
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Table 1: Input coe�cients at the top layer of the model, where A
T,n

, B
T,n

... etc are the respective
coe�cients at the top of the surface model and A

T,atmos

, B
T,atmos

are the coe�cients at the lowest
level of the atmospheric model.

stand-alone model coupled model

AT,n = 0 AT,n = AT,atmos

BT,n = BT,input BT,n = BT,atmos

CT,n = 0 CT,n = 0

DT,n = 0 DT,n = 0

Aq,n = 0 Aq,n = Aq,atmos

Bq,n = Bq,input Bq,n = Bq,atmos

Cq,n = 0 Cq,n = 0

Dq,n = 0 Dq,n = 0

S4 The boundary conditions

S4.1 The upper boundary conditions

In stand-alone simulations, the top level variables AT,n, CT,n, DT,n and Aq,n, Cq,n, Dq,n,
are set to zero and BT,n and Bq,n set to the input temperature and specific humidity
respectively for the relevant time step (as in Best et al. (2004)) In coupled simulations,
AT,n, BT,n and Aq,n, Bq,n are taken from the respective values at lowest level of the
atmospheric model. Table 1 summarises the boundary conditions for both the coupled
and un-coupled simulations.
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S4.2 The lower boundary condition

We need to solve the lowest level transport equations separately:

b)
T t+1
a,1 � T t

a,1

�t
= k1

 
T t+1
a,2 � T t+1

a,1

�z1�h1

!
�
✓

1

⇢aCair
p

◆
�t+1
H

�h1
+

✓
1

�h1

◆ 
T t+1
L,1 � T t+1

a,1

R1

!

(S4.1)

c)
qt+1
a,1 � qta,1

�t
= k1

 
qt+1
a,2 � qt+1

a,1

�z1�h1

!
�
✓

1

⇢a�

◆
�t+1
�E

�h1
+

✓
1

�h1

◆ 
↵iT

t+1
L,1 + �1 � qt+1

a,1

R0
1

!

(S4.2)

We substitute to the above to eliminate T t+1
a,2 from b) and qt+1

a,2 from c):

T t+1
a,1 = AT,1�

t+1
H +BT,1 + CT,1T

t+1
L,1 +DT,1�

t+1
�E (S4.3)

and:

qt+1
a,1 = Aq,1�

t+1
�E +Bq,1 + Cq,1T

t+1
L,1 +Dq,1�

t+1
H (S4.4)

Now for the leaf at level 1, just above the ground level:

a) T t+1
leaf,1 � T t

leaf,1 =
�⇢a�t�1

(⇢v�h1)R0
1✓1

+
⌘3R

down
SW �t

(⇢v�h1)✓1
+

⌘2�t

(⇢v�h1)✓1

+ T t+1
leaf,1

✓
Cair
p ⇢a

�t

(⇢v�h1)R1✓1
+ �⇢a

�t↵

(⇢v�h1)R0
1✓1

+
⌘1�t

(⇢v�h1)✓1

◆

� T t+1
a,1 Cair

p ⇢a

✓
�t

R1✓1(⇢v�h1)

◆
� qt+1

a,1 �⇢a

✓
�t

(⇢v�h1)R0
1✓1

◆
(S4.5)

and substitute for T t+1
a,1 and qt+1

a,1 :

a) T t+1
leaf,1 � T t

leaf,1 =
�⇢a�t�i

(⇢v�h1)R0
1✓1

+
⌘3R

down
SW �t

(⇢v�h1)✓1
+

⌘2�t

(⇢v�h1)✓1

+ T t+1
leaf,1

✓
Cair
p ⇢a

�t

(⇢v�h1)R1✓1
+ �⇢a

�t↵

(⇢v�h1)R0
1✓1

+
⌘1�t

(⇢v�h1)✓1

◆

�
Cair
p ⇢a�t

R1✓1(⇢v�h1)
(AT,1�

t+1
H +BT,1 + CT,1T

t+1
leaf,1 +DT,1�

t+1
�E )

� �⇢a�t

R0
1✓1(⇢v�h1)

(Aq,1�
t+1
�E +Bq,1 + Cq,1T

t+1
leaf,1 +Dq,1�

t+1
H ) (S4.6)
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In a similar approach to the previous section, this should be reduced to the form:

T t+1
leaf,1 = E1�

t+1
�E + F1�

t+1
H +G1 (S4.7)

and the expression re-arranged to isolate the factors E1, F1 and G1:

a) T t+1
leaf,1

 
1�

 
Cair
p ⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

!
+

CT,1C
air
p ⇢a�t

R1✓1(⇢v�h1)

+
Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆
= T t

leaf,1 + �t+1
�E

 
�

Cair
p ⇢a�t

R1✓1(⇢v�h1)
DT,1 �

�⇢a�t

(⇢v�h1)R0
1✓1

Aq,1

!

+ �t+1
H

 
�

Cair
p ⇢a�t

R1✓1(⇢v�h1)
AT,1 �

�rhoa�t

(⇢v�h1)R0
1✓1

Dq,1

!

+

✓
�⇢a�t�i

(⇢v�h1)R0
1✓1

+
⌘3R

down
SW �t

(⇢v�h1)✓1

+
⌘2�t

(⇢v�h1)✓1
�

BT,1C
air
p ⇢a�t

R1✓1(⇢v�h1)
� Bq,1�⇢a�t

(⇢v�h1)R0
1✓1

!

(S4.8)

Now, substituting for T t+1
a,2 in expression b):

b)
T t+1
a,1 � T t

a,1

�t
=

k1
(AT,2T

t+1
a,1 +BT,2 + CT,2(E2q

t+1
a,1 + F2T

t+1
a,1 +G2) +DT,2q

t+1
a,1 + T t+1

a,1 )

�z1�h1

�
✓

1

⇢aCair
p

◆
�t+1
H

�h1
+

T t+1
leaf,1 � T t+1

a,1

R1�h1
(S4.9)

b) T t+1
a,1

✓
1

�t
� k1AT,2

�z1�h1
� k1CT,2F2

�z1�h1
+

k1
�z1�h1

+
1

�h1R1

◆
=

T t
a,1

�t
+ qt+1

a,1

✓
k1CT,2E2 + k1DT,2

�z1�h1

◆
+

T t+1
leaf,1

✓
1

�h1R1

◆
+

✓
k1BT,2

�z1�h1
+

k1CT,2G2

�z1�h1

◆
�
✓

1

⇢aCair
p

◆
�t+1
H

✓
1

�h1

◆

(S4.10)

and for qt+1
a,2 in expression c):
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c)
qt+1
a,1 � qta,1

�t
= k1

(Aq,2q
t+1
a,1 +Bq,2 + Cq,2T

t+1
leaf,2 +Dq,2T

t+1
a,1 � qt+1

a,1 )

�z1�h1
=

�
✓

1

⇢a�

◆
�t+1
�E

�h1
+

1

�h1

↵T t+1
leaf,1 + �1 � qt+1

a,1

R0
1

(S4.11)

c)
qt+1
a,1 � qta,1

�t
= k1

(Aq,2q
t+1
a,1 +Bq,2 + Cq,2(E2q

t+1
a,1 + F2T

t+1
a,1 +G2) +Dq,2T

t+1
a,1 � qt+1

a,1 )

�z1�h1

�
✓

1

⇢a�

◆
�t+1
�E

�h1
+

1

�h1

(↵T t+1
leaf,1 + �1 � qt+1

a,1 )

R0
1

(S4.12)

c) qt+1
a,1

✓
1

�t
� k1Aq,2

�z1�h1
� k1Cq,2E2

�z1�h1
+

k1
�z1�h1

◆
=

qta,1
�t

+ T t+1
a,1

✓
Cq,2F2

�z1�h1
+

Dq,2

�z1�h1

◆
+ T t+1

L,1

✓
↵

�h1R0
1

◆

+

✓
k1Bq,2

�z1�h1
+

Cq,2G2

�z1�h1
+

�1
�h1R0

1

◆
� �t+1

�E

✓
1

�h1

◆

(S4.13)

We now isolate the terms in (S4.8):

a) T t+1
L,1 = E1�

t+1
�E + F1�

t+1
H +G1 (S4.14)

so we have:

E1 =

 
�

Cair
p ⇢a�t

R1✓1(⇢v�h1)
DT,1 �

�⇢a�t

(⇢v�h1)R0
1✓1

Aq,1

!
/

 
1�

 
Cair
p ⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵i

(⇢v�h1)R0
1✓1

+
⌘1�t

(⇢v�h1)✓1

!
+

CT,1C
air
p ⇢a�t

R1✓1(⇢v�h1)
+

Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

!

(S4.15)

F1 =

 
�

Cair
p ⇢a�t

R1✓1(⇢v�h1)
AT,1 �

�⇢a�t

(⇢v�h1)R0
1✓

Dq,1

!
/

 
1�

 
Cair
p ⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵i

(⇢v�h1)R0
1✓1

+
⌘1�t

(rhov�h1)✓1

!
+

CT,1C
air
p ⇢a�t

R1✓1(⇢v�h1)
+

Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

!

(S4.16)
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and:

G1 =

✓
T t
L,1 +

�⇢a�t�i
(⇢v�h1)R0

1✓1
+
⌘3R

down
SW �t

(⇢v�h1)✓1

+
⌘2�t

(⇢v�h1)✓1
�

BT,1C
air
p ⇢a�t

R1✓1(⇢v�h1)
� Bq,1�⇢a�t

(⇢v�h1)R0
1✓1

!
/

 
1�

 
Cair
p ⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵i

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

!
+

CT,1C
air
p ⇢a�t

R1✓1(⇢v�h1)
+

Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

!

(S4.17)

We now seek to rearrange b) and c) into expressions of the form:

i) T t+1
a,1 X1 = X2 + �t+1

H X3 + qt+1
a,1 X4 + T t+1

leaf,1X5 (S4.18)

and:

ii) qt+1
a,1 Y1 = Y2 + �t+1

�E Y3 + T t+1
a,1 Y4 + T t+1

leaf,1Y5 (S4.19)

The same process as in the previous section means that we can assign AT,1, BT,1, CT,1,
DT,1, Aq,1, Bq,1, Cq,1, Dq,1 exactly as previously (expressions (S3.37) to (S3.44)), and
define X1 to Y5 as follows:

X1 = 1��t

✓
k1AT,2

�z1�h1
� k1CT,2F2

�z1�h1
+

k1
�z1�h1

+
1

�h1R1

◆
(S4.20)

X2 = T t
a,1 +�t

✓
k1BT,2

�z1�h1
+

k1CT,2G2

�z1�h1

◆
(S4.21)

X3 = ��t

✓
1

�h

◆✓
1

⇢aCair
p

◆
(S4.22)

X4 = �t

✓
k1CT,2E2 + k1DT,2

�z1�h1

◆
(S4.23)

X5 = �t

✓
1

�h1R1

◆
(S4.24)

Y1 = 1��t

✓
k1Aq,2

�z1�h1
� k1Cq,2E2

�z1�h1
+

1

�h1R0 +
k1

�z1�h1

◆
(S4.25)

Y2 = qta,1 +�t

✓
k1Bq,2

�z1�h1
+

k1Cq,2G2

�z1�h1
+

�1
�h1R0

1

◆
(S4.26)
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Y3 = ��t

✓
1

�h1

◆✓
1

⇢a�

◆
(S4.27)

Y4 = �t

✓
k1Cq,2F2

�z1�h1
+

k1Dq,2

�z1�h1

◆
(S4.28)

Y5 = �t

✓
↵1

�h1R0
1

◆
(S4.29)

Now, for the lower boundary condition we consider the interaction between the lowest
atmospheric level (level 1) and the infinitesimal surface layer (level S). Fluxes of the
sensible and latent heat from this layer are given, respectively, by:

i) �t+1
H = �(⇢aC

air
p )ksurf

T t+1
a,1 � T t+1

surf

�zsurf
(S4.30)

ii) �t+1
�E = �(⇢a�)ksurf

qt+1
a,1 � qt+1

surf

�zsurf
(S4.31)

i) �t+1
H =

⇢aC
air
p ksurf

�zsurf
(AT,1�

t+1
H +BT,1 + CT,1T

t+1
L,1 +DT,1�

t+1
�E � T t+1

surf ) (S4.32)

ii) �t+1
�E =

(⇢a�)ksurf
�zsurf

(Aq,1�
t+1
�E +Bq,1 + Cq,1T

t+1
L,1 +Dq,1�

t+1
H � qt+1

surf ) (S4.33)

We use a substitution for the leaf temperature:

T t+1
L,1 = E1�

t+1
�E + F1�

t+1
H +G1 (S4.34)

i) �t+1
H = �

(⇢aCair
p )ksurf

�zsurf
(AT,1�

t+1
H +BT,1 + CT,1(E1�

t+1
�E + F1�

t+1
H +G1)

+ DT,1�
t+1
�E � T t+1

surf ) (S4.35)

ii) �t+1
�E = �

(⇢a�)ksurf
�zsurf

(Aq,1�
t+1
�E +Bq,1 + Cq,1(E1�

t+1
�E + F1�

t+1
H +G1)

+ Dq,1�
t+1
H � qt+1

surf ) (S4.36)
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i) �t+1
H (1+

(⇢aCair
p )ksurf

�zsurf
(AT,1+CT,1F1) = �

(⇢aCair
p )ksurf

�zsurf
(BT,1+CT,1G1�T t+1

surf )

�
(⇢aCair

p )ksurf
�zsurf

(�t+1
�E (CT,1E1 +DT,1)) (S4.37)

ii) �t+1
�E (1 +

(⇢a�)ksurf
�zsurf

(Aq,1 + Cq,1E1)) =

�
(⇢a�)ksurf
�zsurf

(Bq,1 + Cq,1G1 � qt+1
surf )

�
(⇢a�)ksurf
�zsurf

(�t+1
H (Cq,1F1 +Dq,1)) (S4.38)

ii) �t+1
�E (1 +

(⇢a�)ksurf
�zsurf

(Aq,1 + Cq,1E1)) =

�
(⇢a�)ksurf
�zsurf

(Bq,1 + Cq,1G1 � (↵surfT
t+1
surf + �surf ))

�
(⇢a�)ksurf
�zsurf

(�t+1
H (Cq,1F1 +Dq,1)) (S4.39)

and abbreviate to:

i) ⌦1�
t+1
H = ⌦2 + ⌦3T

t+1
surf + ⌦4�

t+1
�E (S4.40)

ii) ⌦5�
t+1
�E = ⌦6 + ⌦7T

t+1
surf + ⌦8�

t+1
H (S4.41)

where:

⌦1 = 1 +
(⇢aCair

p )ksurf
�zsurf

(AT,1 + CT,1F1) (S4.42)

⌦2 = �
(⇢aCair

p )ksurf
�zsurf

(BT,1 + CT,1G1) (S4.43)

⌦3 =
⇢aC

air
p ksurf

�zsurf
(S4.44)

⌦4 = �
(⇢aCair

p ksurf )

�zsurf
(CT,1E1 +DT,1) (S4.45)

⌦5 = 1 +
(⇢a�)ksurf
�zsurf

(Aq,1 + Cq,1E1) (S4.46)

⌦6 = �
(⇢a�)ksurf
�zsurf

(Bq,1 + Cq,1G1 � �surf ) (S4.47)
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⌦7 =
(⇢a�)ksurf
�zsurf

↵surf (S4.48)

⌦8 = �
(⇢a�)ksurf
�zsurf

(Cq,1F1 +Dq,1) (S4.49)

cross substitute:

i) ⌦1�
t+1
H = ⌦2 + ⌦3T

t+1
surf +

⌦4

⌦5
(⌦6 + ⌦7T

t+1
surf + ⌦8�

t+1
H )

i) �t+1
H

✓
⌦1 �

⌦4

⌦5
⌦8

◆
=

✓
⌦2 +

⌦4

⌦5
⌦6

◆
+ T t+1

surf

✓
⌦3 +

⌦4⌦7

⌦5

◆

(S4.50)

and:

ii) ⌦5�
t+1
�E = ⌦6 + ⌦7T

t+1
surf +

⌦8

⌦1
(⌦2 + ⌦3T

t+1
surf + ⌦4�

t+1
�E )

ii) �t+1
�E

✓
⌦5 �

⌦8

⌦1
⌦4

◆
=

✓
⌦6 +

⌦8

⌦1
⌦2

◆
+ T t+1

surf

✓
⌦7 +

⌦8⌦3

⌦1

◆

(S4.51)

Now we abbreviate ⌦ by substituting for ⇠:

⇠1 =
⌦2 +

⌦4
⌦5

⌦6

⌦1 � ⌦4
⌦5

⌦8
(S4.52)

⇠2 =
⌦3 +

⌦4⌦7
⌦5

⌦1 � ⌦4
⌦5

⌦8
(S4.53)

⇠3 =
⌦6 +

⌦8⌦2
⌦1

⌦5 � ⌦8⌦4
⌦1

(S4.54)

⇠4 =
⌦7 +

⌦8⌦3
⌦1

⌦5 � ⌦8⌦4
⌦1

(S4.55)

And we can equations i) and ii) in terms of ⇠:

i) �t+1
H = ⇠1 + ⇠2T

t+1
surf (S4.56)

ii) �t+1
�E = ⇠3 + ⇠4T

t+1
surf (S4.57)

T t+1
surf = T t

surf +
�t

✓0
((RLW,surf +RSW,surf +⇠1+⇠2T

t+1
surf +⇠3+⇠4T

t+1
surf )�Jsoil) (S4.58)
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T t+1
surf

✓
1� ⇠2

�t

✓0
� ⇠4

�t

✓0

◆
= T t

surf +
�t

✓0
(RLW,surf +RSW,surf +⇠1+⇠3�Jsoil) (S4.59)

and so:

T t+1
surf =

T t
surf + �t

✓0
(RLW,surf +RSW,surf + ⇠1 + ⇠3 � Jsoil)

(1� ⇠2
�t
✓0

� ⇠4
�t
✓0
)

(S4.60)

We therefore have an expression for the surface temperature T t+1
surf , in terms of the

downwelling radiation that is incident on the surface (RLW and RSW ), the heat capacity
of the infinitesimal surface layer (✓0), the vegetation layer directly above the surface (⇠1,
⇠2, ⇠3 and ⇠4) and the heat from the soil system (Jsoil).

The radiation that is received by the lowermost level is provided by the radiation
scheme.

So to re-write the above equation including the factors ⌘1,S , ⌘2,S and ⌘3,S :

T t+1
surf =

T t
surf + �t

✓0
(⌘2,S + ⌘3,SR

down
SW + ⇠1 + ⇠3)� Jsoil

(1� �t
✓0
(⇠2 + ⇠4 + ⌘1,S))

(S4.61)
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Supplementary material 
 

!
Figure S1: The analysis of Figure 3 is repeated for the four seasons of the year (every 5th 
measurement is shown in the background in a lighter colour).  Hourly average sensible heat 
flux (annual average): a) spring; b) summer; c) autumn; d) winter 



!!!!
 

Figure S2:  The analysis of Figure 3 repeated for the four seasons of the year (every 5th 
measurement is shown in the background in a lighter colour). hourly latent sensible heat flux 
(annual average): a) spring; b) summer; c) autumn; d) winter


