
Geosci. Model Dev., 9, 2153–2165, 2016
www.geosci-model-dev.net/9/2153/2016/
doi:10.5194/gmd-9-2153-2016
© Author(s) 2016. CC Attribution 3.0 License.

Development of an adjoint model of GRAPES–CUACE and its
application in tracking influential haze source areas in north China
Xing Qin An1, Shi Xian Zhai1,2, Min Jin3, Sunling Gong1, and Yu Wang1

1State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center
on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric Physics, Nanjing University of Information
Science & Technology, Nanjing 210044, China
3Wuhan Meteorological Observatory, Wuhan 430040, China

Correspondence to: Xing Qin An (anxq@camscma.cn)

Received: 11 April 2015 – Published in Geosci. Model Dev. Discuss.: 28 August 2015
Revised: 1 April 2016 – Accepted: 23 May 2016 – Published: 14 June 2016

Abstract. The aerosol adjoint module of the atmospheric
chemical modeling system GRAPES–CUACE (Global–
Regional Assimilation and Prediction System coupled with
the CMA Unified Atmospheric Chemistry Environment) is
constructed based on the adjoint theory. This includes the de-
velopment and validation of the tangent linear and the adjoint
models of the three parts involved in the GRAPES–CUACE
aerosol module: CAM (Canadian Aerosol Module), inter-
face programs that connect GRAPES and CUACE, and the
aerosol transport processes that are embedded in GRAPES.
Meanwhile, strict mathematical validation schemes for the
tangent linear and the adjoint models are implemented for
all input variables. After each part of the module and the as-
sembled tangent linear and adjoint models is verified, the ad-
joint model of the GRAPES–CUACE aerosol is developed
and used in a black carbon (BC) receptor–source sensitivity
analysis to track influential haze source areas in north China.

The sensitivity of the average BC concentration over Bei-
jing at the highest concentration time point (referred to as
the Objective Function) is calculated with respect to the BC
amount emitted over the Beijing–Tianjin–Hebei region. Four
types of regions are selected based on the administrative di-
vision or the sensitivity coefficient distribution. The adjoint
sensitivity results are then used to quantify the effect of re-
ducing the emission sources at different time intervals over
different regions. It is indicated that the more influential re-
gions (with relatively larger sensitivity coefficients) do not
necessarily correspond to the administrative regions. Instead,

the influence per unit area of the sensitivity selected regions
is greater. Therefore, controlling the most influential regions
during critical time intervals based on the results of the ad-
joint sensitivity analysis is much more efficient than control-
ling administrative regions during an experimental time pe-
riod.

1 Introduction

In the large-scale scientific and engineering calculation
fields, derivative calculation exists everywhere. Solving a
nonlinear optimal problem requires calculating the gradi-
ent, as a Hessian matrix or in a higher-order reciprocal form
(Cheng et al., 2009). The traditional finite difference method
aims at some basic state, changing the concerned input vari-
able values in a proper order, obtaining the difference be-
tween output variables, and determining the sensitivities of
the output variables to each input variable (Cacuci, 1981a).
This method usually creates truncation errors and is costly.
Therefore, it is used only when there are few input vari-
ables. The decoupled direct method (DDM), which makes
use of the tangent linear model (TLM), is an improvement
of the finite difference method, but is still limited in cases of
few input variables (Hakami et al., 2007). Comparatively, the
adjoint method is an efficient sensitivity analysis approach,
suitable for calculating the parametric sensitivities of com-
plex numerical model systems and for solving various op-
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timal problems based on sensitivity information. An adjoint
model can be used to estimate the sensitivity of every vari-
able in each time period and each simulation grid for the ob-
jective function in one simulation. Therefore, it is much more
efficient than the finite difference method and the DDM. The
adjoint method is used to calculate the derivatives of mero-
morphic functions based on machine precision; thus, it has
higher calculation precision and it costs less, being propi-
tious to large-scale nonlinear complex calculation and play-
ing a significant role in meteorological and environmental
fields. Based on the adjoint operator theory and the devel-
opment of numerical models, the adjoint method is increas-
ingly applied for the inversion of pollution sources and other
calculations that involve many input parameters. Through
this method, the TLM and the adjoint model of the origi-
nal model can be obtained on the basis of the traditional Fi-
nite Difference Method combined with the adjoint equation
theory. The principle is to build the objective function using
the difference between modeled and the observed parame-
ter values. Then, the gradient (sensitivity) of the objective
function to the model input parameters is calculated using
the adjoint model. This gradient can be used as a decreas-
ing step length, correcting the input values, until the objec-
tive function reaches the minimum value through continuous
iteration processes, therefore obtaining satisfactory input pa-
rameter values (Wang, 2000).

The adjoint method presents a unique advantage for com-
plex multiparametric systems. Only one simulation is re-
quired to estimate the sensitivity or gradient of the objective
function to all of the input parameters (Zhu and Zeng, 2002;
Zhu et al., 1999; Liu, 2005). Consequently, various types of
optimal control and inversion problems can be solved quickly
using the gradient information (Chen et al., 1998; Liu and
Hu, 2003). Marchuk (1986) and Marchuk and Skiba (1976)
first applied the adjoint method to the atmospheric environ-
ment field. They used the method in the optimal control and
reasonable site selection of pollution sources. They clev-
erly utilized the conjugation property of the adjoint oper-
ator, thus avoiding the pollutant transmission problems in
repeated problem solving and greatly reducing the calcula-
tion amount. Skiba and Parra-Guevara (2000a, b) and Skiba
and Davydova (2002, 2003) developed Marchuk’s method
and applied it to solving atmospheric environment control
problems. More recently, adjoint models were developed for
air quality models, and sensitivity analyses and assimilations
were conducted through them. Thus far, atmospheric chem-
istry adjoint models include the adjoint of the European air
pollution dispersion model (Elbern et al., 2000), which is
mainly used in the simulation of large areas; the adjoint air
quality model STEM-III (Sandu et al., 2005); the adjoint of
the atmospheric chemical transmission model CAMx (Liu
et al., 2007); the adjoint of the CMAQ model (Hakami et
al., 2007; Turner, 2010); and the adjoint of the GEOS-Chem
model (Henze et al., 2007). The adjoint of the gaseous pro-
cesses in the CMAQ model was already developed, and it

included the chemical conversion and the transmission pro-
cesses of 72 active species (Hakami et al., 2007). On this ba-
sis, the adjoint of the aerosol processes in the CMAQ model
is also under development; this will be the first coupled
gas–aerosol regional-scale adjoint model to simulate specifi-
cally aerosol mass composition and size distribution (Turner,
2010). Resler et al. (2010) presented a version of the 4D-Var
(four-dimensional variation) method and successfully used
the adjoint of the CMAQ model to estimate the optimized
diurnal profiles of NO2 emissions. Sfetsos et al. (2013) ap-
plied the CMAQ adjoint model to perform a surface O3
concentration–concentration and concentration–source sen-
sitivity analysis for Athens. The GEOS-Chem adjoint model
was generated both manually and automatically, and it simu-
lates the secondary formation processes of inorganic aerosols
(Henze et al., 2007). Using the 4D-Var method in the GEOS-
Chem adjoint model, Henze et al. (2009) constrained emis-
sion estimates through assimilation of sulfate and nitrate
aerosol measurements from the IMPROVE network. Zhang
et al. (2009) quantified source contributions to O3 pollution
at two adjacent sites on the US west coast in spring 2006
using the GEOS-Chem chemical transport model and its ad-
joint. García-Chan et al. (2013) utilized the adjoint method in
optimizing the location and management of a new industrial
plant and displayed the application of the adjoint method in
optimal control problems. Paulot et al. (2014) inverse mod-
eled the NH3 emissions in the United States, the European
Union, and China using the GEOS-Chem adjoint for assimi-
lating observational data.

Furthermore, scientists integrated population and mortal-
ity data into the objective function, and apportioned source
attribution to health impacts through adjoint sensitivity anal-
ysis. For example, Pappin and Hakami (2013) calculated
health benefit influences separately from emissions of indi-
vidual source locations in Canada and the United States by
estimating a certain reduction in anthropogenic emissions of
NOx and VOCs. Zhao et al. (2013) calculated and discussed
effective emission controlling strategies under a warming cli-
mate with regard to the reduction of the O3 concentration and
short-term mortality due to O3 exposure. Koo et al. (2013)
quantified the health risk from intercontinental pollution us-
ing the GEOS-Chem adjoint model.

GRAPES–CUACE is an online coupled model based on
the atmospheric model GRAPES (Global–Regional Assimi-
lation and Prediction System; Xue and Chen, 2008) and the
air quality forecasting system CUACE (CMA Unified Atmo-
spheric Chemistry Environmental Forecasting System; Zhou
et al., 2012; Jiang et al., 2015). GRAPES is a numerical
weather prediction system developed for the China Meteo-
rological Administration (CMA). It can be used as a global
model, GRAPES–GFS, as well as on a regional scale, as
the GRAPES–MESO model. GRAPES–CUACE implements
GRAPES–MESO. CUACE is an air quality forecasting and
climate research system developed by the Chinese Academy
of Meteorological Science (CAMS). In this research, the ad-
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joint model of the GRAPES–CUACE aerosol module was
developed and used in black carbon (BC) receptor–source
sensitivity analysis.

2 Methodology

2.1 Introduction to the CUACE system

The air quality forecasting system CUACE includes four ma-
jor functional modules: emissions, gaseous chemistry, the
size-segregated multicomponent aerosol algorithm, and data
assimilation (Zhou et al., 2012). CUACE adopted CAM
(Canadian Aerosol Module) as its aerosol module (Gong et
al., 2003). The GRAPES–CUACE aerosol module has three
parts: (1) CAM, (2) three interface programs that connect
GRAPES–MESO and CUACE (in aerosol_driver.F, mod-
ule_ae_cam.F, and aeroexe1.F), and (3) the aerosol trans-
port processes that are embedded in GRAPES–MESO (see
Fig. S1 in the Supplement).

CAM involves six types of particles – sulfate, organic car-
bon, black carbon, nitrate, sea salt, and soil dust – which
are divided into 12 sections using the multiphase multi-
component aerosol particle size separation algorithm. The
mass conservation equation of the size-distributed multi-
phase, multicomponent aerosols can be expressed as
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where the rate by which the mixing ratio of the dry particle
mass constituent p changes within the size range i is divided
into components (or tendencies) for transport, sources, clear
air, dry deposition/sedimentation, in-cloud, and below-cloud
processes.

CAM also involves the vertical diffusion processes of
aerosols in the atmosphere (in chem_trvdiff2.F). By solving
the vertical diffusion equation, the vertical diffusion trend
of aerosol particles is calculated. The aerosol physical and
chemical processes section (CAM_V5) is the core of this
module, including some primary aerosol processes in the at-
mosphere: aerosol emission, moisture absorption increase,
collision, coring, condensation, dry deposition, gravity set-
ting, subcloud cleanup, aerosol activation, interaction be-
tween aerosols and clouds, and transmission of sulfate in the
clouds and the clear sky (see Fig. S1 in the Supplement).
The CAM_V5includes29 programs in total: 1 main program
(cam1d.f), 4 auxiliary subroutines, and 24 subprograms re-
lated to the above-described aerosol physical and chemical
processes.

In addition, the emission fluxes (both anthropogenic and
natural emission sources) are calculated through the surface

fluxes calculation module (SFFLUX). SFFLUX contains one
master program and six subprograms. Each of the six sub-
programs calculates the emission fluxes of one component
(see Fig. S1c in the Supplement). The three interface sub-
routines transfer meteorological parameters from GRAPES–
MESO to CUACE, extend the spatial dimension from 1-D to
3-D, and read emissions for CAM. The transport processes
(both horizontal and vertical) in GRAPES–CUACE are cal-
culated by the dynamic framework of GRAPES–MESO,
which implements the quasi-monotone semi-Lagrangian
(QMSL) semi-implicit scheme on every grid (Wang et al.,
2009). It includes an “upstream point” calculation subrou-
tine (upstream_interp) and the QMSL scheme subroutine
(BS_QMSL; Zhai, 2015).

In recent years, the GRAPES–CUACE modeling system
was widely used in air pollutants simulation in China, and
its performance is very well validated and improved (Zhou et
al., 2012; Wang et al., 2015a, b; Jiang, 2015). These studies
laid a good foundation for the development of the adjoint of
GRAPES–CUACE aerosol model.

2.2 Aerosol adjoint construction and validation

2.2.1 Adjoint theory

Because adjoint operators in Hilbert spaces are more con-
venient to deal with than adjoint operators are in Banach
spaces, we take advantage of the simplified geometrical prop-
erties of Hilbert spaces in developing the adjoint model
(Cacuci, 1981b). In a Hilbert space, the inner product is de-
noted by 〈, 〉. If x, y are continuous functions on a field
�, the inner product is defined as the integral of the prod-
uct of them: (x,y)=

∫
�

x · yd�; if x, y are the vectors,

x = [x1,x2,x3, . . .,xn],y = [y1,y2,y3, . . .,yn], then the in-

ner product is (x,y)=
n∑
i=1
xi · yi .

An atmospheric chemical transport model (CTM) solves
the mass conservation equations and can be expressed as

Y = F(X), (1)

where F is a map from Rn to Rm, and represents various
physical and chemical processes in the CTM. XεRn and
YεRm are vectors representing the input and output variables
of the CTM, respectively. If F is differentiable (not necessar-
ily linearized), then the differential of Y (δY ) can be denoted
by the differential of X(δX), and the TLM of CTM can be
expressed as

δY=∇XF · δX, (2)

where ∇XF is the Jacobian matrix:

www.geosci-model-dev.net/9/2153/2016/ Geosci. Model Dev., 9, 2153–2165, 2016



2156 X. Q. An et al.: Development of an adjoint model of GRAPES–CUACE
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Now, we define another scalar differential function J (Y )

from the Hilbert space. Because J (Y )= J (F (X)) is the
composite function of X, the differential of J (δJ ) will be

δJ= 〈∇Y J,δY〉. (4)

Suppose that L is a linear operator between real Hilbert
spaces H . Its transpose operator LT is the operator with

〈Lu,v〉 = 〈u,LTv〉 (5)

for any u,v ∈H (Liu, 2007), where the symbol T is a
transpose of the Jacobian matrix in Eq. (3). Combined with
Eqs. (2) and (4), we get

δJ = 〈∇Y J,∇XF · δX〉 = 〈∇
T
XF · ∇Y J,δX〉. (6)

According to the gradient definition, Eq. (6) indicates that the
gradient of J to X is

∇XJ =∇
T
XF · ∇Y J. (7)

When F is a very complex function (e.g., an atmospheric
chemistry model), it is almost impossible to directly obtain
∇XJ . TLM has relatively high computing cost. If we cal-
culate ∇XJ by the TLM, the computing cost of a TLM in-
creased proportionally with the increase of concerned vari-
ables. Under this circumstance, Eq. (7) indicates that if
computer programs (the adjoint model) that can calculate
∇

T
XF · ∇Y J are available, then we can easily obtain ∇XJ .
J is defined as a vector differential function, and it is rela-
tively easy to obtain ∇Y J . Therefore, the adjoint model can
obtain the sensitivity (or gradient) of an objective function
to any model parameter at any time step through one calcu-
lation. The more variables are concerned, the more efficient
the adjoint model is than the TLM. As the adjoint operator is
the transpose of the tangent linear operator, the TLM should
be constructed first, and, then, the adjoint of a CTM is con-
structed based on the TLM.

2.2.2 CUACE aerosol adjoint construction

In constructing the adjoint of the GRAPES–CUACE aerosol
model, we developed the TLM and the adjoint of the three
parts (CAM, interface subroutines, and aerosol transport pro-
cesses) involved in the GRAPES–CUACE aerosol module.

First, the TLM of CAM_V5 (CAM_V5–TLM) was con-
structed and validated (validation details in Sect. 2.2.3).
Then, the adjoint of CAM_ V5 (CAM_V5–ADJ) was devel-
oped and verified based on CAM_V5–TLM (verification de-
tails in Sect. 2.2.4). CAM_V5–ADJ comprises 58 programs

in total: all 29 original source codes of CAM_V5, 25 corre-
sponding adjoint codes (except the 4 auxiliary subroutines),
1 stack manipulation function definition program for saving
the basic state in the inner structure (in adBuffer.f), and 3
zero-assignment subroutines (in putzeroint.f, initial0.f, and
initial0all.f).

CAM_V5, CAM_V5-TLM, and CAM_V5–ADJ are box
modules with spatially fixed coordinates. To update the
spatial 1-D CAM–ADJ to the spatial 3-D CUACE–ADJ
aerosol module, the adjoints of the interface subroutines (in
aerosol_driver.F, module_ae_cam_ad.F, and aeroexe1_ad.F)
and the transport processes (in ad_uptream_interp.F and
ad_bs_qmsl.F) were developed to transfer the 3-D param-
eters from GRAPES to CUACE. Then, the adjoints of SF-
FLUX (in cam_sfflux_ad.F, cam_sfbc_ad.F, cam_sfnt_ad.F,
cam_ sfoc_ad.F, cam_sfrd_ad.F, cam_sfss_ad.F, and
cam_sfsf_ad.F) were integrated in CUACE–ADJ. The
CUACE–ADJ aerosol module is capable of extending
sensitivity values from the time series, at a horizontal grid
cell, to the 3-D variations in a reverse chronological order,
displaying inverse aerosol transport processes.

The physical processes (aerosol processes included) were
calculated at the model’s vertical half levels. However, the
aerosol transport processes, which are embedded in the dy-
namic framework of GRAPES–MESO, were calculated at
the model’s full vertical levels. Therefore, the interpolation
routines (in phy_post_back.F, phy_prep.F) and their corre-
sponding adjoints (in ad_phy_post_back.F, ad_phy_prep.F)
were additionally integrated in the CUACE–ADJ aerosol
model. In addition, basic states in the outer structure cor-
respond to the output and input (O/I) of the binary file
(read_initialdata.F).

Building an adjoint model for a forward model is a very
complex task. To speed up the process and reduce mistakes,
the entire model is divided into many small subprograms.
In this study, the adjoint model was developed both man-
ually and automatically. The automatic differentiation en-
gine TAPENADE (Tangent and Adjoint PENultimate Auto-
matic Differentiation Engine; http://www-tapenade.inria.fr:
8080/tapenade/index.jsp), developed at INRIA Sophia An-
tipolis by the TROPICS team, was used to generate the tan-
gent linear and the adjoint code of the subprograms in the
CUACE aerosol module. During the adjoint generation pro-
cedure, we distinguished input variables from output vari-
ables and parameters. Afterward, manual assembly of the di-
vided subprograms as well as validation of the tangent linear
and the adjoint models were necessary.

2.2.3 Validation of the tangent linear model

After the adjoint model is built, its accuracy must be verified
to confirm its reliability. The adjoint model is a concomitant
of the TLM. Thus, the validity of the TLM must be ensured
before the accuracy of the adjoint model is tested. If all of the
codes are tested together, then it is difficult to isolate error
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locations. To overcome this problem, both the TLM and the
adjoint model are divided into smaller sections, which are
then tested separately. After these sections are confirmed, the
assembled TLM and the adjoint model are tested.

Supposing that the code of every small section is regarded
as Y = F(X), the Taylor expansions of F(X+ δX) at point
X are

F(X+ δX)= F(X)+ δXF ′(X)+
1
2
(δX)2F ′′(X)

+ . . .+ o(δX)nF (n)(X). (8)

After transformation,

F(X+ δX)−F(X)

δXF ′(X)
= 1+

1
2
δX
F ′′(X)

F ′(X)

+ . . .+ o(δX)n−1F
(n)(X)

F ′(X)
. (9)

When δX approaches zero, the limit for the above equation
is calculated as

Index= lim
δX→0

F(X+ δX)−F(X)

δXF ′(X)
= 1.0, (10)

in which the denominator is the TLM output, and the numer-
ator is the difference between the output value of the origi-
nal model with input X+ δX and input X. To calculate the
limit of the above equation repeatedly, we only need to de-
crease δX by an equal ratio value. If the result approaches
1.0, the tangent linear codes are correct. In general, when δX
decreases, the limit value approaches 1.0. However, due to
the machine rounding error, the limit values might decrease
first and then increase, appearing as a parabola.

All input variables in the model should pass the TLM val-
idation. There are many input variables in the model, but as
the space of this paper is limited, we only choose two rep-
resentative variables and provide the validation results here.
For instance, the concentration value of pollutants (xrow) and
the particle’s wet radius (rhop) are tested separately. The per-
turbation value is set at 0.001 times the basic value for xrow
or rhop, the perturbation value of other variables is set to
zero, and the decreasing ratio a is reduced to 0.1 ratio ev-
ery time. The validation results are displayed in Table 1,
from which it can be seen that the index value approaches
1.0 with decreasing a. When a approaches zero, the index
value slowly shifts away from 1.0 again; thus, the graph has
a parabolic shape. This phenomenon is attributed to the ma-
chine rounding error, as mentioned above.

2.2.4 Validation of the adjoint model

After all tangent linear codes have passed the testing, the ad-
joint codes can be tested on the basis of the TLM. The adjoint
codes and the tangent linear codes need to satisfy Eq. (5) for
all possible combinations of X and Y . In Eq. (5), L repre-
sents the tangent linear process and L∗ the adjoint process.

Table 1. Validation results of the tangent linear model.

A Index (xrow) Index (rhop)

1.00000000000 0.961383789 1.064836676
0.10000000000 0.996231252 1.005283209
0.01000000000 0.999622785 1.000526942
0.00100000000 0.999962182 1.000052673
0.00010000000 0.99999532 1.000005301
0.00001000000 0.999995319 1.000000848
0.00000100000 0.999974073 1.000001471
0.00000010000 0.998912182 1.000034692
0.00000001000 0.996789129 1.000189939
0.00000000100 0.913747381 1.002300501

To simplify the testing process, the adjoint input is the tan-
gent linear output: Y = L(X). Thus, the above equation can
be expressed as

(∇F · dX,∇F · dX)= (dX,∇T F(∇F · dX)). (11)

By substituting dX into the tangent linear codes, the output
value∇F ·dX can be obtained and the left part of the equation
can be computed. Then, taking ∇F · dX as the input of the
adjoint codes, we obtain its output value ∇TF(∇F ·dX) and
calculate the right part of the equation. As long as the resulted
equation holds (within the error range), the constructed ad-
joint model is validated.

Considering pollutant concentration variable xrow as an
example, a small xrow perturbation is input randomly, and
the perturbation of other variables is set to zero. The pertur-
bation value is taken as the tangent linear input. Then, we run
the tangent linear codes once to obtain the value of the tan-
gent linear output, and determine the inner product in the left
side of Eq. (11). Next, we take the tangent linear output as the
input of adjoint codes, run the adjoint codes once, and obtain
the sensitivity value. Then, we use this value and the initial
pollutant concentration perturbation to calculate the value of
the right side of Eq. (11). In this calculation, it is important
to keep the basic state value when doing the test, so that the
tangent linear codes are consistent with the basic state of the
adjoint codes. Otherwise, the calculated results will have no
meaning. Assuming the result of the left part of the equa-
tion is denoted as “VALTGL”, while that of the right part is
“VALADJ”, the validation results are presented in Table 2.

As observed from the results in Table 2, both sides of the
equation produce values with 14 identical significant digits
or more. This result is within the range of computer errors,
so the values of the left and the right sides are considered
equal. Thus, the pollutant concentration variable xrow passes
the adjoint testing. Due to the limited space in this paper, only
the adjoint testing result for xrow is presented here. In fact,
when performing the actual validations, all parameters were
tested. Although some parameters only gave 11–12 identical
significant digits, indicating lower precision, they were still
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Table 2. Validation results of the adjoint model.

Integral step VALTGL VALADJ

1 0.253071834334799587× 10−11 0.253071834334799587× 10−11

2 0.138781684963437701× 10−7 0.138781684963437635× 10−7

3 0.197243288646595624× 10−6 0.197243288646595703× 10−6

4 0.285995663142418833× 10−6 0.285995663142418833× 10−6

5 0.138094513716334626× 10−6 0.138094513716334599× 10−6

6 0.158774915826234477× 10−6 0.158774915826234609× 10−6

7 0.205383106884893541× 10−6 0.205383106884893673× 10−6

8 0.113356629291541069× 10−6 0.113356629291540963× 10−6

9 0.151566991405230902× 10−6 0.151566991405230823× 10−6

10 0.174929034468917025× 10−6 0.174929034468917104× 10−6

11 0.333573941572600298× 10−6 0.333573941572600616× 10−6

12 0.185912861066765391× 10−6 0.185912861066765523× 10−6

Figure 1. Flow chart of GRAPES–CUACE, aerosol adjoint, and the flowchart of the parameters transmission process.

considered within the permitted range. As a result, all model
variables passed the adjoint testing.

2.2.5 Operation flow of the GRAPES–CUACE aerosol
adjoint model

After each part of the assembled TLM and the adjoint model
were verified, the GRAPES–CUACE aerosol adjoint model
was constructed. The structures and parameters flowchart is
shown in Fig. 1. ADJ is short for adjoint; Xn and Xn+1
represent model parameters after n and n+ 1 GRAPES–
CUACE integral time steps, respectively; X∗n and X∗2 repre-
sent Xn’s adjoint ∂J/∂Xn and X2’s adjoint ∂J/∂X2, respec-
tively, where J is the objective function; ∂J/∂X are forc-
ing terms; structures and variables in solid line frames are
related to the forward simulation; and structures and vari-
ables in dashed frames relate to the adjoint backward sim-
ulation. In addition, as GRAPES–CUACE is an online at-
mospheric chemistry modeling system, the aerosol transport
processes are extracted from GRAPES. Therefore, a process
called aerosol-related transport adjoint is presented in Fig. 1.

When operating, the forward GRAPES–CUACE simula-
tion should be run first to save the basic-state values of the
unequilibrated variables in checkpoint files. Intermediate val-

ues are recalculated or saved in stack during the adjoint in-
tegration. Then, the saved basic-state values during the for-
ward integration and the forcing terms are used as inputs for
the adjoint backward simulation.

2.3 Sensitivity analysis

To perform the sensitivity analysis and solve environmen-
tal optimization problems, we usually take into account vari-
ous factors, including air quality standards, economic losses,
health benefits, the emissions reduction enforceable ratio
range, and suitable locations for factories. Hence, a reason-
able evaluation function J is needed, which includes one or
several of the above factors as independent variables and/or
as controlling conditions. In the adjoint method, such a func-
tion is called the objective function. We can define various
types of objective functions based on different purposes. An
objective function is always a function of the model output
Y , and may be simply denoted as J = J (Y). The adjoint in-
put, also called the forcing term (Fig. 1), is the gradient of J
with respect to the model output Y : ∇Y J , which is relatively
easy to obtain (Wang, 2000). The adjoint output, also called
the target sensitivity information, is the gradient of J with
respect to any model parameter X : ∇XJ .
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Figure 2. Left: model domain settings; right: the locations of
Nanjiao (NJ) and Shangdianzi (SDZ) observation sites and the
Tongzhou (TZ) and Daxing (DX) districts.

The principle application of the adjoint model is sensitivity
analysis, and all its other applications may be considered to
derive from it (Errico, 1997). In this research, J is defined
as the concentration of the investigated pollutant when the
pollution is greatest. Then, the inverse adjoint method can be
used to locate where and when the emissions should have the
greatest influence (time periods and regions with relatively
larger sensitivity coefficients).

Because of its high efficiency in calculating sensitivity (or
gradient), the adjoint model plays an important role in opti-
mization problems. For example, in emission inventory op-
timization problems, J is often defined as the discrepancy
between the simulated and observed values. Running the ad-
joint model once, the gradients (sensitivity) of the objec-
tive function to the emission amount can be obtained, and
then, by using the gradient information iteratively, the opti-
mal emission intensity can be determined. In this study, op-
timization problems were not carried out.

2.4 Model setup

In this study, the GFS reanalysis data, which are collected six
times a day with 1◦× 1◦ resolution, are used as the initial and
boundary conditions in the GRAPES–CUACE modeling sys-
tem, and INTEX-B2006 (0.5◦× 0.5◦) is used as the emission
source. With a horizontal resolution of 0.5◦× 0.5◦, the sim-
ulation domain covers northeast China (105–125◦ E, 32.25–
42.25◦ N), as shown in Fig. 2. Our analysis mainly focuses
on the Beijing–Tianjin–Hebei (BTH) region. The entire sim-
ulation period is from 20:00 BT (Beijing time) 28 June 2008
to 20:00 BT 4 July 2008; the first 72 h are regarded as the
spin-up time.

2.5 Observations

The data used in this paper were obtained from the Bei-
jing Meteorological Observatory Nanjiao station and Shang-
dianzi station. The Nanjiao station (NJ; 39.8◦ N, 116.47◦ E)
is located in the atmospheric observation test base in the
southern suburb of Beijing. It is next to the Beijing urban
area in the north and close to Fifth Ring Road in the south,
where the traffic flow is relatively great. The Shangdianzi
station (SDZ; 40.65◦ N, 117.12◦ E) is at the village Shang-

dianzi of Miyun County in northeastern Beijing. This sta-
tion is a regional atmospheric background station, around
which there is no obvious industrial pollution and few hu-
man activities, i.e., it represents a better ecological environ-
ment. The locations of the two stations are shown in Fig. 2.
Magee AE31 black carbon monitoring instruments are op-
erated in both stations, with a 5 min sampling frequency
(http://www.mageesci.com/). The hourly average BC con-
centrations were calculated from these 5 min data.

3 Results and discussion

BC is an important component of atmospheric aerosols. It
is emitted directly into the atmosphere predominantly during
combustion (Seinfeld and Pandis, 2006). Its sources include
anthropogenic and natural emission sources. Natural sources
(e.g., volcanic eruption and forest fires) are occasional and
regional, contributing little to the long-term background BC
concentration in the atmosphere (Parungo et al., 1994). Com-
paratively, many human activities increase the concentra-
tion of BC aerosols; therefore, anthropogenic sources are
the primary sources of BC. Streets et al. (2001) and Cao et
al. (2006) noted that the vast majority of BC emissions in
China are produced by the untreated raw coal, honeycomb
briquettes, and biomass fuels that people use in their daily
lives.

BC is the main light-absorbing aerosol species; it alters the
radiative properties of other aerosols with which it is mixed.
In addition, it may also affect cloud formation and precip-
itation (Hakami et al., 2005), reduce crop production, de-
crease visibility, and harm human health. In one word, BC
plays an essential role in atmospheric radiative forcing, cli-
mate change, and air quality evaluation.

3.1 High BC concentration episode and model
validation

The simulated ground BC concentration distributions from
20:00 BT 3 July to 11:00 BT 4 July are shown in Fig. 3.
These six graphs illustrate the formation and transportation
processes of this high BC concentration episode over Bei-
jing. At 20:00 BT 3 July, two small spots of high BC con-
centrations appeared around Shijiazhuang (SJZ; 114.48◦ E,
38.03◦ N) and southern Beijing. At 23:00 BT 3 July, these
two high BC concentration spots were obviously enlarged
and almost connected, extending to northern Xingtai (XT;
114.48◦ E, 37.05◦ N), eastern Baoding (BD; 115.48◦ E,
38.85◦ N), Langfang (LF; 116.7◦ E, 39.53◦ N), and Tianjin
(TJ; 117.20◦ E, 39.13◦ N). At 02:00 BT 4 July, a high BC
concentration area was developed around Beijing, Tianjin,
southern Hebei, and the Henan province. It grew and intensi-
fied continuously during the subsequent hours until 11:00 BT
4 July, when it started to constrict due to enhanced dispersion
and vertical movement in the boundary layer. However, the
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Figure 3. BC concentration distribution at ground level (Unit:
µg m−3).

BC concentration over Beijing remains at a relatively higher
level.

Figure 4 shows the hourly variation of ground-level BC
concentration in Beijing. It is easy to notice that during the
first 2 simulated days, the BC concentration reached its peak
at approximately 02:00 BT on 2 and 3 July, and its lowest
value at approximately 15:00 BT on the same days. Thus,
the absolute BC concentration in this case appears to be af-
fected by the diurnal height variation of the boundary layer,
atmospheric stability, and diffusion conditions. On the con-
trary, the highest BC concentration on 4 July (15.7 µg m−3)

was recorded at 11:00 BT, perhaps because, on that day, the
atmospheric conditions were more stable, and the pollutant
diffusion was unsatisfactory, thus leading to BC accumula-
tion.

The model results are compared with the above observa-
tion data in Fig. 5. The correlation coefficients of the simu-
lated and the observed BC concentrations at Shangdianzi and
Nanjiao stations are 0.65 and 0.54, respectively. Therefore,
the general variation trends of the simulated and observed
BC concentrations are consistent. However, the simulated
BC concentration values are greater than the corresponding
observed values at both stations, with MRs / o (the mean ra-
tio of the simulated to the observed) equal to 2.2 and 6.4
at Nanjiao and Shangdianzi stations, respectively. Overesti-
mates are also reflected by the positive value of MFB (mean
functional bias; Boylan and Russell, 2006) at the two stations
(60.5 % at NJ station and 112.3 % at SDZ station). The MFEs
(mean functional errors) are 60.5 and 115.6 % at NJ station
and SDZ stations, respectively. As SDZ station is a regional

Figure 4. Hourly variation of simulated ground BC concentration
over the Beijing municipality.

background station with no obvious industrial pollution and
few human activities, the observational concentrations there
are very small. Using the mean concentration over a coarse
model grid (0.5◦× 0.5◦) to represent BC concentrations at
the background station directly leads to overestimation. The
same reason applied to overestimation at NJ station. Previ-
ous studies (Zhou et al., 2012; Wang et al., 2015a, b; Jiang et
al., 2015) based on the GRAPES–CUACE modeling system
have showed the reliability of the model very well. Overall,
we consider the model results acceptable.

3.2 Objective function and sensitivity coefficient
definitions

As mentioned above, the adjoint method can provide infor-
mation about the influences of location-specific sources on
the objective function. To determine the area and the time pe-
riod when the most important emission sources fed the high-
est BC concentration over Beijing as recorded at 11:00 BT
4 July 2008 (Fig. 4), we define the objective function J

as the average BC concentration over Beijing at 11:00 BT
4 July 2008.

The adjoint input, also regarded as a forcing term, is
∂J/∂C. C represents the pollutant concentration, such as the
BC concentration, at the objective time. The direct output
from the adjoint model is the gradient of J with respect to
any model parameter var: ∂J/∂var. If var is the hourly grid-
ded offline emissions intensity q, then ∂J/∂q directly con-
nects the objective function J with emissions. The larger an
emission source’s ∂J/∂q is, the greater its influence is on J .
However, this kind of sensitivity definition does not reflect
the absolute influence of certain emission sources. For exam-
ple, for an emission source with relatively large ∂J/∂q, but
quite small q, its actual influence will be negligible. There-
fore, we define the emission sensitivity coefficient 8 as

8= q
∂J

∂q
. (12)
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Figure 5. Comparisons of observed and modeled hourly BC
concentrations at Nanjiao and Shangdianzi stations from 20:00
1 July 2008 to 19:00 4 July 2008. Statistical parameters used are
mean functional bias (MFB), mean functional error (MFE), mean
value of the simulated (Ms), mean value of the observed (Mo) and
Mean ratio of the simulated to the observed (Ms / o)

In this way, the emission sensitivity coefficient 8 has the
same unit with J and has a specific physical meaning. In a
given area, the BC emissions’ influence on J increases with
the sensitivity coefficient value. If the BC emissions is re-
duced by N %, the value of J decreases by N % ·8, which
means that the average BC concentration over Beijing at the
objective time point also decreases by N % ·8.

3.3 Distribution of adjoint sensitivity

To control air quality, usually emissions are cut over a certain
period, e.g., 1–3 days ahead of the predicted severe pollution
day. Based on this practical concept, sensitivity coefficients
at every model’s backward integral time step are added from
the objective time point (highest BC concentration: 11:00 BT
4 July 2008) to a certain preceding time point, as illustrated
in Fig. 6. Figure 6 shows a spatial–temporal cumulative effect
from BC emissions to the objective function J .

As shown in Fig. 6, sensitivity coefficients accumulate
along an inverse time series. When sensitivity coefficients
from the previous hour until the objective time point are
added, only the Tongzhou (TZ) and Daxing (DX) districts
(locations of TZ and DX districts were shown in Fig. 2)
in Beijing have sensitivity coefficients of 0.05–0.1 µg m−3.
When sensitivity coefficients are added for the last 6 h, the in-
fluential area is remarkably enlarged, with a maximum value
of 0.3–0.4 µg m−3. As the hours ahead of the objective time
points are increased, this influenced area is continually en-
larged and intensified. When it reaches the 16 h period, as
shown in Fig. 6d, the more critical area expands to Lang-
fang and Baoding of the Hebei province, and the maximum
value is approximately 0.7 µg m−3. This indicates that reduc-
ing BC emission at a ratio of N % from 19:00 BT 3 July to
the objective time point over this grid cell could result in
an average N % ·0.7 µg m−3 decrease of the BC concentra-
tion over Beijing (objective region), at 11:00 BT 4 July 2008
(objective time point). However, along with this accumula-

Table 3. Information on the four emission reduction regions.

Region Number of grid cells Area (km2)

BTH 105 318 000
BJ 10 30 000
InR-1 7 21 000
InR-2 17 51 000

tion procedure, the expansion of the influential region scope
and the increase in its sensitivity coefficients begin to slow
down. Only a tiny difference between 24 h of accumulation
(Fig. 6f) and 48 h of accumulation (Fig. 6g) is observed. This
phenomenon reflects that emissions from 11:00 BT 2 July to
11:00 BT 3 July have little influence on J . When a heavy
pollution event needs to be controlled by reducing emissions,
the time period with the most significant influence should be
scientifically determined in order to cut emissions both effec-
tively and economically.

3.4 Time series of sensitivity coefficients in different
regions

Adjoint sensitivity analysis is a powerful complement to for-
ward methods. While forward techniques are source-based,
backward methods provide receptor-based sensitivity infor-
mation. Under this conception, we use the adjoint method
to locate the most influential emission sources area and the
most influential emission time period.

Four types of regions are defined according to administra-
tive division and the sensitivity coefficients distribution (Ta-
ble 3 and Fig. 7). BTH refers to the administrative Beijing–
Tianjin–Hebei region, which covers 105 grid cells and is ap-
proximately 318 000 km2; BJ represents administrative Bei-
jing, which contains 10 grid cells and covers an area of
around 30 000 km2. InR-1 (Influential Region 1) has 7 grid
cells, occupying about 21 000 km2, which is smaller than
that of BJ, whose sensitivity coefficient values are obviously
larger than others; InR-2 (Influential Region 2) covers InR-1
and 10 more grid cells with secondary large coefficient val-
ues, having 17 grid cells in total and covering approximately
51 000 km2.

To compare the effect of emission sources reduction at dif-
ferent time points in the four regions, we add the BC emis-
sion sensitivity coefficients vertically and extract their in-
verse time series values (Fig. 8). Figure 8a shows the inverse
time series of the sensitivity coefficients at every 5 min inte-
gration time steps. It reflects the influence of BC emissions
on the objective function J at each model integration time
step ahead of the objective time point. Figure 8b shows the
time–cumulative sensitivity coefficients, which reveal the de-
crease in J due to BC emission reduction over a certain pe-
riod of time ahead of the most polluted time point.
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Figure 6. Cumulative sensitivity coefficient distribution. Panels (a–e) are 1, 6, 11, 16, and 21 h cumulative sensitivity coefficients. Panels
(f–g) are 24 and 48 h cumulative coefficients, and (h) is the last backward simulation time step.

In Fig. 8a, the sensitivity coefficients of BTH, InR-1, and
BJ reach their peak values at 18:00 BT 3 July, whereas that
InR-2 is maximized at 17:00 BT 3 July. Afterward, they all
decrease sharply along a backward time sequence. This phe-
nomenon indicates that the impact of emissions on J be-
gins to decrease along the inverse time sequence axis before
17:00–18:00 BT 3 July, about 17–18 h ahead of the most se-

rious pollution time point. Correspondingly, in Fig. 8b, the
time cumulative sensitivity coefficients obviously slow down
their increasing trend at 18:00 BT 3 July. This phenomenon
shows that the emission reduction start-up time point should
be scientifically determined based on the adjoint sensitivity
or other information in order to increase the efficiency of air
quality control.
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Table 4. 18 h (17:00 BT 3 July–11:00 BT 4 July) cumulative SC and SC/Grid over the four emission reduction regions.

Regions

SC BTH (µg m−3) BJ (µg m−3) InR-1 (µg m−3) InR-2 (µg m−3) InR-2/BTH InR-1/BJ

SC 7.3 3.5 4.0 5.9 0.8 1.2
SC/Grid 0.07 0.35 0.58 0.35 5.0 1.6

SC: sensitivity coefficient. SC/Grid: sensitivity coefficient per simulation grid.

Figure 7. Different influential regions. BTH: red dashed frame;
InR-1: blue dashed frame; InR-2: pinkish red solid frame; object
region: yellow shadow.

Then, we compare the preceding 18 h cumulative sensi-
tivity coefficients, from 17:00 BT 3 July to 11:00 BT 4 July,
for the above four regions (Table 4), given that the sensi-
tivity coefficient on 17:00 BT 3 July is still relatively high
(for BTH, InR-1, and BJ). From Table 4, the simulated SC
(sensitivity coefficient) of BTH is 7.3 µg m−3, meaning that
a reduction of N % BC emissions over BTH will cause an
N % ·7.3 µg m−3 decrease of average BC concentration in
Beijing on 11:00 BT 4 July. In general, it is obvious that re-
ducing emissions over the entire BTH region will contribute
most positively to air quality control in Beijing, followed by
InR-2, InR-1, and BJ. However, from the four regions, the
SC/Grid (sensitivity coefficient per grid) value is the largest
in InR-1. Therefore, cutting the emissions of InR-1 has the
most obvious effectiveness in decreasing the BC concentra-
tion in Beijing. The SC/Grid of BTH is the smallest, and InR-
2 is equivalent to BJ with intermediate concentrations. BTH
covers an area which is 6.2 times that of InR-2, but the SC
and SC/Grid of Inr-2 are 80 % and 5.0 times of BTH (Ta-
ble 4). A similar phenomenon is found between BJ and InR-
1. InR-1 accounts for only 70 % of the BJ area, but the SC
and SC/Grid of InR-1 are 1.2 and 1.6 times that of BJ.

4 Conclusions

In this study, based on the adjoint theory and methods, we
constructed and tested an adjoint model for an aerosol mod-
ule of the atmospheric chemical model GRAPES–CUACE.

Figure 8. (a) Sensitivity coefficients at each 5 min integration time
step along inverse time sequence; (b) cumulative sensitivity coeffi-
cients along inverse time series.

Developing the GRAPES–CUACE aerosol adjoint model in-
cluded constructing and validating the tangent linear and the
adjoint models of the three parts involved in the GRAPES–
CUACE aerosol module: CAM, interface programs, and the
aerosol transport processes. Meanwhile, strict mathematical
validation schemes for the tangent linear and the adjoint
models were carried out for all input variables. After the as-
sembled tangent linear and the adjoint models for each part
were verified, the adjoint model of the GRAPES–CUACE
aerosol was constructed. At the same time, the GRAPES–
CUACE model and its aerosol adjoint were adopted to per-
form a numerical simulation and a receptor–source sensitiv-
ity test. Compared with the BC aerosol observations from
the Nanjiao and Shangdianzi stations, the hourly trends of
BC concentration estimated through the present model were
similar, with correlation coefficients 0.65 and 0.54, respec-
tively.

The GRAPES–CUACE adjoint model simulated the sen-
sitivity of the concentration on emission, and it was adopted
to track the most influential emission sources regions and
the most influential time intervals for the high BC con-
centrations. Four types of regions were selected and com-
pared based on the administrative divisions and the adjoint-
sensitivity coefficient distribution. The result of the aerosol
adjoint model suggested that the regions divided based on the
sensitivity values could be correlated to the influence emis-
sion sources regions better than the administratively divided
regions could. In particular, in the example used here, the BC
emissions at 18:00 BT on 3 July to the objective time point
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(about 17–18 h) had a much greater influence than emissions
emitted earlier than that.

The BC adjoint sensitivity results presented here could
help design efficient haze control schemes using the adjoint
method. It is found that to increase the emission reduction
efficiency, influential regions should be located scientifically
(e.g., according to the adjoint sensitivity coefficients distri-
bution) rather than based on administrative divisions.

5 Code availability

We used the GRAPES–CUACE as distributed by the Numer-
ical Weather Prediction Center of Chinese Meteorology Ad-
ministration (http://nwpc.cma.gov.cn) together with the Insti-
tute of Atmospheric Composition of the Chinese Academy
of Meteorological Sciences (http://www.cams.cma.gov.cn).
The model was run on an IBM PureFlex System (AIX) with
an XL Fortran Compiler. The CUACE–ADJ code can be re-
quested from the corresponding author or downloaded as a
Supplement to this article.

The Supplement related to this article is available online
at doi:10.5194/gmd-9-2153-2016-supplement.
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