
Geosci. Model Dev., 9, 2099–2113, 2016
www.geosci-model-dev.net/9/2099/2016/
doi:10.5194/gmd-9-2099-2016
© Author(s) 2016. CC Attribution 3.0 License.

A new adaptive data transfer library for model coupling
Cheng Zhang1,2, Li Liu1,3, Guangwen Yang2,1,3, Ruizhe Li1,2, and Bin Wang1,3,4

1Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science (CESS),
Tsinghua University, Beijing, China
2Department of Computer Science and Technology, Tsinghua University, Beijing, China
3Joint Center for Global Change Studies (JCGCS), Beijing, China
4State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence to: Li Liu (liuli-cess@tsinghua.edu.cn) and Guangwen Yang (ygw@tsinghua.edu.cn)

Received: 22 September 2015 – Published in Geosci. Model Dev. Discuss.: 20 October 2015
Revised: 10 May 2016 – Accepted: 24 May 2016 – Published: 9 June 2016

Abstract. Data transfer means transferring data fields from a
sender to a receiver. It is a fundamental and frequently used
operation of a coupler. Most versions of state-of-the-art cou-
plers currently use an implementation based on the point-
to-point (P2P) communication of the message passing inter-
face (MPI) (referred to as “P2P implementation” hereafter).
In this paper, we reveal the drawbacks of the P2P implemen-
tation when the parallel decompositions of the sender and the
receiver are different, including low communication band-
width due to small message size, variable and high number
of MPI messages, as well as network contention. To over-
come these drawbacks, we propose a butterfly implemen-
tation for data transfer. Although the butterfly implementa-
tion outperforms the P2P implementation in many cases, it
degrades the performance when the sender and the receiver
have similar parallel decompositions or when the number of
processes used for running models is small. To ensure data
transfer with optimal performance, we design and implement
an adaptive data transfer library that combines the advantages
of both butterfly implementation and P2P implementation.
As the adaptive data transfer library automatically uses the
best implementation for data transfer, it outperforms the P2P
implementation in many cases while it does not decrease the
performance in any cases. Now, the adaptive data transfer li-
brary is open to the public and has been imported into the
C-Coupler1 coupler for performance improvement of data
transfer. We believe that other couplers can also benefit from
this.

1 Introduction

Climate system models (CSMs) and Earth system models
(ESMs) are fundamental tools for simulating, predicting, and
projecting climate. A CSM or an ESM generally integrates
several component models, such as an atmosphere model, a
land surface model, an ocean model, and a sea-ice model,
into a coupled system to simulate the behaviours of the cli-
mate system, including the interactions between components
of the climate system. More and more coupled models have
sprung up in the world. For example, the number of coupled
model configurations in the Coupled Model Intercomparison
Project (CMIP) has increased from less than 30 (used for
CMIP3) to more than 50 (used for CMIP5).

High-performance computing is an essential technical
support for model development, especially for higher and
higher resolutions of models. Modern high-performance
computers integrate an increasing number of processor cores
for higher and higher computation performance. Therefore,
efficient parallelization, which enables a model to utilize
more processor cores for acceleration, becomes a technical
focus in model development; a number of component mod-
els with efficient parallelization have sprung up. For exam-
ple, the Community Ice CodE (CICE; Hunke and Lipscomb,
2008; Humpe et al., 2013) at 0.1◦ horizontal resolution can
scale to 30 000 processor cores on the IBM Blue Gene/L
(Dennis and Tufo, 2008); the Parallel Ocean Program (POP;
Kerbyson and Jones, 2005; Smith et al., 2010) at 0.1◦ hor-
izontal resolution can also scale to 30 000 processor cores
on the IBM Blue Gene/L and 10 000 processor cores on

Published by Copernicus Publications on behalf of the European Geosciences Union.

2100 C. Zhang et al.: A new adaptive data transfer library for model coupling

a Cray XT3 (Dennis, 2007); the Community Atmosphere
Model (CAM; Morrison and Gettelman, 2008; Neale et al.,
2010, 2012) with a spectral element dynamical core (CAM-
SE) at 0.25◦ horizontal resolution can scale to 86 000 proces-
sor cores on a Cray XT5 (Dennis et al., 2012).

A coupler is an important component in a coupled sys-
tem. It links component models together to construct a cou-
pled model, and controls the integration of the whole cou-
pled model (Valcke et al., 2012). A number of couplers are
now available, e.g. the Model Coupling Toolkit (MCT; Ja-
cob et al., 2005), the Ocean–Atmosphere–Sea Ice–Soil (OA-
SIS) coupler (Redler et al., 2010; Valcke, 2013; Valcke et al.,
2015), the Earth system modelling framework (ESMF; Hill
et al., 2004), the CPL6 coupler (Craig et al., 2005), the CPL7
coupler (Craig et al., 2012), the flexible modelling system
(FMS) coupler (Balaji et al., 2006), the bespoke framework
generator (BFG; Ford et al., 2006; Armstrong et al., 2009),
and the community coupler version 1 (C-Coupler1; Liu et al.,
2014).

A coupler generally has much smaller overhead than the
component models in current coupled systems. However, it
is potentially a time-consuming component in future coupled
models. This is because more and more component mod-
els (such as the land-ice model, chemistry model and bio-
geochemical model) will be coupled into a coupled model,
and the coupling frequency between component models will
be higher and higher. Data transfer is a fundamental and
frequently used operation in a coupler. It is responsible for
transferring data fields between the processes of two compo-
nent models and for rearranging data fields among processes
of the same component model for parallel data interpolation.

A coupler may become a bottleneck for efficient paral-
lelization of future coupled models. The most obvious reason
is that the current implementation of data transfer in a state-
of-the-art coupler may be not efficient enough. For example,
due to the low efficiency of data transfer, the coupling from
a component model with a horizontal grid (576× 384 grid
points) to another component model with a different hori-
zontal grid (3600× 2400 grid points) can only scale to about
500 processor cores when using the CPL7 coupler (Craig et
al., 2012). Therefore, it is highly desirable to improve the
parallel data transfer of couplers.

In this study, we first propose a butterfly implementation of
data transfer. Since the point-to-point (P2P) communication
of the message passing interface (MPI) (referred to as “P2P
implementation” hereafter) and the butterfly implementation
can outperform each other in different cases (Sect. 5), we
next develop an adaptive data transfer library that includes
both implementations and can adaptively implement the bet-
ter one for data transfer. Performance evaluation demon-
strates that such a library significantly outperforms the P2P
implementations in most cases and does not degrade the per-
formance in any case. This library has been imported into the
C-Coupler1 with a slight code modification. We believe that
other couplers can also benefit from it.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

6 12 24 48 96 192

T
im

e
(s

)

Number of processes per model

Figure 1. Average execution time of the P2P implementation when
transferring 14 2-D fields from CLM3 to GAMIL2. In each test,
the atmosphere model GAMIL2 and the land surface model CLM3
have the same number of processes; they do not share the same
computing nodes. The horizontal grid of the 14 2-D fields contains
7680 (128× 60) grid points.

The remainder of this paper is organized as follows. We
briefly introduce the implementation of data transfer in ex-
isting couplers in Sect. 2. Details of the butterfly implemen-
tation and the adaptive data transfer library are presented in
Sects. 3 and 4, respectively. The performances of data trans-
fer implementations are evaluated in Sect. 5. Conclusions are
given in Sect. 6.

2 Data transfer implementations in existing couplers

2.1 P2P implementation

Almost all state-of-the-art couplers use a similar implemen-
tation for data transfer. To achieve parallel data transfer,
MCT first generates a communication router (known as the
data mapping between processes) according to the parallel
decompositions (the distribution of grid points among the
processes) of the sender and the receiver, and then uses the
P2P communication of the MPI to transfer the data. A data
field will be transferred from a process of the sender to a
process of the receiver, only when the two processes have
common grid points, i.e. “P2P implementation” for short.

Since MCT has already been imported into OASIS3–
MCT, the CPL6 coupler, and the CPL7 coupler, these cou-
plers also use the P2P implementation for data transfer. Al-
though the other couplers, such as ESMF, OASIS4, the FMS
coupler, and C-Coupler1, do not directly import MCT, they
also use the P2P implementation for data transfer.

2.2 Performance bottlenecks of the P2P
implementation

In this work, we first investigate the performance charac-
teristics of the P2P implementation, and therefore derive a
benchmark from a real coupled model GAMIL2 (Grid-Point

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

C. Zhang et al.: A new adaptive data transfer library for model coupling 2101

Figure 2. Variation of bandwidth (y axis) of an MPI P2P communication with respect to the message size (x axis). The results are generated
from our benchmark. In the benchmark, one process sends messages with different sizes to the other process. The two processes of the P2P
communication run on two different computing nodes of Tansuo100.

Atmospheric Model of IAP LASG-Version 2)–CLM3 (Com-
munity Land Model version 3), which includes GAMIL2 (Li
et al., 2013), i.e. an atmosphere model and CLM3 (Oleson et
al., 2004; Dickinson et al., 2006), i.e. a land surface model.
GAMIL2 and CLM3 share the same horizontal grid of 7680
(128× 60) grid points, but have different parallel decompo-
sitions: GAMIL2 uses a regular two-dimensional (2-D) par-
allel decomposition, while CLM3 uses an irregular 2-D par-
allel decomposition where the grid points are assigned to the
processes in a round-robin fashion.

In this benchmark, there is only the data transfer with
the P2P implementation between the sender and the receiver
with the same horizontal grid as GAMIL2–CLM3. The par-
allel decomposition of the sender is derived from CLM3, and
the parallel decomposition of the receiver is derived from
GAMIL2. A high-performance computer called Tansuo100
at Tsinghua University, China, is used for the performance
tests. It has 700 computing nodes, each of which contains
two six-core Intel Xeon X5670 CPUs and 32 GB main mem-
ory. All computing nodes are connected by a high-speed In-
finiBand network with peak communication bandwidth of
5 GB s−1.

To evaluate the parallel performance of the P2P implemen-
tation, 14 2-D coupling fields are transferred between the
sender and the receiver. In each test, the sender and the re-
ceiver use the same number of processes. Since there are 12
processor cores on each computing node, the number of pro-
cesses is set to be an integral multiple of 12. The sender and
the receiver are located on different computing nodes and the
communication of the P2P implementation must go through
the InfiniBand network.

Figure 1 demonstrates that the poor parallel scalability of
the P2P implementation can be obtained when the parallel
decompositions of the sender and receiver are different. It is
well known that the communication performance heavily de-
pends on message size. As shown in Fig. 2, the P2P commu-
nication bandwidth achieved generally increases with mes-

sage size. So when the message size is small (for example,
smaller than 4 KB), the communication bandwidth achieved
is very low. The message size in the P2P implementation
decreases when the number of model processes increases
(Fig. 3), indicating that the communication bandwidth be-
comes lower when increasing the number of processes. The
performance of data transfer also heavily depends on the
number of MPI messages. As shown in Fig. 4, the variation
of average number of MPI messages in the P2P implemen-
tation is consistent with the variation of the execution time
in Fig. 1: both increase with the number of processes from 6
to 48, and go down with the number of processes from 96 to
192. A lower execution time of the P2P implementation will
be obtained if more processes are used (the maximum num-
ber of processes in both Figs. 1 and 4 is limited to 192 be-
cause GAMIL2–CLM3 will not be further accelerated when
using more processes) since the average number of MPI mes-
sages will further go down.

To further reveal possible reasons for the poor parallel
scalability, we evaluate the ideal performance and actual
performance in Fig. 5. The ideal performance is much bet-
ter than the actual performance, and the ratio between the
ideal performance and the actual performance significantly
increases when increasing the number of processes. The sig-
nificant gap between the ideal performance and the actual
performance is due to the network contention. For example,
when multiple P2P communications share the same sender
process or receiver process, they must wait in order.

3 Butterfly implementation for better performance of
data transfer

The drawbacks of the P2P implementation when the sender
and the receiver use different parallel decompositions can
be identified as low communication bandwidth due to small
message size, variable and high number of MPI messages,
as well as network contention. To overcome these draw-

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

2102 C. Zhang et al.: A new adaptive data transfer library for model coupling

398.13

110.36

14.44

4.48

1.53

0.66 0.55
0.33

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1 2 6 12 24 48 96 192

M
es

sa
ge

 s
iz

e
(K

B
)

Number of processes per model

Maximum

Average

Figure 3. Variation of message size of the P2P implementation
(y axis) in GAMIL2–CLM3 with respect to the number of processes
per model (x axis). The experimental set-up is similar to that shown
in Fig. 1.

1

2

4

8

16

32

64

1 2 6 12 24 48 96 192

N
um

be
r

of
 M

P
I

m
es

sa
ge

s

Number of processes per model

Maxmum

Minimum

Average

Figure 4. Variation of the number of MPI messages of one process
(y axis) using the P2P implementation in GAMIL2–CLM3 with re-
spect to the number of processes per model (x axis). The experi-
mental set-up is similar to that shown in Fig. 1.

backs, a prospective solution is to organize the transfer of
data using a better algorithm, e.g. the butterfly algorithm
(Fig. 6), which has already been studied in computing sci-
ences (Chong and Brewer, 1994; Foster, 1995; Heckbert ,
1995; Hemmert and Underwood, 2005; Kim et al., 2007; Jan
et al., 2013; Petagon and Werapun, 2016). With respect to
hardware, the traditional butterfly algorithm and its trans-
formation have been used to design networks (Chong and
Brewer, 1994; Kim et al., 2007); with respect to software, the
butterfly algorithm has been used to improve the parallel al-
gorithms with all-to-all communications (Foster, 1995), e.g.
fast Fourier transform (FFT; Heckbert, 1995; Hemmert and
Underwood, 2005), matrix transposition (Petagon and Wera-
pun, 2016), and sorting (Jan et al., 2013).

Unfortunately, the classical butterfly algorithm cannot be
used as it is to improve data transfer, because it requires that
one process communicates with every other process, that the

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

6 12 24 48 96 192

B
an

dw
id

th
 (

G
B

 s
)

Number of processes per model

Ideal

Actual

–1

Figure 5. Ideal and actual bandwidths of the P2P implementation
(y axis) in GAMIL2–CLM3 when gradually increasing the number
of processes per model (x axis). The experimental set-up is similar
to that shown in Fig. 1. The ideal bandwidth is calculated from the
message size and the MPI bandwidth measured in Fig. 2; and the
actual bandwidth is calculated from Fig. 1.

communication load among processes is balanced, and that
the number of processes must be a power of 2. In practice,
data transfer for model coupling has different characteristics:
one process needs to communicate with a part of other pro-
cesses, the communication load among processes is always
unbalanced, and the number of processes cannot be restricted
to a power of 2. Therefore, we propose here a new implemen-
tation of data transfer involving an additional butterfly kernel
to transfer data from the sender with the source parallel de-
composition to the receiver with the target parallel decom-
position. As the number of processes of the butterfly kernel
must be a power of 2, while the number of processes of the
sender or the receiver are not necessarily, the butterfly kernel
has its own source and target parallel decompositions, and
process mappings are required from the sender onto the but-
terfly kernel and from the butterfly kernel onto the receiver
(see Fig. 7). Next, we present the butterfly kernel and the
process mappings.

3.1 Butterfly kernel

The first question for the butterfly kernel is how to decide its
number of processes. Any process of the sender or receiver
can be used as a process for the butterfly kernel. Given that
the total number of unique processes of the sender and re-
ceiver is NT, the number of processes of the butterfly kernel
(NB) can be any power of 2, which is no larger than NT. We
propose to select the maximum number in order to maximize
utilization of resources. We prefer to pick out unique pro-
cesses first from the sender, and then from the receiver if the
sender does not have enough processes.

The butterfly kernel is responsible for rearranging the dis-
tribution of data among the processes from the source paral-
lel decomposition to the target parallel decomposition. Given
the number of processes N = 2n, there are n stages in the

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

C. Zhang et al.: A new adaptive data transfer library for model coupling 2103

Figure 6. An example of the butterfly kernel with eight processes. Each coloured row stands for one process (P0–P7). There are multiple
stages (each column of arrows represents a stage (stage 1 to stage 3)) in the butterfly kernel. Each arrow stands for an MPI P2P communication
from one process to another. Di

j
means the data are originally in process Pi according to the source parallel decomposition and is finally in

process Pj according to the target parallel decomposition.

Figure 7. The butterfly implementation, which is composed of three
parts: the butterfly kernel, process mapping from the sender to the
butterfly kernel, and process mapping from the butterfly kernel to
the receiver.

butterfly kernel. In a stage, all processes are divided into a
number of pairs and the two processes of a pair use MPI P2P
communication to exchange data. After each stage, the num-
ber of butterfly kernel processes that may have the data that
will finally belong to any one process on the target parallel
decomposition will become a half. Figure 6 is an example for
further illustration, where Di

j means the data are originally
in process Pi according to the source parallel decomposition
and are finally in process Pj according to the target parallel
decomposition. Before the first stage, all processes (P0–P7)

may have the data of P0 on the target parallel decomposition.
After the first stage, only four processes (P0, P2, P4, and P6)

may have that data; and after the second stage, only two pro-
cesses (P0 and P4) may have it.

To reveal the advantages and disadvantages of the two
implementations, we measure the characteristics of the two
implementations based on the benchmark introduced in
Sect. 2.2. The results show that the total amount of data
transferred by the butterfly implementation is larger than that
transferred by the P2P implementation (Fig. 8), which is the
major disadvantage of the butterfly implementation. Mean-
while, compared with the P2P implementation, the butterfly
implementation can have the following advantages:

1. bigger message size for better communication band-
width (Fig. 9);

2. balanced and smaller number of MPI processes among
processes (Fig. 10);

3. ordered communications among processes and fewer
communications operated concurrently (Fig. 10), which
can dramatically reduce network contention.

3.2 Process mapping

In this subsection, we will introduce the process mappings
from the sender to the butterfly kernel and from the butterfly
kernel to the receiver. To minimize the overhead of process
mapping from the butterfly kernel to the receiver, we map
one or multiple processes of the butterfly kernel onto a pro-
cess of the receiver if the butterfly kernel has more processes
than the receiver; otherwise, we map a process of the but-
terfly kernel onto one or multiple processes of the receiver.

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

2104 C. Zhang et al.: A new adaptive data transfer library for model coupling

0

20

40

60

80

100

120

140

160

180

200

220

8 16 32 64 128

T
ot

al
 a

m
o

un
t

o
f

d
at

a
tr

an
sf

er
re

d
 (

K
B

)

Number of processes per model

P2P Butterfly

Figure 8. Total amount of data transferred by P2P implementation
and butterfly implementation (y axis) in GAMIL2–CLM3, when
varying the number of processes per model (x axis). The experi-
mental set-up is similar to that shown in Fig. 1.

0

2

4

6

8

10

12

14

16

18

20

8 16 32 64 128

A
v
er

ag
e

m
es

sa
ge

 s
iz

e
(K

B
)

Number of processes per model

P2P Butterfly

Figure 9. Average message size transferred by P2P implementation
and butterfly implementation (y axis) in GAMIL2–CLM3, when
varying the number of processes per model (x axis). The experi-
mental set-up is similar to that shown in Fig. 1.

In other words, there is no multiple-to-multiple process map-
ping between the butterfly kernel and the receiver. Similarly,
there is no multiple-to-multiple process mapping between the
sender and the butterfly kernel.

Processes of the sender or the receiver may be unbalanced
in terms of the data size transferred, which may result in un-
balanced communications among processes of the butterfly
kernel. As mentioned in Sect. 3.1, at each stage of the butter-
fly kernel, all processes are divided into a number of pairs,
each of which is involved in P2P communications. To im-
prove the balance of communications among the processes
in the butterfly kernel, one solution is to try to make the pro-
cess pairs at each stage more balanced in terms of the data
size of P2P communications, so we propose to reorder the
processes of the sender or the receiver according to data size.
At the first stage, we pick out the process with the largest
data size and the process with the smallest data size from the
remaining processes that have not been paired, to generate
a process group. For the next stage, the outputs of two pro-
cess groups from the previous stage are paired into bigger

1

2

4

8

16

32

64

8 16 32 64 128

N
u
m

be
r

o
f

M
P

I
m

es
sa

g
es

Number of processes per model

Maximum of P2P Average of P2P

Minimum P2P Maximum of butterfly

Average of butterfly Minimum of butterfly

Figure 10. Maximum number of MPI messages, average number of
MPI messages and minimum MPI messages in P2P implementation
and butterfly implementation (y axis), when varying the number of
processes per model (x axis) in GAMIL2–CLM3. The experimental
set-up is similar to that shown in Fig. 1.

process groups in a similar way. After finishing the iterative
pairing throughout all stages, all processes of the sender or
the receiver are reordered.

The iterative pairing also requires the number of processes
to be a power of 2. Given that the number of processes of the
sender (or receiver) is NC and the number of processes of the
butterfly kernel is NB, we first pad empty processes (whose
data size is zero) before the iterative pairing to make the num-
ber of processes of the sender (or receiver) be a power of 2
(donated NP), which is no smaller than NB. Therefore, the
reordered NP processes after the iterative pairing can be di-
vided into NB groups, each of which contains NP/NB pro-
cesses with consecutive reordered indexes and maps onto a
unique process of the butterfly kernel.

Figure 11 shows an example of the process mapping,
where the sender has 5 processes (S0–S4 in Fig. 11a), the
receiver has 10 processes (R0–R9 in Fig. 11b), and the but-
terfly kernel uses 8 processes (B0–B7 in Fig. 11c). At first,
empty processes are padded to the sender (S5–S7 in Fig. 11a)
and the receiver (R10–R15 in Fig. 11b). Next, the itera-
tive pairing is conducted for the sender and the receiver.
The iterative pairing has three stages for the sender. At the
first stage, the eight processes of the sender are divided
into four groups {S1,S7}, {S0,S6}, {S2,S5}, and {S4,S3}

(Fig. 11a), according to the data size corresponding to each
process. These four process groups are divided into two
bigger groups {{S4,S3} , {S2,S5}} and {{S1,S7} , {S0,S6}}

at the second stage (Fig. 11a). Finally, one process group
{{{S4,S3} , {S2,S5}} , {{S1,S7} , {S0,S6}}} is obtained at the
third stage (Fig. 11a), and the eight processes of the sender
are reordered as S4, S3, S2, S5, S1, S7, S0, and S6, each
one being mapped onto 1 process of the butterfly kernel

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

C. Zhang et al.: A new adaptive data transfer library for model coupling 2105

Figure 11. An example of process mappings, given that the sender has 5 processes (S0–S4), the receiver has 10 processes (R0–R9) (there is
no common process between the sender and receiver), and the butterfly kernel contains 8 processes (B0–B7). Panels (a) and (b) show how to
iteratively pair processes of the sender and receiver, respectively. There are multiple stages in the iterative pairing of processes of the sender
and receiver. In each stage, the processes in the same colour are grouped into one process pair. Panel (c) shows how to map the reordered
processes of the sender and receiver onto the processes of the butterfly kernel.

(Fig. 11c). Similarly, the iterative pairing has four stages
for the receiver, and the 16 processes of the receiver are re-
ordered as R9, R15, R7, R12, R4, R8, R3, R10, R1, R14, R5,
R13, R0, R6, R2, and R11, with pairs of these being mapped
onto 1 process of the butterfly kernel (Fig. 11c).

4 Adaptive data transfer library

Now, we have two kinds of implementations (the P2P imple-
mentation and the butterfly implementation) for data transfer.
Although the butterfly implementation can effectively im-
prove the performance of data transfer in many cases (ex-
amples are given in Sect. 5), it has some drawbacks: (1) it

generally has a larger total amount of data transferred than
the P2P implementation; (2) its number of stages is log2N

(where N is the number of processes for the butterfly kernel)
(Foster, 1995), which may be bigger than the average number
of MPI messages in the P2P implementation in some cases
(for example, when the sender and the receiver use the simi-
lar parallel decompositions). Therefore, it is possible that the
P2P implementation outperforms the butterfly implementa-
tion in some cases. To achieve optimal performance for data
transfer, we propose an adaptive data transfer library that can
take the advantages of the two implementations in all cases.

As introduced in Sect. 3.1, the butterfly implementation
is divided into multiple stages. Actually, the data transfer in
one stage can be viewed as a P2P implementation with only

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

2106 C. Zhang et al.: A new adaptive data transfer library for model coupling

Figure 12. An example of the adaptive data transfer library with eight processes, where stage 2 of the butterfly implementation is skipped
and replaced by P2P communication of three MPI messages per process.

one MPI message per process. Inspired by this fact, we try to
design an adaptive approach that can combine the butterfly
and P2P implementations, where some stages in the butterfly
implementation are skipped and replaced by P2P communi-
cation of more MPI messages per process. When all stages
of the butterfly implementation are skipped, the adaptive data
transfer library completely switches to the original P2P im-
plementation. That is to say, the adaptive data transfer can
adaptively choose the optimal implementation from the P2P
implementation and the butterfly implementation. Figure 12
shows an example of the adaptive data transfer library with
eight processes, where stage 2 of the butterfly implementa-
tion is skipped and replaced by P2P communication of three
MPI messages per process.

The most significant challenge of such an adaptive ap-
proach is to determine which stage(s) of the butterfly imple-
mentation should be skipped. The first attempt was to design
a cost model that can accurately predict the performance of
data transfer in various implementations. We eventually gave
up this approach as it was almost impossible to accurately
predict the performance of the communications on a high-
performance computer, especially when a lot of users share
the computer to run various applications. Performance profil-
ing, which means directly measuring the performance of data
transfer, is more practical to determine an appropriate imple-
mentation, because the simulation of Earth system modelling
always takes a long time to run. Figure 13 shows our flow
chart of how the adaptive data transfer library determines
an appropriate implementation. It consists of an initialization
segment and a profiling segment. The initialization segment
generates the process mappings and a candidate implementa-
tion that is a butterfly implementation with no skipped stages.
The profiling segment iterates through each stage of the but-
terfly implementation to determine whether the current stage
should be skipped or kept. In an iteration, the profiling seg-
ment first generates a temporary implementation based on the

candidate implementation where the current stage is skipped,
and then runs the temporary implementation to get the time
the data transfer takes. When the temporary implementation
is more efficient than the candidate implementation, the cur-
rent stage is skipped and the temporary implementation re-
places the candidate implementation. When the profiling seg-
ment finishes, the appropriate implementation is set to be
the candidate implementation. To reduce the overhead in-
troduced by the adaptive data transfer library, the profiling
segment truly transfers the data for model coupling. In other
words, before obtaining an optimal implementation, the data
is transferred by the profiling segment.

5 Performance evaluation

In this section, we empirically evaluate the adaptive data
transfer library, through comparing it to the P2P imple-
mentation and the butterfly implementation. Both toy mod-
els and realistic models (GAMIL2–CLM3 and CESM –
Community Earth System Model) are used for the perfor-
mance evaluation. GAMIL2–CLM3 has been introduced in
Sect. 2.2. CESM (Hurrell et al., 2013) is a state-of-the-art
ESM developed by the National Center for Atmospheric Re-
search (NCAR). All the experiments are run on the high-
performance computer Tansuo100.

Next, we will evaluate the overhead of initialization, the
performance of transferring data fields between two toy mod-
els and between different realistic component models, and
the performance of rearranging data fields within a compo-
nent model for parallel interpolation.

5.1 Overhead of initialization

We first evaluate the initialization overhead of data trans-
fer implementations. As shown in Fig. 14, the initialization
overhead of each implementation increases when increas-

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

C. Zhang et al.: A new adaptive data transfer library for model coupling 2107

Figure 13. A flow chart for determining an appropriate implemen-
tation of the adaptive data transfer library.

ing the number of processes. The initialization overhead of
the butterfly implementation is a little higher than that of
the P2P implementation, while the initialization overhead of
the adaptive data transfer library is 2–3-fold higher than that
of the P2P implementation, because the adaptive data trans-
fer library uses extra time on the performance profiling (see
Sect. 4). Considering that one data transfer instance should
only be initialized at the beginning and executed many times
in a coupled model, we can conclude that the initialization
overhead of the adaptive data transfer library is reasonable,
especially when the simulation is executed for a very long
time.

5.2 Performance of data transfer between toy models

The factors that can impact the performance of a data transfer
implementation generally include the number of MPI mes-
sages, the size of the data to be transferred (also referred to
as the number of fields in this evaluation) and the number of
processes used. In this subsection, we evaluate the impact of
each factor on the performance of data transfer for different
implementations. We first build two toy models that both use
the same logically rectangular grid of 192× 480 grid points.
Coupling fields are transferred between the two toy models.
For any test, the two toy models use the same number of pro-
cesses. Next, we evaluate the performance of data transfer
through varying one factor while fixing the other two factors.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 6 12 24 48 96 192

T
im

e
(s

)

Number of processes per model

Adaptive
P2P
Butterfly

Figure 14. Initialization time (y axis) of one data transfer between
two toy models using a rectangular grid (of 192× 96 grid points)
when varying the number of processes per model (x axis). There
are 10 2-D coupling fields transferred from the source toy model to
the target toy model. In each test, all processes of the sender in the
P2P implementation have the same number of MPI messages. If the
number of processes per model is less than 24, the number of MPI
messages per sender process in the P2P implementation is equal to
the number of processes per model; otherwise, the number of MPI
messages per sender process in the P2P implementation is 24. The
parallel decompositions of the sender and the receiver for a given
average number of MPI messages are generated by Algorithm 1.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 3 6 12 24 48 90

T
im

e
(s

)

Number of MPI messages per sender process in the P2P implementation

Adaptive

P2P

Butterfly

Figure 15. Average execution time (y axis) of one data transfer be-
tween two toy models with the same rectangular grid (of 192× 480
grid points) when varying the number of MPI messages per sender
process in the P2P implementation (x axis). Each toy model is run
with 1024 processes. There are 10 2-D coupling fields transferred
from the source toy model to the target toy model.

In the first experiment, we fix the number of processes to
be 1024 and the number of coupling fields to be 10, while
varying the number of MPI messages in the P2P implemen-
tation. In each test, all processes of the sender have the same
number of MPI messages. As the number of MPI messages
is determined by the parallel decompositions of the sender
and the receiver, we design an algorithm (Algorithm 1) that
can generate the parallel decompositions of the two toy mod-
els according to the average number of MPI messages of the
sender in the P2P implementation. Figure 15 shows the ex-
ecution time of one data transfer with different implemen-

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

2108 C. Zhang et al.: A new adaptive data transfer library for model coupling

 21

 1

Algorithm 1. Generating the parallel decompositions of the sender and the receiver according to an

average number of MPI messages of the sender in the P2P implementation.

Input Number of processes of the sender: M

Number of processes of the receiver: N

Number of points in the grid: Grid_pnts

Average number of MPI messages per process of the sender in the P2P implementation:

Avg_send_msgs, Avg_send_msgs ≤ N

The flag that specifies whether the number of MPI messages among processes are the same:

Is_balanced

Output Parallel decomposition of the sender

Parallel decomposition of the receiver

1 Determine the parallel decomposition of the sender

Considering that the numbers of grid points are always balanced among the processes of a

model, assign around Grid_pnts/M grid points to each process of the sender.

2 Determine the number of MPI messages of each process of the sender

2.1 If the flag Is_balanced is set to true, set the number of MPI messages of each process of the

sender to be Avg_send_msgs;

2.2 Otherwise, randomly determine the number of MPI messages of each process of the sender

2.2.1 Initialize the number of MPI messages of each process of the sender to be 1

2.2.2 Randomly select a process of the sender whose number of MPI messages does not exceed N

and Grid_pnts/M, and then increase its number of MPI messages by 1, until the average

number of MPI messages of all processes of the sender reaches Avg_send_msgs.

3 Determine the grid points of each MPI message

For each process of the sender, assign the corresponding grid points to all MPI messages of

this process (a grid point belongs to only one MPI message)

3.1 If the flag Is_balanced is set to true, assign the grid points to all MPI messages evenly.

3.2 Otherwise, assign the grid points to each MPI message randomly

3.2.1 Assign one grid point to each MPI message

3.2.2 For each of remaining grid points, randomly select an MPI message for it

4 Determine the parallel decomposition of the receiver through assigning the grid points in each

MPI message to a process of the receiver

For each process of the sender, assign the grid points in each MPI message of it to a distinct

receiver process: to make the numbers of grid points balance among the processes of the

receiver in the final parallel decomposition, an MPI message with bigger number of grid points

will be assigned to a receiver process with smaller total number of grid points that have been

assigned to it.

2

tations when increasing the number of MPI messages per
sender process in the P2P implementation from 1 to 90.
The P2P implementation can outperform the butterfly imple-
mentation when the number of MPI messages is small (e.g.
smaller than 12 in Fig. 15), while the butterfly implementa-
tion can outperform the P2P implementation when the num-
ber of MPI messages is big (e.g. bigger than 12 in Fig. 15).
The adaptive data transfer library can adaptively choose the
optimal implementation from the P2P implementation and
the butterfly implementation and, moreover, it improves the
performance based on the butterfly implementation when the
number of MPI messages is big, since some butterfly stages
of the butterfly implementation are skipped. When the num-

ber of MPI messages is 90, the adaptive data transfer library
can achieve a 19.2-fold performance speed-up compared to
the P2P implementation.

In the second experiment, we fix the number of processes
and the number of MPI processes per sender process in the
P2P implementation, and vary the number of coupling fields
transferred. Figure 16 shows the execution time of one data
transfer with different implementations in this experiment.
The results show that the execution time of each implemen-
tation increases with the increment of data size. When the
number of MPI processes per sender process in the P2P im-
plementation is small (Fig. 16a, b), the performance of the
butterfly implementation is poorer than that of the P2P im-

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

C. Zhang et al.: A new adaptive data transfer library for model coupling 2109

Figure 16. Average execution time (y axis) of one data transfer between two toy models with the same rectangular grid (of 192× 480 grid
points) when varying the number of coupling fields transferred (x axis). There are four simulation tests for the evaluation. In simulation (a),
each toy model is run with 256 processes, and the number of MPI messages per sender process in the P2P implementation is 12. In simu-
lation (b), each toy model is run with 1024 processes, and the number of MPI messages per sender process is in the P2P implementation
12. In simulation (c), each toy model is run with 256 processes, and the number of MPI messages per sender process in the P2P implemen-
tation is 48. In simulation (d), each toy model is run with 1024 processes, and the number of MPI messages per sender process in the P2P
implementation is 48.

plementation, especially when the number of 2-D coupling
fields gets bigger. When the number of MPI messages per
sender process in the P2P implementation is big (Fig. 16c,
d), the butterfly implementation significantly outperforms the
P2P implementation; however, the advantage of the butter-
fly implementation decreases when increasing the number of
coupling fields. The results also demonstrate that the adap-
tive data transfer library can adaptively choose the optimal
implementation from the P2P implementation and the butter-
fly implementation, and can further improve the performance
based on the butterfly implementation.

In the third experiment, we fix the number of MPI mes-
sages per sender process in the P2P implementation to be 24
and the number of coupling fields transferred to be 10, and
vary the number of processes used. Figure 17 shows the ex-
ecution time of one data transfer with different implementa-
tions when varying the number of processes. The P2P imple-
mentation outperforms the butterfly implementation when a
small number of processes are used (e.g. smaller than 256 in
Fig. 17), while the butterfly implementation outperforms the

P2P implementation when a large number of processes are
used (e.g. larger than 256 in Fig. 17). Similar to the above
two experiments, the adaptive data transfer library can adap-
tively choose the optimal implementation from the P2P im-
plementation and the butterfly implementation.

The resolution of models becomes higher and higher these
days. How about the performance of the data transfer imple-
mentations when model resolution becomes higher? Higher
model resolution means that a model will use more processes
for accelerating a simulation, while the average number of
grid points per process can remain constant. Considering that
the numbers of grid points are always balanced among the
processes of a model, we make each process (which runs
on a unique processor core) of the toy models evenly have
around 96 grid points in this evaluation, while enabling pro-
cesses to have different number of MPI messages and differ-
ent message sizes (the average number of MPI messages of
the sender in P2P implementation is 34). As shown in Fig. 18,
although the execution times of all data transfer implemen-
tations increase when increasing the number of processes

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

2110 C. Zhang et al.: A new adaptive data transfer library for model coupling

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

192 256 384 512 768 1024

T
im

e
(s

)

Number of processes per model

Adaptive

P2P

Butterfly

Figure 17. Average execution time (y axis) of one data trans-
fer between two toy models with the same rectangular grid (of
192× 480 grid points) when varying the number of processes per
model (x axis). There are 10 2-D coupling fields transferred from
the source toy model to the target toy model. In each test, the num-
ber of MPI messages per sender process in the P2P implementation
is 24.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

64 96 128 192 256 384 512 768 1024

T
im

e
(s

)

Number of processes per model

Adaptive

P2P

Butterfly

Figure 18. Average execution time (y axis) of one data transfer be-
tween two toy models. In this evaluation, each process (running on
a unique processor core) of the toy models has 96 grid points, while
different processes have a different number of MPI messages and
different message sizes in the P2P implementation. The number of
coupling fields transferred is set to 20.

(from 64 to 1024), the butterfly implementation significantly
outperforms the P2P implementation. So the adaptive data
transfer library adaptively chooses the butterfly implemen-
tation, and further slightly outperforms the butterfly imple-
mentation when each model uses more than 512 processes
because some butterfly stages are skipped.

5.3 Performance of data transfer between realistic
models

In this subsection, we evaluate the performance using two
realistic models: GAMIL2–CLM3 (horizontal resolution of
2.8◦× 2.8◦) and CESM (resolution of 1.9x2.5_gx1v6).

0

0.0005

0.001

0.0015

0.002

0.0025

6 12 24 48 96 192

T
im

e
(s

)

Number of processes per model

Adaptive P2P Butterfly

Figure 19. Average execution time (y axis) of one data transfer
between the land surface model CLM4 and the coupler CPL7 in
CESM when varying the number of processes per model (x axis):
32 coupling fields on the CLM horizontal grid (the grid size is
144× 96= 13 824) are transferred from the land surface model
CLM4 to the coupler CPL7. The performance results of the P2P im-
plementation are obtained through running the adaptive data trans-
fer library forcing it to completely switch to the original P2P imple-
mentation.

For CESM, we use the data transfer between the coupler
CPL7 (Craig et al., 2012) and the land surface model CLM4
(Oleson et al., 2004), where 32 2-D coupling fields on the
CLM4 horizontal grid (the grid size is 144× 96= 13 824)
are transferred. Figure 19 shows the performance of one data
transfer of different implementations when increasing the
number of processes of both CPL7 and CLM4 from 6 to
192. When the number of processes is small (e.g. smaller
than 24 in Fig. 19), the butterfly implementation is much
poorer than the P2P implementation. In this case, the adap-
tive data transfer library chooses the P2P implementation as
the optimal implementation. However, when the number of
processes gets bigger (e.g. larger than 24 in Fig. 19), the
butterfly implementation outperforms the P2P implementa-
tion. In this case, the adaptive data transfer library, based on
the butterfly implementation, skips some stages, outperform-
ing the butterfly implementation. Figure 19 also shows that
the butterfly implementation and the adaptive transfer library
seem to converge when increasing the number of processes
per model. When each model uses 192 processes, the adap-
tive data transfer library is 4.01 times faster than the P2P
implementation.

For GAMIL2–CLM3, we use the data transfer from CLM3
to GAMIL2 where 14 2-D coupling fields on the GAMIL2
horizontal grid (whose grid size is 128× 60= 7680) are
transferred. Figure 20 shows the execution time of one data
transfer of each implementation when increasing the num-
ber of processes of both GAMIL2 and CLM3 from 6 to 192.
The results in Fig. 20 confirm that the adaptive data trans-
fer library can adaptively choose the optimal implementa-
tion from the P2P implementation and the butterfly imple-
mentation. Compared to the P2P implementation, the adap-

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

C. Zhang et al.: A new adaptive data transfer library for model coupling 2111

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

6 12 24 48 96 192

T
im

e
(s

)

Number of processes per model

Adaptive

P2P

Butterfly

Figure 20. Average execution time (y axis) of one data transfer be-
tween the atmosphere model GAMIL2 and the land surface model
CLM3 in GAMIL2–CLM3 when varying the number of processes
per model (x axis): 14 coupling fields on the GAMIL2 horizontal
grid (the grid size is 128× 60= 7680) are transferred from the land
surface model CLM3 to the atmosphere model GAMIL2.

tive data transfer library achieves an 11.68-fold performance
speed-up when the number of processes is 96, but achieves
a much lower speed-up (only 3.48-fold) when the number
of processes is 192. This is because the average number of
MPI messages per process in the P2P implementation re-
duces from 32 to 18 when the number of process increases
from 96 to 192.

5.4 Performance of data rearrangement for
interpolation

Besides data transfer between different component models,
there is another kind of data transfer in model coupling that
rearranges data inside a model for parallel interpolation of
fields between different grids. Here, we use the data rear-
rangement for the parallel interpolation from the atmosphere
grid (whose grid size is 144× 96= 13 824) to the ocean
grid (whose grid size is 320× 384= 122 880) in the coupled
model CESM for further evaluation. As shown on Fig. 21,
the P2P implementation significantly outperforms the butter-
fly implementation. This is because the parallel decomposi-
tions before and after data rearrangement are always similar,
which leads to small number of MPI messages. For example,
the average number of MPI messages in the P2P implemen-
tation corresponding to Fig. 21 is only 6.49 when the model
uses 96 processes. In this case, the P2P implementation is
chosen as the optimal implementation of the data transfer li-
brary, so the data transfer library does not provide real benefit
compared to the P2P implementation.

5.5 Performance improvement for a coupled model

With the performance improvement of data transfer, we ex-
pect that the adaptive data transfer library will improve the
performance of coupled models. For this evaluation, we first

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

6 12 24 48 96 192

T
im

e
(s

)

Number of processes per model

Adaptive P2P Butterfly

Figure 21. Average execution time (y axis) of one data rearrange-
ment for the parallel interpolation from the atmosphere grid (the
grid size is 144× 96= 13 824) to the ocean grid (the grid size is
320× 384= 122 880) in CESM when varying the number of pro-
cesses per model (x axis).

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

6 8 12 16 24 32 48 64 96 128

S
p

ee
du

p

Number of processes per model

Speedup achieved by the adaptive data transfer library

Speedup achieved by the butterfly implementation

Figure 22. Performance improvement with respect to the whole
model time for the coupled model GAMIL2–CLM3 achieved by
the butterfly implementation and the adaptive data transfer library,
using the P2P implementation as the baseline.

imported the adaptive data transfer library into C-Coupler1,
used it in the coupled model GAMIL2–CLM3, and measured
performance results. As shown in Fig. 22, the adaptive data
transfer library achieves higher speed-up with respect to the
whole model time (when the P2P implementation is used
as the baseline) for GAMIL2–CLM3 when using more than
16 processes. When each component model uses 128 pro-
cesses, the butterfly implementation achieves ∼ 4.6 % per-
formance improvement, and the adaptive data transfer library
achieves ∼ 6.9 % performance improvement. Therefore, the
data transfer library can improve the performance of data
transfer, and then improve the performance of the whole cou-
pled model.

6 Conclusions

Data transfer is a fundamental and frequently used opera-
tion in a coupler. This paper showed that the P2P imple-

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

2112 C. Zhang et al.: A new adaptive data transfer library for model coupling

mentation currently used in most state-of-the-art couplers
for data transfer is inefficient when the parallel decompo-
sitions of the sender and the receiver are different, and fur-
ther revealed the corresponding performance bottlenecks. We
showed that the butterfly implementation can outperform the
P2P implementation in many cases but degrades the perfor-
mance in some cases, for example when a small number of
processes are used to run models or when the parallel decom-
positions of the sender and receiver are similar. We therefore
designed and implemented an adaptive data transfer library
that automatically chooses an optimal implementation be-
tween the P2P implementation and the butterfly implemen-
tation and also further improves the performance based on
the butterfly implementation through skipping some butter-
fly stages. Compared to the P2P implementation, the adap-
tive data transfer library can improve the performance of data
transfer when the parallel decompositions of the sender and
the receiver are different.

The initialization overhead for the adaptive data transfer
library could become expensive when using a large number
of processes. In the future version, the adaptive data transfer
will allow users to record the results of performance profiling
offline to save the time used for performance profiling in the
next run of the same coupled model.

Code availability

The source code of the adaptive data transfer library version
1.0 is available at https://github.com/zhang-cheng09/Data_
transfer_lib.

Acknowledgements. This work is supported in part by the
Natural Science Foundation of China (no. 41275098), the Na-
tional Grand Fundamental Research 973 Program of China
(no. 2013CB956603), and the Tsinghua University Initiative
Scientific Research Program (no. 20131089356).

Edited by: S. Valcke

References

Armstrong, C. W., Ford, R. W., and Riley, G. D.: Coupling inte-
grated Earth System Model components with BFG2, Concur-
rency and Computation: Practice and Experience, 21, 767–791,
doi:10.1002/cpe.1348, 2009.

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Maly-
shev, S., and Stouffer, R. J.: The Exchange Grid: a mechanism
for data exchange between Earth system components on indepen-
dent grids, in: Parallel Computational Fluid Dynamics 2005 The-
ory and Applications, 179–186, doi:10.1016/B978-044452206-
1/50021-5, 2006.

Chong, F. T. and Brewer, E. A.: Packaging and multiplexing of
hierarchical scalable expanders, Parallel Computer Routing and
Communication, Springer Berlin Heidelberg, 200–214, 1994.

Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson, J., Ong,
E., Ding, C., and He, Y.: CPL6: the New Extensible, High Per-
formance Parallel Coupler for the Community Climate System
Model, Int. J. High Perform. C., 19, 309–327, 2005.

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flex-
ible coupler for Earth system modelling developed for
CCSM4 and CESM1, Int. J. High Perform. C., 26, 31–42,
doi:10.1177/1094342011428141, 2012.

Dennis, J. M.: Inverse space-filling curve partitioning of a global
ocean model, in: IEEE International Parallel & Distributed Pro-
cessing Symposium, Long Beach, CA, 2007.

Dennis, J. M. and Tufo, H. M.: Scaling climate simulation appli-
cations on the IBM Blue Gene/L system, IBM J. Res. Dev., 52,
117–126, doi:10.1147/rd.521.0117, 2008.

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H.,
Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley, P. H.: CAM-
SE: a scalable spectral element dynamical core for the Commu-
nity Atmosphere Model, Int. J. High Perform. C., 26, 74–89,
doi:10.1177/1094342011428142, 2012.

Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton,
P., Vertenstein, M., Yang, Z.-L., and Zeng, X.: The Community
Land surface model and its climate statistics as a component of
the Community Climate System Model, J. Climate, 19, 2302–
2324, 2006.

Ford, R. W., Riley, G. D., Bane, M. K., Armstrong, C. W., and Free-
man, T. L.: GCF: a general coupling framework, Concurr. Comp.
Pract. E., 18, 163–181, 2006.

Foster, I.: Designing and building parallel programs: concepts and
tools for parallel software engineering, Addison-Wesley, 1995.

Heckbert P.: Fourier Transforms and the Fast Fourier Transform
(FFT) Algorithm, Comp. Graph., 2, 15–463, 1995.

Hemmert, K. S. and Underwood, K. D.: An analysis of the double-
precision floating-point FFT on FPGAs, Field-Programmable
Custom Computing Machines, 2005, FCCM 2005, 13th Annual
IEEE Symposium on IEEE, 171–180, 2005.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.: The
Architecture of the Earth System Modelling Framework, Com-
put. Sci. Eng., 6, 18–28, 2004.

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E.,
Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D.,
Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N.,
Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein,
M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Mar-
shall, S.: The Community Earth System Model: a framework for
collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
2013.

Hunke, E. C. and Lipscomb W. H.: CICE: the Los Alamos Sea Ice
Model Documentation and Software User’s Manual 4.0, Techni-
cal Report LA-CC-06-012, Los Alamos National Laboratory, T-3
Fluid Dynamics Group, 2008.

Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and
Elliott, S.: CICE: the Los Alamos Sea Ice Model Documenta-
tion and Software User’s Manual Version 5.0, LA-CC-06-012,
Los Alamos National Laboratory, Los Alamos NM, 87545, 115,
2013.

Jacob, R., Larson, J., and Ong, E.: M×N Communication and Par-
allel Interpolation in Community Climate System Model version
3 using the Model Coupling Toolkit, Int. J. High Perform. C., 19,
293–307, 2005.

Geosci. Model Dev., 9, 2099–2113, 2016 www.geosci-model-dev.net/9/2099/2016/

https://github.com/zhang-cheng09/Data_transfer_lib
https://github.com/zhang-cheng09/Data_transfer_lib
http://dx.doi.org/10.1002/cpe.1348
http://dx.doi.org/10.1016/B978-044452206-1/50021-5
http://dx.doi.org/10.1016/B978-044452206-1/50021-5
http://dx.doi.org/10.1177/1094342011428141
http://dx.doi.org/10.1147/rd.521.0117
http://dx.doi.org/10.1177/1094342011428142

C. Zhang et al.: A new adaptive data transfer library for model coupling 2113

Jan, B., Montrucchio, B., Ragusa, C., Khan, F. G., and Khan, O.:
Parallel butterfly sorting algorithm on gpu, Artificial Intelligence
and Applications, Innsbruck, Austria, doi:10.2316/P.2013.795-
026, 2013.

Kerbyson, D. J. and Jones, P. W.: A performance model of the
parallel ocean program, Int. J. High Perform. C., 19, 261–276,
doi:10.1177/1094342005056114, 2005.

Kim J., Dally W. J., and Abts D.: Flattened butterfly: A cost-efficient
topology for high-radix networks, ISCA, 35, 126–137, 2007.

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W.,
Wang, Y., Huang, W., Shi, X., Pu, Y., and Yang, G.: Evalua-
tion of Grid-point Atmospheric Model of IAP LASG version
2 (GAMIL2), Advances in Atmospheric Sciences, 30, 855–867,
doi:10.1007/s00376-013-2157-5, 2013.

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji,
Y., and Wang, L.: C-Coupler1: a Chinese community coupler
for Earth system modeling, Geosci. Model Dev., 7, 2281–2302,
doi:10.5194/gmd-7-2281-2014, 2014.

Morrison, H. and Gettelman, A.: A new two-moment bulk strati-
form cloud microphysics scheme in the Community Atmosphere
Model, version 3 (CAM3). Part I: Description and numerical
tests, J. Climate, 21, 3642–3659, doi:10.1175/2008JCLI2105.1,
2008.

Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P.
H., Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J.,
Taylor, M. A., Collins, W. D., Zhang, M., and Lin, S.: Descrip-
tion of the NCAR Community Atmosphere Model (CAM 4.0),
National Center for Atmospheric Research Ncar Koha Opencat,
TN-485+STR, 222 pp., 2010.

Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park,
S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D.,
Lamarque, J. F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S.,
Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono,
M. J., Easter, R. C., Ghan, S. J., Liu, X., Rasch, P. J., and Tay-
lor, M. A.: Description of the NCAR Community Atmosphere
Model (CAM 5.0), National Center for Atmospheric Research
Ncar Koha Opencat, TN-486+STR, 289 pp., 2012.

Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R.,
Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G. Y.,
Thornton, P., Vertenstein, M., Yang, Z. L., and Zeng, X.: Techni-
cal Description of the Community Land Surface Model (CLM),
National Center for Atmospheric Research Ncar Koha Opencat,
TN-461+STR, 186 pp., 2004.

Petagon, R. and Werapun, J.: Embedding the optimal all-to-all
personalized exchange on multistage interconnection networks
++mathContainer Loading Mathjax, J. Parallel Distr. Com., 88,
16–30, 2016.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling soft-
ware for next generation earth system modelling, Geosci. Model
Dev., 3, 87–104, doi:10.5194/gmd-3-87-2010, 2010.

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Den-
nis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht,
M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M.,
Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Par-
allel Ocean Program (POP) reference manual ocean component
of the Community Climate System Model (CCSM) and Commu-
nity Earth System Model (CESM), Los Alamos National Lab-
oratory, LAUR-10-01853, available at: http://www.cesm.ucar.
edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf (last ac-
cess: 15 October 2015), 141 pp., 2010.

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R.
W., Jacob, R., Larson, J., O’Kuinghttons, R., Riley, G. D., and
Vertenstein, M.: Coupling technologies for Earth System Mod-
elling, Geosci. Model Dev., 5, 1589–1596, doi:10.5194/gmd-5-
1589-2012, 2012.

Valcke, S.: The OASIS3 coupler: a European climate mod-
elling community software, Geosci. Model Dev., 6, 373–388,
doi:10.5194/gmd-6-373-2013, 2013.

Valcke, S., Craig, T., and Coquart, L.: OASIS3-MCT User Guide,
OASIS3-MCT_3.0, Technical Report TR/CMGC/15/38, Cer-
facs, France, available at: http://www.cerfacs.fr/oa4web/
oasis3-mct_3.0/oasis3mct_UserGuide.pdf (last access:
7 June 2016), 2015.

www.geosci-model-dev.net/9/2099/2016/ Geosci. Model Dev., 9, 2099–2113, 2016

http://dx.doi.org/10.2316/P.2013.795-026
http://dx.doi.org/10.2316/P.2013.795-026
http://dx.doi.org/10.1177/1094342005056114
http://dx.doi.org/10.1007/s00376-013-2157-5
http://dx.doi.org/10.5194/gmd-7-2281-2014
http://dx.doi.org/10.1175/2008JCLI2105.1
http://dx.doi.org/10.5194/gmd-3-87-2010
http://www.cesm.ucar.edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf
http://www.cesm.ucar.edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf
http://dx.doi.org/10.5194/gmd-5-1589-2012
http://dx.doi.org/10.5194/gmd-5-1589-2012
http://dx.doi.org/10.5194/gmd-6-373-2013
http://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf
http://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf

	Abstract
	Introduction
	Data transfer implementations in existing couplers
	P2P implementation
	Performance bottlenecks of the P2P implementation

	Butterfly implementation for better performance of data transfer
	Butterfly kernel
	Process mapping

	Adaptive data transfer library
	Performance evaluation
	Overhead of initialization
	Performance of data transfer between toy models
	Performance of data transfer between realistic models
	Performance of data rearrangement for interpolation
	Performance improvement for a coupled model

	Conclusions
	Acknowledgements
	References

