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Abstract. Stochastic methods are increasingly used in global
coupled model climate forecasting systems to account for
model uncertainties. In this paper, we describe in more detail
the stochastic dynamics technique introduced by Batté and
Déqué (2012) in the ARPEGE-Climate atmospheric model.
We present new results with an updated version of CNRM-
CM using ARPEGE-Climate v6.1, and show that the tech-
nique can be used both as a means of analyzing model er-
ror statistics and accounting for model inadequacies in a sea-
sonal forecasting framework.

The perturbations are designed as corrections of model
drift errors estimated from a preliminary weakly nudged re-
forecast run over an extended reference period of 34 boreal
winter seasons. A detailed statistical analysis of these cor-
rections is provided, and shows that they are mainly made of
intra-month variance, thereby justifying their use as in-run
perturbations of the model in seasonal forecasts. However,
the interannual and systematic error correction terms cannot
be neglected. Time correlation of the errors is limited, but
some consistency is found between the errors of up to 3 con-
secutive days.

These findings encourage us to test several settings of the
random draws of perturbations in seasonal forecast mode.
Perturbations are drawn randomly but consistently for all
three prognostic variables perturbed. We explore the impact
of using monthly mean perturbations throughout a given
forecast month in a first ensemble re-forecast (SMM, for
stochastic monthly means), and test the use of 5-day se-
quences of perturbations in a second ensemble re-forecast
(S5D, for stochastic 5-day sequences). Both experiments are
compared in the light of a REF reference ensemble with ini-
tial perturbations only. Results in terms of forecast quality are
contrasted depending on the region and variable of interest,

but very few areas exhibit a clear degradation of forecast-
ing skill with the introduction of stochastic dynamics. We
highlight some positive impacts of the method, mainly on
Northern Hemisphere extra-tropics. The 500 hPa geopoten-
tial height bias is reduced, and improvements project onto the
representation of North Atlantic weather regimes. A mod-
est impact on ensemble spread is found over most regions,
which suggests that this method could be complemented by
other stochastic perturbation techniques in seasonal forecast-
ing mode.

1 Introduction

Handling uncertainties in seasonal predictions with numeri-
cal models is an issue of the utmost importance. These un-
certainties arise from two main sources: initial conditions of
the different variables describing the evolution of the atmo-
sphere, ocean, and land surface, and approximations made
in the modeling process. The first source is addressed by us-
ing ensemble predictions to sample the error on the initial
state by running several integrations of a given season. The
second source is now increasingly tackled in coupled global
circulation models (GCMs) with several approaches devel-
oped over the last decades. Multi-model forecasts are now
issued routinely by the EUROSIP consortium (Vitart et al.,
2007), the United States National Multi-Model Ensemble
(Kirtman et al., 2013), or the APEC Climate Center (Wang
et al., 2009). Pooling several models together provides a first
rough estimate of the uncertainties related to choices in pa-
rameterizations of sub-grid processes or numerical approxi-
mations in the individual models (e.g., discretization in time
and space). Numerous studies in the framework of interna-
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tional research projects based on retrospective seasonal fore-
casts (or “re-forecasts”) have illustrated the gain in terms of
forecast skill when using a multi-model ensemble vs. a sin-
gle model (see Hagedorn et al., 2005; Doblas-Reyes et al.,
2009; Alessandri et al., 2011; Batté and Déqué, 2011). Fur-
ther calibration of these forecasts (by weighting each indi-
vidual model contribution using a separate training period)
can improve this effect (Rodrigues et al., 2014; Doblas-Reyes
et al., 2005).

Simultaneously with these multi-model studies, other
techniques to account for model inaccuracies were devel-
oped in the climate modeling framework. Multi-parameter
(Collins et al., 2006) or multi-physics techniques (Watan-
abe et al., 2012) generate ensemble simulations with differ-
ent physics parameter settings and physics schemes for the
sub-grid scales, respectively. Over the last 20 years, stochas-
tic perturbations have also been tested as a means of intro-
ducing noise in numerical weather prediction (NWP) models
and components of GCMs. Most studies have focused on the
atmospheric component, building on methods perturbing pa-
rameterization tendencies (Buizza et al., 1999) or scattering
kinetic energy dissipated by the model at the sub-grid scale
back to larger scales (Shutts, 2005).

Stochastic perturbations in the atmosphere have been
shown to improve the skill, reliability, and mean state of sea-
sonal forecasting systems (see, e.g., Weisheimer et al., 2011,
2014; Berner et al., 2008; Batté and Doblas-Reyes, 2015). An
increasing number of studies report results from introducing
stochastic perturbations in the other components of the cli-
mate system, such as the ocean (Brankart, 2013; Brankart
et al., 2015), land-surface (MacLeod et al., 2016) or sea ice
models (Juricke et al., 2013). Berner et al. (2016) provides a
review of some of the latest advances in stochastic parame-
terization for NWP and climate models.

At CNRM-GAME, an alternative method to the stochastic
physics techniques was designed to perturb the atmospheric
component of the coupled climate model in a seasonal fore-
casting framework (Batté and Déqué, 2012). Past studies
(Yang and Anderson, 2000; Barreiro and Chang, 2004; Guld-
berg et al., 2005) had suggested that systematically correct-
ing model tendency errors in GCMs could impact the model
mean state and in some cases improve the model prediction
skill. D’Andrea and Vautard (2000) had showed in a quasi-
geostrophic model framework that correcting in-run flow-
dependent model errors based on flow analogues could im-
prove the model mean state. In the method presented here,
dubbed “stochastic dynamics”, we apply additive perturba-
tions to the prognostic variables of the model drawn from
a sample of model error corrections estimated in a prelim-
inary run, instead of a systematic correction. In Batté and
Déqué (2012), we showed a reduction of systematic error in
the extra-tropical geopotential height fields for boreal win-
ter re-forecasts over an extended period with CNRM-CM5.
Since then, the method has been more thoroughly assessed
in subsequent versions of the coupled model in a seasonal

re-forecasting framework. Different choices in the frequency
and strength of perturbations have been extensively tested.
Building on the conclusions from these assessments and op-
erational constraints, a version of stochastic dynamics was
introduced in the operational seasonal forecasting system 5
at Météo-France in 2015.

The aim of the present paper is to provide an in-depth
assessment of this approach with a more recent version of
the CNRM-CM coupled climate model. Based on a statisti-
cal analysis of the model errors estimated with atmospheric
nudging, we examine two different ways of sampling and
drawing the perturbations in a seasonal forecasting frame-
work. We then detail the impact of the technique on seasonal
forecast quality in terms of model mean state, variability, en-
semble spread, and prediction skill.

Section 2 describes the CNRM-CM model and setup
for seasonal re-forecasts and provides more details on the
stochastic dynamics technique. A statistical analysis of the
model errors estimated from the nudged re-forecast run is led
in Sect. 3. Section 4 examines the impact of using corrections
of these model errors in two stochastic dynamics seasonal
winter re-forecasts, using a reference unperturbed run as a
benchmark. Common skill and forecast quality metrics will
be used, as well as an analysis of the representation of North
Atlantic weather regimes. Section 5 summarizes conclusions
and discusses limitations and future plans for stochastic per-
turbations in CNRM-CM.

2 Model and methods

2.1 CNRM-CM

The CNRM-CM global coupled model used in this study is
derived from the CMIP5 version described by Voldoire et al.
(2013). The ARPEGE-Climate atmosphere component is
version 6.1.0, which benefits from a new prognostic convec-
tion scheme (PCMT; Piriou et al., 2007 and Guérémy, 2011),
ozone and quasi-biennial oscillation parameterizations (Car-
iolle and Déqué, 1986; Lott and Guez, 2013), and an in-
creased vertical resolution of 91 levels. The horizontal reso-
lution in the atmosphere is tl127 (linear triangular truncation
at wavenumber 127, which corresponds to approximately
1.4 degrees in latitude and longitude). The ocean model is
NEMO version 3.2 (Madec, 2008) on the ORCA1L42 grid as
in CNRM-CM5. Land surface is modeled with the ISBA-3L
land surface model (Noilhan and Mahfouf, 1996) included
in the SURFEX v7.3 surface modeling platform, and the sea
ice component is an updated version of the GELATO sea ice
model (Salas y Melia, 2002).

2.2 Stochastic dynamics

The stochastic dynamics method was first described in Batté
and Déqué (2012). The idea behind this method is to combine
an ad hoc correction technique with the introduction of in-run
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random perturbations in the atmospheric model. It is impos-
sible to know ahead of time the errors the model will make
at each time step; however, the statistical properties of model
errors can be inferred, provided we have a sufficient sample
of past forecasts. Model error corrections can then be drawn
at random in forecast mode. In this method, the estimation
of model error corrections relies on Newtonian relaxation (or
nudging) as in Guldberg et al. (2005). Random model per-
turbations are then drawn from a population of model error
corrections and applied in-run to ARPEGE-Climate. The per-
turbed variables are ARPEGE prognostic variables tempera-
ture, specific humidity, and vorticity.

We chose not to perturb the divergent component of winds
to let the model adjust to pertubations, as suggested by Guld-
berg et al. (2005). Another prognostic variable we did not
nudge was sea-level pressure, since our philosophy was to
let the surface free of perturbations so it could adjust to the
higher levels in the atmosphere. Nudging of these two addi-
tional variables was tested with another version of the model,
and very little difference was found in terms of model skill in
seasonal re-forecast runs using the perturbations for all prog-
nostic fields.

Equation (1) describes the nudging technique as imple-
mented in ARPEGE-Climate, whereX is the vector of model
prognostic variables, M the atmospheric model operator, and
τ the relaxation time.

∂X

∂t
(t)=M(X(t), t)+

Xref(t)−X(t)

τ
(1)

In this study the prognostic fields T , q, and 9 are weakly
constrained towards reference ERA-Interim data: τ is set to
30 days for each field. The rationale behind this is to let the
model adjust and avoid spin-up problems due to differences
between the model climate and ERA-Interim, although the
drawback is a slight loss of accuracy in the tendency esti-
mates for the model. With this weaker constraint, the esti-
mates correspond to long-term drift estimates rather than ini-
tial tendency estimates as in the original version. However,
an overly strong relaxation would force the model to stay too
close to the reanalysis data and far from its own attractors
in climate forecast mode. Granted that τ is quite large, the
same value was chosen for all three prognostic fields. As in
Batté and Déqué (2012), the relaxation coefficients are pro-
gressively tuned down to zero in the lower levels of the model
to avoid shocks at the coupling interface.

Nudging is applied during a preliminary one-member sea-
sonal run for November to February (NDJF), starting each
year from 1979 to 2012. This run serves primarily one pur-
pose: providing the model error estimates that then make up
the population of random corrections from which perturba-
tions can be drawn. Correction estimates are defined each
day following Eq. (2).

δX(t)=
Xref(t)−X(t)

τ
(2)

The in-run perturbations in the actual seasonal re-forecasts
are applied by drawing a random date t̃ and adding the corre-
sponding error corrections to the standard model formulation
(following Eq. 3).

∂X

∂t
(t)=M(X(t), t)+ δX(̃t) (3)

Note that in a retrospective forecast framework, one could
theoretically draw the correction corresponding to the time
for which the model is integrated. Although one would need
to draw all the consecutive corrections for the model to fol-
low closely the reference data, corrections for a given month
and year have an interannual component, and Batté and
Déqué (2012) showed that drawing corrections from within
the year one is trying to forecast gave significantly higher
skill scores. To avoid overestimating model skill, since the
re-forecast and nudged run periods are the same, the tech-
nique is applied in cross-validation mode in the re-forecasts
discussed in Sect. 4, by systematically discarding the cor-
rections for the year being forecast from the perturbation
population. Ideally, the corrections should be computed over
a completely separate period from the re-forecasts. How-
ever, when evaluating seasonal forecasting systems, a limited
number of data points is available in the verification scores,
and we chose to use an extended re-forecast period to ensure
as much robustness in our skill assessments as possible.

2.3 Seasonal re-forecast experiments

To evaluate the impact of this perturbation method, several
re-forecasts were run starting from 1 November 1979 to 2012
and running for 4 months (until the end of February). Initial
conditions are provided by the ERA-Interim reanalysis for
the atmosphere (Dee et al., 2011), ORA-S4 ocean reanaly-
sis for the ocean (Balmaseda et al., 2013), and outputs of a
coupled model run nudged towards ERA-Interim in the at-
mosphere and ORA-S4 in the ocean to initialize the sea ice
and land surface components. Re-forecast ensemble size is
set to 30 members. Table 1 summarizes the characteristics of
each ensemble.

Unlike Batté and Déqué (2012), where perturbations were
drawn at daily intervals, we chose to run an ensemble using
perturbations from 5 consecutive days, drawn separately for
each member from within the other years of the re-forecast
period. This experiment is called S5D (stochastic 5-day se-
quences). Every 5 days, another 5-day set of δX terms is
picked for each member from the same calendar month as
the re-forecast. Note that the δX terms are drawn according
to the date of the nudged re-forecast run, meaning that per-
turbations for the three prognostic fields are consistent with
a certain model error at a given date and time.

Given the relative importance of systematic error and in-
terannual variance with respect to total squared mean per-
turbations (see Fig. 4 discussed in Sect. 3), we also chose
to test the impact of perturbing without intra-month vari-
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Table 1. Characteristics of the seasonal re-forecast experiments discussed in this paper.

Name Ensemble Initial Stochastic Characteristics
size perturbations dynamics

REF 30 Random δX No –
SMM 30 None Yes Monthly mean δX terms
S5D 30 None Yes Five consecutive δX terms

ance in the corrections used. To do this we ran experiment
SMM (stochastic monthly means), where monthly means of
δX terms from the same calendar month but other years of
the re-forecast period are used for each ensemble member.
The year from which perturbations are drawn changes each
month of the re-forecast.

3 Analysis of ARPEGE-Climate model errors

The technique described in this study can be used as both
a diagnosis of model errors and a perturbation method. The
first opportunity is explored by deriving standard statistics of
the ARPEGE-Climate model errors in a coupled initialized
prediction framework.

3.1 Spectral analysis

The δX population is originally in spectral space (for a to-
tal wavenumber of 127) and was first analyzed in terms of
squared amplitude for each total wavenumber n. For each
prognostic variable, model level z, and re-forecast month mo,
we compute An(z,mo):

An(z,mo)=
n∑

m=−n

[
1
N

N∑
i=1

δXi(n,m,z,mo)
]2

, (4)

where N is the size of the perturbation population {δXi} for
month mo, and m is the zonal wavenumber.

To present information in a synthetic way, these statis-
tics are integrated over 200 hPa deep layers of the model.
We take into account the influence of lead time on results,
since the weak nudging may allow the model to drift slowly
from its initial state. Figure 1 shows results for all three
nudged prognostic variables. Amplitude is plotted against the
wavenumber on a logarithmic scale for both axes. The first
row shows the amplitude spectra of δX for January correc-
tions integrated over 200 hPa layers. For humidity (Fig. 1a),
corrections have (as expected) an amplitude that is several
orders of magnitude smaller for the upper layers of the at-
mosphere than for the lower layers. This difference in am-
plitude is much less pronounced for temperature and stream-
function. For temperature (Fig. 1b), it is worth mentioning
that the slope of decrease in amplitude with wavenumber in
log–log space is more pronounced for the upper layers of
the atmosphere than for the lower layers. In the lower lay-

ers, the land–sea contrast in temperature corrections gener-
ates small structures in the perturbation patterns, increasing
the amplitude of the corrections for the higher wavenumbers.
Figure 1d–f show the month-by-month results for the mid-
troposphere layer (600–800 hPa). For all three variables, the
amplitude of corrections seems to increase with lead time
for the smaller wavenumbers, but a clear difference is found
mainly between November and the following months of the
nudged re-forecasts used to derive the correction terms.

These results are most likely dependent on the strength of
the nudging used. With weak nudging the model drifts from
its initial state despite relaxation towards reference data. In
a previous version of the method, corrections were of gen-
erally higher amplitude due to stronger nudging, with finer
spatial structures that would translate into sharper slopes of
the spectra. However, a thorough analysis of the impact of τ
on the results presented here has yet to be done with the most
recent version of the ARPEGE-Climate model.

3.2 Gridpoint analysis

The spectral δX fields were then converted to gridpoint space
for a spatial analysis of the correction terms. Again, results
are integrated over 200 hPa layers for the sake of clarity. Fig-
ure 2 plots the December mean (in color) and standard de-
viation (isolines) for δX specific humidity, temperature and
streamfunction corrections for these layers.

As shown before, corrections for humidity are several or-
ders of magnitude higher for the lower levels of the atmo-
sphere than in the stratosphere, whereas temperature and
streamfunction corrections are of similar amplitude. Results
are consistent with the spectral analysis in Fig. 1, in the sense
that for a streamfunction corrections are somewhat larger in
the upper layer of the atmosphere, but with fewer small-scale
patterns therefore concentrated on the smaller wavenumbers.

In terms of standard deviation, patterns for temperature
and streamfunction are mainly zonal (with some exceptions
due to land–sea contrast in the lower layers for tempera-
ture). Standard deviation increases with latitude in the North-
ern and Southern hemispheres for both variables, and val-
ues are quite similar between layers. For specific humidity,
standard deviation is higher in the tropics and around the
Equator. Less zonal symmetry is found than for temperature
corrections. For temperature, standard deviation values are
on the same order of magnitude as the mean corrections in
the tropics, whereas streamfunction and humidity correction
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Figure 1. Spectral amplitude of corrections for (from left to right) specific humidity, temperature, and streamfunction for January 1980–2013
integrated over 200 hPa layers of the atmospheric model (top row), and for each month of the nudged runs for the 600–800 hPa layer (bottom
row). Values are calculated with raw δX spectral fields (corrections per model time step).

standard deviations are higher than the mean correction in
most areas of the globe. The temperature mean correction
is mostly negative, implying that the model is warmer than
ERA-Interim over most of the atmospheric column.

3.3 Temporal analysis

A question we wish to address when studying the perturba-
tion population used in our forecasts is the consistency in
time of the δX terms. Indeed, one possibility in the use of the
perturbations is to apply corrections estimated for consecu-
tive days in the nudged run. This would make sense only if
some coherence in time is found between the δX terms. We
estimate this by computing the autocorrelation of correction
terms according to the lag between their corresponding dates
in the nudged re-forecast run. Figure 3 shows autocorrelation
at lags of 1, 2, and 3 days of February specific humidity and
temperature corrections (at approximately 850 hPa) as well
as streamfunction corrections (circa 500 hPa), computed for
all years of the re-forecast period.

Autocorrelation for humidity corrections is generally
stronger over land than the ocean, and strongly decreases be-
tween 1- and 2-day lags. Some areas of the globe such as
the Southern Ocean exhibit no autocorrelation even at day
1. Temperature corrections (center column of Fig. 3) show
higher autocorrelation than humidity corrections for each
time lag. The geographical areas of high autocorrelation at

approximately 850 hPa are generally consistent with those of
humidity corrections.

For streamfunction, autocorrelation from one day to the
next is higher than for humidity and temperature (over 0.6
in most parts of the globe), and remains above 0.4 in some
areas for a 2-day lag. Values are typically the same order as
that of humidity with a difference in the lag of 1 day. This
shows that mid-troposphere streamfunction corrections ex-
hibit more consistency in time than lower troposphere hu-
midity or temperature. The autocorrelation in the stream-
function correction is a motive for testing consecutive cor-
rections over the time span of synoptic weather regimes for
instance. In this paper we chose to test 5-day consecutive cor-
rections in one of the seasonal re-forecast runs discussed in
Sect. 4.

As a complement to these spatial and temporal analyses,
Fig. S1 in the Supplement illustrates an example of 5 con-
secutive days of corrections for specific humidity, tempera-
ture, and streamfunction corrections at different model levels
(corresponding, respectively, to approximately 970, 850, and
500 hPa).

3.4 Variance decomposition

When using pseudo-random correction terms as perturba-
tions in an ensemble forecasting framework, we wish to com-
bine two effects: correction of systematic errors the model
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Figure 2. Mean and standard deviation of December 1979–2012 corrections for (from left to right) specific humidity, temperature, and
streamfunction for 200 hPa layers of the atmospheric model (centered from top to bottom at 100, 300, 500, 700, and 900 hPa, respectively).
δX values are converted to standard units per day.

makes in coupled seasonal forecasting mode, and introduc-
tion of perturbations to account for the model uncertainties
that cannot be dealt with using deterministic methods. Both
effects could in some sense cancel each other out: the intro-
duction of overly large purely random terms can move the
model too far from its own equilibrium and induce adverse

effects, which could translate into increased systematic errors
in climate forecasts. On the other hand, if the systematic error
correction is too strong with respect to the purely random part
of the perturbations added in the model, ensemble members
will follow overly similar trajectories drawn towards the ref-
erence climate. In the following paragraph, we take a deeper
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Figure 3. Autocorrelation for lags (top to bottom) 1 to 3 days of February 850 hPa humidity (left) and temperature (center) corrections and
500 hPa streamfunction corrections (right).

look at the perturbations in terms of variance and mean, so
as to estimate the relative importance of the systematic er-
ror term and the interannual and intra-month (more random)
variance terms in the corrections used.

Equations (5)–(7) show how the mean square correction
terms for a given month (lead) of the nudged re-forecast can
be split into three components: one is the squared mean cor-
rection, the other two the straightforward variance decom-
position into interannual and intra-month variance. In these
equations, N is the total number of perturbations for a given
forecast time (month), y a given year of the re-forecast period
used in the nudged run, and ny the number of perturbations
for the month of focus in year y (not the same each year
in the case of February). The squared mean term δX

2
can

be interpreted as the systematic error correction for the vari-
able studied. The variance decomposition separates the inter-
annual signal (which is, to some extent, what one wants to
predict with seasonal forecasts) from intra-month variability,
which can be approximated as noise on a seasonal timescale.

δX2 =
1
N

N∑
i=1

δX2
i = δX

2
+Var(δX) (5)

Var(δX)=
1
N

N∑
i=1

(
δXi − δX

)2

=

1
N

∑
y

ny∑
iy=1

(
δX

(y)
iy
− δX

(y)
)2

+

∑
y

ny

N

(
δX

(y)
− δX

)2

(6)

δX2 = δX
2
+Varinter(y)(δX)+Varintra(y)(δX) (7)

Figure 4 plots the relative importance of each term in the
decomposition, zonally averaged and integrated over 200 hPa
deep layers. The intra-month variance (blue line) is the most
important component of the correction term decomposition
for all layers and latitudes, except for near-surface southern
subpolar latitudes in the case of specific humidity and south-
ern polar areas in the case of stratospheric streamfunction.
In most areas, for all three variables, the intra-month term
accounts for more than 50 % of the total squared correction.
Red lines show the proportion of interannual variance in the
decomposition, which stays below 40 % for all latitudes and
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Figure 4. Decomposition of the zonal mean square correction term for December corrections. Statistics are computed for 200 hPa layers as
in Fig. 2. Black lines represent the squared mean term, red lines the interannual variance, and blue lines the intra-month variance.

layers. Although this term is smaller than the intra-month
“noise”, it contains valuable information for seasonal fore-
casts: this was shown in Batté and Déqué (2012) with a so-
called “OPT” experiment where corrections were drawn in
the current season of the re-forecast. The black line shows the
proportion of the systematic correction in the total squared
correction term. This term ranges on average between 10
and 30 % depending on the variable and vertical layer. More
zonal variability is found than for the interannual term, and
the symmetry with the intra-month term is quite striking.

This analysis shows that the corrections used are mostly
made of noise (at least at a seasonal timescale), although
mean corrections and interannual variability cannot be ne-
glected. These conclusions justify the use of these correc-
tions as possible “pseudo-stochastic” perturbations to the
ARPEGE-Climate atmospheric model in seasonal integra-
tions.

4 Impact of perturbations on CNRM-CM seasonal
re-forecasts

The potential of the technique is evaluated in an updated ver-
sion of CNRM-CM5 for seasonal re-forecasts over a 34-year
hindcast period. The detailed setup of these experiments is
presented in Sect. 2.3.

4.1 Mean state

One key aspect we wish to assess when introducing such a
method in a coupled model forecasting framework is how
it affects the mean state of the model. Given the nature of
perturbations, the impact on ensemble spread will also be
considered. Although results from Sect. 3.4 suggest that per-
turbations are made up mostly of intra-month variance, with
a systematic error correction term accounting for less than
20 % of the squared corrections in most cases, atmospheric
models are highly nonlinear, and including these perturba-
tion terms could have adverse effects.

The top row of Fig. 5 shows the mean bias for DJF sea
surface temperature (left) and total precipitation (right) re-
forecasts in the REF ensemble. (For areas with sea ice the
model SST field is in fact the ice surface temperature, hence
the large negative bias with ERA-Interim reference data.)
The CNRM-CM re-forecasts exhibit typical warm SST bi-
ases along the eastern parts of ocean basins, as in the Gulf
of Guinea and in the Niño 1 and 2 areas. The model also ex-
hibits warm biases over the Southern Ocean and along the
Gulf Stream. Figure 5c and e show the sea surface temper-
ature relative absolute bias for experiments SMM and S5D,
respectively. Blue (red) areas indicate where bias is reduced
(increased) in amplitude, regardless of the sign of the bias
of REF re-forecasts. Both stochastic dynamics methods ex-
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Figure 5. DJF bias (top row) for REF experiment SST (left) and precipitation (right); corresponding relative absolute bias in experiments
SMM and S5D (second and bottom rows, respectively). Bias is computed with respect to ERA-Interim for SST and the Global Precipitation
Climatology Project (GPCP) v2.2 (Huffman et al. 2009) for precipitation. Areas in blue indicate where bias is lower with respect to REF,
whereas areas in shades of red show where bias is increased, regardless of the sign of the bias.
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hibit strikingly similar effects on SST bias: bias is increased
over most of the tropical Southern Hemisphere ocean basins
and decreased over most of the Northern Hemisphere oceans.
The bias is also decreased over the equatorial central Pacific.
Elsewhere, such as over the Southern Ocean, very little im-
pact is found.

For precipitation, results in terms of relative bias are quite
similar for experiments SMM (Fig. 5d) and S5D (Fig. 5f).
Both versions of stochastic dynamics seem to have very lit-
tle impact or slightly decrease precipitation biases (although
mainly over oceans), with the exception of the Sahel and Arc-
tic regions, where the bias increases, as well as over areas of
the central and eastern tropical Pacific.

Figure S2 shows the REF biases and SMM and S5D rela-
tive biases for the first month of the re-forecast. SST biases
are already present but develop mainly after the first month
of the forecast, whereas precipitation biases are already as
strong in November as for longer lead times. In terms of rel-
ative bias, the stochastic dynamics technique amplifies SST
biases in November in most regions of the tropics, and seems
to have a positive effect on precipitation biases already in the
first month of the re-forecast.

Results for 500 hPa geopotential height are shown in
Fig. S2 for November and Fig. S3 for DJF. Except for parts
of Eurasia, where biases (which were quite limited in REF)
are amplified with both stochastic dynamics methods due
to a shift of the bias pattern, both SMM and S5D exhibit
lower Z500 biases than REF. Figure 6 shows the Z500 bias
in experiments REF, SMM and S5D over the Northern Hemi-
sphere extra-tropics. This figure can be compared to Fig. 1
in Batté and Déqué (2012). With CNRM-CM5.2, DJF Z500
bias was quite different to the bias found in REF with a more
recent version of the ARPEGE-Climate model. The model
now exhibits a bias quite similar to the North Atlantic Os-
cillation pattern, and a positive bias over the Arctic regions
where the bias was previously negative. However, regardless
of this change in sign of the bias, the stochastic dynamics
technique reduces the model bias over the Northern Hemi-
sphere. Results with the new version of the model suggest
that improvements in the representation of North Atlantic at-
mospheric circulation could be found. This aspect will be dis-
cussed later on in this manuscript.

In a linear approximation, the impact of the perturbations
on seasonal re-forecast bias is related to the mean system-
atic error correction term, which depends on the bias of the
nudged re-forecast run. The nudged re-forecast (one-member
only) from which the perturbations were derived presents
smaller biases than the REF ensemble with respect to the ref-
erence data (not shown), although the choice of weak nudg-
ing does let biases develop throughout the seasonal integra-
tions.

4.2 Spread and deterministic skill

Ensemble seasonal forecasts with GCMs are often overconfi-
dent in the sense that the spread around the ensemble mean is
smaller than the root mean square error of the ensemble mean
with respect to verification data (Shi et al., 2015). This lack
of dispersion in ensemble forecasts can incur misleading un-
reliable forecasts (Weisheimer and Palmer, 2014). Including
stochastic perturbations in the components of the GCM can
help partly correct these flaws, as they tend to increase the
ensemble spread. In this paragraph, we wish to assess how
the stochastic dynamics technique impacts ensemble spread,
in the sense that this technique is not a random perturbation
technique, but rather includes model corrections. An increase
in spread with the use of this technique is not straightforward,
although we have shown previously that the variance of the
perturbations is mainly composed of intra-month variance,
which we assume has a similar effect to adding noise to the
system.

Figure 7 shows the ensemble spread (computed as the stan-
dard deviation around the ensemble mean) for DJF near-
surface air temperature, precipitation, and Z500 in experi-
ment REF as well as the relative spread for these variables in
experiments SMM and S5D. Results in terms of the impact
of stochastic dynamics on spread depend very little on the
frequency and use of sequences of perturbations, as both ex-
periments SMM and S5D yield similar results for all three
variables studied in terms of geographical distribution of
impacts. The spread for the SMM experiment is generally
slightly higher than for S5D.

For near-surface temperature, the REF ensemble spread
is large over the Northern Hemisphere extratropics in win-
ter. This could be due to inconsistencies in the surface initial
conditions with the version of the surface model used in this
version of the coupled model, but this is beyond the scope of
this paper. Spread is increased almost everywhere with the
introduction of stochastic dynamics, except over parts of Eu-
rope, North America and the Amazon rainforest. However,
in most regions the spread with stochastic dynamics is not
significantly larger than without (significance at a 95 % level
is tested with bootstrapping intervals).

In the case of precipitation, the impact is less systematic.
Regions in the Northern Hemisphere high latitudes and the
eastern tropical Pacific exhibit a significantly higher spread
with stochastic dynamics, but extended regions of North and
West Africa show a lower spread in precipitation (although
for these regions precipitation amounts as well as model
spread are much more limited).

The highest impact on 500 hPa geopotential height (Z500)
spread is found for the Northern Hemisphere extra-tropics
and subpolar regions. Z500 spread is significantly higher
east of Greenland with SMM perturbations. The S5D exper-
iment exhibits similar patterns of spread increase, but very
few gridpoints have a significantly higher spread than REF.
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Figure 6. Mean bias for DJF 500 hPa geopotential height with respect to ERA-Interim (in m) over the Northern Hemisphere for experiments
(from left to right) REF, SMM, and S5D.

These impacts on ensemble spread are limited both in
terms of amplitude and geographical regions, when com-
pared to other stochastic perturbation methods such as SPPT
(see for instance Figs. 5 and 6 in Batté and Doblas-Reyes
(2015) for the impact of SPPT on the global spread of SST
and precipitation with the EC-Earth v3 GCM).

4.3 Re-forecast skill

In the previous paragraphs, we have shown that stochas-
tic dynamics applied in a seasonal re-forecasting framework
have non-negligible impacts on the forecast mean state and
ensemble spread. The next step in assessing the impact of this
method on forecast quality is comparing the results in terms
of skill over the re-forecast period for the three experiments
REF, SMM, and S5D.

One common justification for the introduction of stochas-
tic perturbations is the lack of spread of the ensemble re-
forecasts with respect to skill measured as the root mean
square error of the ensemble mean. We have found some (al-
though limited) impact of the method on ensemble spread; it
is therefore worthwhile checking how the spread–skill ratio
evolves with the introduction of stochastic dynamics.

The model ensemble root mean square error (RMSE) mea-
sures the distance between predicted and observed anoma-
lies, thereby removing the mean bias of the model. Figure 8
shows the RMSE for REF DJF near-surface temperature, pre-
cipitation, and Z500 re-forecasts. RMSE values are gener-
ally on the same order of magnitude as the ensemble spread.
Figure S4 illustrates this by plotting the spread–skill ratio
for the three variables of interest in experiments REF, SMM,
and S5D. For near-surface temperature, RMSE is lower than
spread over most oceans, but higher over many continen-
tal areas. Precipitation re-forecasts are under-dispersive over
most subpolar and polar regions and the tropical Pacific, but
in tropical and mid-latitudes many areas exhibit a higher
RMSE than model spread. In the case of Z500, RMSE is
lower than model spread over most areas of the globe; some

exceptions include North America and parts of the North Pa-
cific and northwestern Atlantic oceans.

The second and third rows of Fig. 8 show the root mean
square skill score, or RMSSS, of experiments SMM and
S5D, respectively. The RMSSS for experiment i is computed
following Eq. (8), where RMSEREF is the RMSE of experi-
ment REF.

RMSSSi = 1−
RMSEi

RMSEREF
(8)

The idea of this score is to highlight areas where the model
RMSE increases (negative RMSSS) or decreases (positive
RMSSS) with the introduction of stochastic dynamics, by
taking the REF RMSE as a reference. A positive RMSSS in-
dicates an improvement in the model RMSE. A perfect score
would be 1, and negative values can theoretically tend to in-
finity. Results for near-surface temperature (left column) are
quite similar between both versions of stochastic dynamics.
Improvements with both versions are found over the eastern
tropical Pacific, northeastern Canada, and over the Middle
East for instance. Some improvements are more pronounced
in the case of S5D, as over Southeast Asia and the Horn
of Africa region, but it is difficult to say which version of
stochastic dynamics gives the best results. Some areas ex-
hibit an increase in RMSE with stochastic dynamics, such as
the areas of Antarctica, the Indian Ocean east of Madagascar,
and the Bering Strait area. Results for precipitation are quite
patchy, although again patterns are similar for both types of
stochastic dynamics. Areas of consistent improvements in-
clude West Africa, the Arabian Peninsula and central Amer-
ica, but in other areas such as the eastern tropical Pacific,
the RMSE increases with the introduction of stochastic dy-
namics. This area is where the ensemble spread significantly
increases as shown in Fig. 7e and h. In this case the intro-
duction of stochastic perturbations is detrimental to forecast
quality in terms of RMSE, but the model spread–skill ratio
is only marginally affected as shown in Fig. S4. It is worth
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Figure 7. DJF spread (top row) for REF experiment near-surface air temperature, precipitation, and Z500 (from left to right); corresponding
relative spread in experiments SMM and S5D (second and bottom rows, respectively). Spread is computed as the standard deviation around
the ensemble mean. Areas in blue indicate where spread is lower with respect to REF, whereas areas in shades of red show where spread is
increased, and dots show where differences are significant at a 95 % level based on bootstrapping intervals.

mentioning that for this region, the REF ensemble is already
slightly over-dispersive before introducing perturbations.

In the case of Z500, results are generally better in the
S5D experiment than SMM, with the exception of the east-
ern coast of the USA and Australia. For S5D many areas
show improvements in the model RMSE with respect to REF
(which translates into a positive RMSSS).

Overall for these three variables, results show that the
stochastic dynamics technique has contrasted effects on the
model RMSE, depending on the region of study. However,
for near-surface temperature and Z500, more areas with an
increased RMSSS appear. Generally speaking, the stochas-
tic dynamics technique does not seem to be detrimental
for model skill in terms of RMSE. The significance of the

changes in RMSE is very limited (and not shown in the fig-
ures); however, provided that both S5D and SMM experi-
ments exhibit similar RMSSS using REF as a reference, we
are confident that these results are not random noise due to a
limited ensemble size and re-forecast period.

RMSE is the quadratic distance between forecast and ref-
erence observations. Depending on the amplitude of inter-
annual variations of the variable of interest, the RMSE can
be low, although the model does not capture its interannual
variability. The correlation coefficient measures to what ex-
tent the different experiments capture interannual variations
of seasonal means for the variables of interest, regardless
of the amplitude, giving complementary information on the
model skill. Figure 9 shows the DJF correlation for near-
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Figure 8. DJF root mean square error (RMSE) for REF (top row) computed against ERA-Interim (GPCP in the case of precipitation) over
the re-forecast period for near-surface air temperature, precipitation, and Z500 (from left to right). Middle and bottom rows: SMM and S5D
root mean square skill score (RMSSS) using REF as a reference forecast. Areas in blue indicate where the RMSE is higher than in REF,
whereas areas in shades of red show where the RMSE is lower.

surface temperature and precipitation in REF, and correla-
tion differences with REF for experiments SMM and S5D.
REF exhibits high and significant correlation for near-surface
temperature over most tropical regions, and over some mid-
latitudinal regions such as southern Africa, eastern North
America, and Scandinavia. Areas with significant correlation
differences (assessed following Zou, 2007) are marked by
dots. Although patterns of correlation difference with REF
are similar between both stochastic dynamics experiments,
both versions have different impacts on correlation when
looking only at areas of significant skill differences. S5D
seems to have more satisfying results than SMM, in the sense
that areas with a significant reduction of correlation skill with
respect to REF are smaller or become non-significant (as in
southwestern China and the North Pacific), whereas some

areas such as central Eurasia, Greenland and northeastern
Canada, northeastern Africa and the Arabian Peninsula ex-
hibit increased skill with S5D when compared to SMM.

Results for significant correlation in REF and impacts of
stochastic dynamics on correlation are much more patchy in
the case of precipitation, for which little systematic impact
of the method is found. As for other state-of-the-art seasonal
forecasting systems, skill is much lower than for near-surface
temperature. One interesting feature is a dipole of increase in
DJF precipitation re-forecast skill in the central Pacific and
decrease over the eastern equatorial Pacific. This can be re-
lated to the improvements of the spread–skill ratio over the
former region, whereas the model is already over-dispersive
over the latter region, where spread and model error both in-
crease drastically with the inclusion of stochastic dynamics.
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Figure 9. REF experiment DJF correlation (top row) for near-surface air temperature (left) and precipitation (right) with respect to ERA-
Interim and GPCP, respectively. Areas with correlation significant at a 95 % level are marked by dots. Second (or bottom) row: difference in
correlation between experiments SMM (or S5D) and REF. The significance of correlation differences (hatched areas) is assessed following
Zou (2007).

The forecast scores shown up to this point evaluate the
model ensemble mean re-forecast skill. Using ensemble fore-
casts provides the opportunity to derive probabilistic fore-
casts from the ensemble members. We investigate the prob-

abilistic skill of the different experiments in the light of two
scores, namely the Brier score and the continuous ranked
probability skill score, or CRPSS. Our probability forecasts
are very straightforward: the proportion of ensemble mem-
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bers predicting a given event is the forecast probability of the
event. The Brier score (Brier, 1950) measures the quadratic
distance between forecasts and reference data in probabil-
ity space. It can be decomposed into three terms quantify-
ing forecast reliability, resolution, and uncertainty (Murphy,
1973). Reliability diagrams for Niño 3.4 region SST exceed-
ing the second tercile (El Niño like events) or remaining be-
low the first tercile (La Niña like events) are represented in
Fig. S4. These diagrams show the binned forecast probabil-
ities against the relative observed frequencies corresponding
to these forecasts. Ideally, points should be aligned along the
diagonal to have a reliable system. The sizes of the dots are
proportional to how frequently such probabilities are issued.
For Niño 3.4 SST, the diagrams and Brier score decomposi-
tions show that stochastic dynamics has a very minor impact
on probabilistic skill. If anything, the technique is slightly
detrimental to model reliability, although differences are not
significant.

Results for near-surface temperature over Europe are
shown in Fig. S5. In this case, the model exhibits no skill and
is (as most seasonal forecast systems) over-confident in its
predictions, as shown in the reliability diagrams for REF. The
stochastic dynamics experiments exhibit an improved relia-
bility, especially in the case of warm event re-forecasts. This
is however compensated for in the Brier score by a slightly
degraded resolution; the SMM and S5D experiments there-
fore do not show skill over these regions either.

Figure 10 shows the CRPSS for T2m, precipitation, and
Z500 for REF with respect to reference data, and SMM and
S5D with respect to REF. In the case of REF, the CRPSS
is computed at each gridpoint using ERA-Interim (or GPCP
for precipitation) data of the other years of the re-forecast pe-
riod as a reference (climatology) probability forecast. As for
deterministic skill scores, areas of positive skill are mostly
constrained to the tropics, and precipitation forecasts are
very poor. The region dominated by ENSO concentrates the
higher skill scores in the case of near-surface temperature.
Improvements (or degradation) in probabilistic skill are as-
sessed by computing the CRPSS for SMM and S5D using
REF as a reference. Minor improvements in the tropical Pa-
cific area are obtained in both the SMM and S5D ensembles
for temperature, whereas results are more contrasted in the
case of precipitation. For Z500, hints of improvements are
found over northeastern America, alongside a reduction of
negative CRPSS over Europe. No clear pattern of change in
skill is found between the different variables in most areas.

Note that the scores presented here were computed based
on model anomalies in cross-validation mode, but without
further calibration of the ensemble forecasts (as a quantile–
quantile calibration technique for instance), which can im-
prove results with respect to climatology. The results in terms
of CRPSS are consistent with the minor changes in the model
spread–skill ratio and low impact of the stochastic methods
on model reliability and resolution in the Brier score evalua-
tions shown in Figs. S4 and S5.

The global evaluation of the stochastic dynamics tech-
nique in terms of impact on re-forecast skill is quite con-
trasted, with results depending on the regions of study. Fur-
thermore, we face a recurrent issue in the seasonal-to-decadal
prediction field, which is the limited statistical significance
of differences in skill between two versions of a system. We
stress however that the results presented here are computed
for relatively large ensemble sizes (30 members) and a 34-
year re-forecast period, giving a certain robustness to results
presented here.

Earlier in this paper, we found evidence that the stochastic
dynamics technique improved the Z500 bias over the North
Atlantic mid-latitudes and the Arctic. The technique also im-
proves the model spread–skill ratio over Europe (see Fig. S4
for Z500). Figure 11 corroborates this: we computed the
model spread and RMSE for Z500 averaged over Europe, ac-
cording to the lead time, for the three ensembles. The RMSE
is reduced with the stochastic dynamics technique in the first
month of the re-forecast, and the spread is larger than for
REF in both S5D and SMM ensembles for each re-forecast
lead time.

Granted that some improvements are found both in the
model mean state and spread–skill ratio for Z500 over the
region, we examine in the following section the impact of
the technique on the representation of North Atlantic large-
scale circulation, both in terms of the re-forecast skill of the
North Atlantic Oscillation (NAO) and representation of the
North Atlantic–Europe weather regimes.

4.4 North Atlantic large-scale circulation

4.4.1 North Atlantic Oscillation re-forecasts

The North Atlantic Oscillation is the main mode of variabil-
ity over the Northern Hemisphere mid-latitudes from sub-
seasonal to interannual timescales. At a seasonal timescale,
skill in predicting the NAO can provide insight into the mean
position of the North Atlantic storm track and, in turn, cli-
matic anomalies in surface conditions over Europe and north-
eastern America. This index has therefore been in the spot-
light of multi-model seasonal re-forecast evaluations (e.g.,
Doblas-Reyes et al., 2003; Butler et al., 2016). Recent works
suggest that several operational seasonal prediction systems
exhibit significant skill in predicting the NAO, or its hemi-
spheric counterpart, the Arctic Oscillation (Scaife et al.,
2014; Riddle et al., 2013; Stockdale et al., 2015), and further
skill may be obtained by improving stratosphere–troposphere
interactions. However, skill assessments are subject to non-
negligible variability depending on the number of years and
the re-forecast period considered (Shi et al., 2015; Butler
et al., 2016).

In this study we compute the NAO index as the projec-
tion of the DJF Z500 anomaly for a given year on the lead-
ing EOF of 500 hPa geopotential height in ERA-Interim over
the North Atlantic–Europe region defined by Hurrell et al.
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Figure 10. (a–c) DJF continuous ranked probability skill score (CRPSS) for the REF experiment near-surface air temperature, precipitation
and Z500. Areas in red/blue indicate where the model skill is higher/lower than a reference forecast using climatology. (d–f, g–i) Same as
(a–c) but for SMM and S5D experiments (middle and bottom rows, respectively) computing CRPSS with REF as a reference.

(2003) over the reference period (in cross-validation mode,
e.g., by removing the year of interest from the 1979–2012
period). This is done both for the ERA-Interim reference in-
dex and each member of the three re-forecast ensembles. Fig-
ure 12 shows boxplots of the REF, SMM, and S5D ensemble
re-forecasts of the NAO index, verified against ERA-Interim.
The correlation between the ensemble mean indices and the
ERA-Interim index is shown in the top left corner of the fig-
ure. Correlation in REF is reasonably high when compared
to coupled prediction systems with similar resolutions over
a 30-year re-forecast period (Kim et al., 2012), and signif-
icantly above zero. The SMM ensemble exhibits a slightly
lower correlation than REF, and S5D perturbations seem to
improve correlation of the NAO, but differences are not sig-
nificant when assessed with a bootstrapping technique. The
stochastic dynamics technique has no impact on the ensem-
ble spread in the NAO index re-forecasts when computed
over the entire re-forecast period.

4.4.2 Weather regime statistics

The impact of stochastic dynamics on sub-seasonal variabil-
ity is assessed, focusing on the North Atlantic region where
a strong decrease in systematic error was found. We exam-
ine how the model represents the four main winter weather
regimes over the region, defined following Michelangeli
et al. (1995) using an EOF decomposition of daily 500 hPa
geopotential height anomalies and a k means clustering tech-
nique. The four centroids of the weather regimes are repre-
sented in Fig. S6. Frequency of attribution to each cluster is
shown in the figure.

As in other standard-resolution climate GCMs (see for in-
stance Dawson et al., 2012), the seasonal forecasting sys-
tem discussed here fails to represent the North Atlantic
weather regimes properly. Moreover, the REF re-forecast ex-
hibits quite strong Z500 biases over the region. We there-
fore project model daily 500 hPa geopotential height anoma-
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Figure 11. Evolution of spread (dots) and RMSE (lines) with fore-
cast time for 500 hPa geopotential height over Europe in experi-
ments REF (red), SMM (blue), and S5D (green).

lies for each ensemble member onto the EOFs of the ERA-
Interim anomalies instead of using the model EOFs. Weather
regimes are attributed following an Euclidean distance crite-
rion. In the following, we chose a minimum weather regime
duration of 3 days; all days in regimes lasting less than this
limit were classified as regime transition days. This explains
the minor differences in climatological frequencies of the
ERA-Interim regimes in Table 2 and Fig. S6.

Table 2 shows the frequency and mean duration of
each weather regime in ERA-Interim and experiments REF,
SMM, and S5D. Compared to reanalysis data, the REF en-
semble underestimates the frequency of the NAO+ regime
by more than 5.5 % and overestimates the NAO− regime fre-
quency by over 4 %. The introduction of stochastic dynamics
in the atmospheric model tends to correct at least parts of
these errors, as SMM or S5D statistics are generally closer to
ERA-Interim than REF. This is also the case for regime dura-
tion. The mean duration of each regime is systematically im-
proved with stochastic perturbations. In most cases the length
of the regimes is not considerably changed, apart from the
blocking regime for which stochastic dynamics in the S5D
experiment make the regime last on average 0.4 days longer.
One could think that the introduction of stochastic perturba-
tions could cause the model to shift from one regime to an-
other more frequently, thereby shortening the mean length of
each regime. Results in Table 2 show that this is not the case,
as both SMM and S5D perturbations tend to increase regime
duration when the model underestimates it.

Another aspect we wish to assess is how the stochastic dy-
namics technique changes the frequency of weather regime
transitions. Figure 13 shows the frequency of these transi-
tions for ERA-Interim, REF, SMM, and S5D. Transitions are
defined as follows: we look at the end of a given regime
(which lasts 3 days or more), which is the following regime.
Transitions can therefore be from one regime back into the

same one, under the condition that the intermediate days are
a transition (less than 3 days in another regime). With respect
to ERA-Interim over the same period, CNRM-CM (REF)
represents reasonably well the North Atlantic weather regime
transition frequencies. Some frequencies are overestimated,
such as the NAO− transition to another NAO− event (27 %
in REF vs. 16 % in ERA-Interim), and the NAO+ to Scan-
dinavian blocking transition (47 % in REF vs. 35 % in ERA-
Interim). For these two examples, the experiments includ-
ing stochastic dynamics slightly improve results. However,
this is not always the case, and it is impossible to conclude
whether one experiment exhibits better weather regime tran-
sition frequencies than another.

These results for North Atlantic weather regimes show
that when including perturbations to the model dynamics,
the intraseasonal variability of the model stays quite consis-
tent with reference data, and improves in some aspects such
as regime frequencies. Adding noise to the model dynam-
ics does not significantly push the model into favoring some
weather regime transitions over others. As previously noted,
little difference is found between the SMM and S5D pertur-
bation methods.

4.4.3 Weather regime frequency re-forecast skill

Figure S7 represents boxplots of the ensemble re-forecasts
of the four weather regime frequencies for DJF 1979–2012
in experiments REF, SMM, and S5D (from left to right).
No striking impact on the ensemble spread of the weather
regime frequencies is found with the introduction of stochas-
tic dynamics in CNRM-CM. Table 3 shows the correlation
between the ensemble mean frequency and ERA-Interim for
each weather regime (shown by red dots for each year in
Fig. S7). Correlation is generally quite poor for the REF en-
semble, as weather regime frequencies are quite challenging
to predict at a seasonal timescale due to internal variability.
However, we do notice a strong increase in the correlation
coefficient for NAO− regime frequency predictions, consis-
tent with the improvement in the NAO index re-forecasts
with S5D suggested earlier. The ensemble with stochastic dy-
namics seems to capture some signal for the extreme winter
2009/10 (Ouzeau et al., 2011), as shown in Fig. S7. For the
other three regimes, no significant change is found. This en-
couraging result should be interpreted with caution due to
the high levels of uncertainty when dealing with seasonal re-
forecasts over mid-latitudes (Shi et al., 2015).

As another way of assessing weather regime forecast qual-
ity over the re-forecast period, we computed a score based
on the Brier score over the four weather regimes by com-
paring the actual weather regime frequency to the weather
regime probability given by the ensemble forecast. This score
is a distance in probability space and should be as small as
possible. A corresponding (positively oriented) skill score is
obtained by computing a corresponding reference distance.
We chose the ERA-Interim frequency of each regime over all
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Figure 12. DJF NAO index computed with ERA-Interim 500 hPa geopotential height (black lines) and boxplots of ensemble re-forecasts
REF (grey), SMM (blue), and S5D (red) NAO indices computed by projecting model anomalies on the ERA-Interim NAO pattern. Anomalies
and NAO indices are computed in cross-validation mode. The correlation between the ensemble mean and ERA-Interim index is shown in
the top left corner of the figure.

Table 2. Weather regime frequencies and mean duration (in days) for ERA-Interim and experiments REF, SMM, and S5D (weather regimes
are defined for a duration of 3 days or more, so frequencies do not sum up to 100 %).

NAO+ Blocking NAO− Atl. ridge

ERA-Interim 32.1 % 9.48 24.4 % 7.14 18.8 % 9.27 16.6 % 5.85
REF 26.5 % 8.28 23.4 % 6.56 24.0 % 8.90 16.8 % 6.41
SMM 28.0 % 8.36 23.8 % 6.78 21.8 % 9.35 17.1 % 6.38
S5D 28.0 % 8.35 23.8 % 6.97 21.9 % 9.16 17.1 % 6.38

Table 3. Correlation between ensemble mean DJF North Atlantic–
Europe weather regime frequencies in experiments REF, SMM, and
S5D and ERA-Interim. Weather regimes are defined for a duration
of 3 days or more.

NAO+ Blocking NAO− Atl. ridge

REF 0.21 −0.03 0.25 −0.06
SMM 0.33 −0.12 0.41 −0.06
S5D 0.17 0.00 0.54 −0.01

other years of the re-forecast period as a reference forecast.
Our REF ensemble has a skill score of −0.011, meaning that
using ERA-Interim climatology over the other years of the
re-forecast gives a better probability forecast than CNRM-
CM of weather regime frequencies. When introducing 5-day
stochastic dynamics, the skill score is positive and reaches
0.081. Again, the significance of these results is quite lim-
ited, but all seem consistent and lead us to conclude that this
technique improves the representation of North Atlantic vari-
ability at a seasonal timescale.

5 Conclusions

This study has provided details on the stochastic dynamics
technique, first developed and described in Batté and Déqué
(2012) and further amended in more recent versions of the

CNRM-CM coupled GCM for seasonal forecasts. A version
of this method (similar to the S5D experiment discussed in
this paper) has been implemented in the next operational sea-
sonal forecasting system 5 at Météo-France.

Stochastic dynamics is based on an estimation of atmo-
spheric model errors using nudging, and the introduction of
random in-run corrections of these model errors. The statis-
tical analysis of model errors showed that the amplitude of
spectral corrections was highest in the smaller wavenumbers,
and generally increased between the first month and the fol-
lowing months of the nudged re-forecast run. Unlike other
stochastic perturbation techniques, the perturbations in the
stochastic dynamics technique present by construction a non-
zero mean and variability in both space and time that is spe-
cific to each perturbed variable. Some time consistency in
perturbations can be sought by using a sequence of correc-
tions from the nudged run, as was done for experiment S5D.
A decomposition of the mean squared perturbation terms
showed that perturbations consisted mainly of intra-month
variance, but that interannual variance and a systematic part
of the perturbations were non-negligible.

Beyond the analysis presented in Batté and Déqué (2012),
the impact of stochastic dynamics was studied in two bo-
real winter seasonal re-forecast runs compared to a reference
re-forecast with initial perturbations only. The SMM experi-
ment used monthly mean correction terms drawn separately
and each month for each ensemble member, whereas the S5D
experiment explored the use of 5-day sequences of perturba-
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Figure 13. Frequency of weather regime transitions (in %) computed by discarding regimes shorter than 3 days (considered as transition
days) over DJF 1979–2012. Results are shown for ERA-Interim reanalysis (in black) and experiments REF, SMM, and S5D (in grey, blue,
and red, respectively).

tions drawn independently every 5 days for each ensemble
member. Results showed a reduction of precipitation bias
over most areas of the globe, as well as improvements in
the model mean Z500 field over the Northern Hemisphere.
The reduction of Z500 bias is consistent with results from
Batté and Déqué (2012), although this previous study used
an older version of the seasonal forecasting system with dif-
ferent biases. In terms of forecast skill, improvements are
found mostly for near-surface temperature due to an over-
all increase in ensemble spread. For precipitation, results are
patchy and some areas such as the eastern tropical Pacific
exhibit a decrease in skill with the introduction of stochastic
dynamics.

An evaluation of the representation of variability over
the North Atlantic region was then presented, looking at
both NAO forecasting skill and the representation of North
Atlantic weather regimes. Encouraging improvements were
found in the frequency of weather regimes and some weather
regime transitions, although most differences are most likely
non significant. Interestingly, the introduction of stochastic
dynamics does not decrease the length of weather regimes
nor significantly alter regime transition frequencies. A con-
siderable improvement of the correlation of DJF NAO−
regime frequency with ERA-Interim was also found with the
SMM and S5D experiments, although no significant change
was found in DJF NAO index correlation skill. Overall, the
introduction of stochastic dynamics perturbations in CNRM-
CM seems to benefit the representation of North Atlantic
weather regimes.

Several limitations appear with this method. The pertur-
bations rely on a priori estimations of model errors by at-
mospheric nudging; therefore, the method requires a prelim-
inary nudged run consistent with the target season and model
version, which can be computationally expensive. However,
the method is quite straightforward to implement once at-

mospheric nudging is included in the model. Moreover, this
method requires very limited tuning with respect to other
stochastic perturbation techniques, since only the strength
of the relaxation in the preliminary nudged run and the fre-
quency of perturbations in forecast mode need to be adjusted.
Most significant impacts found with the stochastic dynam-
ics technique as presented here are found for both pertur-
bation frequencies discussed in this paper. This could imply
that with the current setting of the nudging strength, the skill
improvements are mostly due to improvements in the model
mean state (due to the non-zero mean term in the perturba-
tions applied in the stochastic dynamics technique). These
results suggest that further investigation into the impact of
the strength of the relaxation on the correction terms and
re-forecast skill should be led with this new version of the
ARPEGE-Climate atmospheric model. Based on results pre-
sented here, the current choice of the relaxation strength may
be too weak for 5-day consecutive corrections to push the
model into significantly different states than a monthly mean
correction term.

On more theoretical grounds, the philosophy behind the
stochastic dynamics technique is very ad hoc in the sense
that it uses model error statistics to correct these in forecast
mode, instead of introducing stochasticity in the physical pa-
rameterizations of the model. The additive perturbations to
the model dynamics can cause imbalance in the energy and
water budgets, although the impact most likely remains quite
limited, as shown by the skill assessments in this study. In
terms of interactions with surface and ocean components in
the coupled model, the perturbations are dialed down to zero
in the lowest levels of the atmosphere, but results in terms of
SST biases show that these do have a systematic impact on
the surface. This aspect will be further evaluated in specific
case studies. However, our belief based on comprehensive
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skill evaluations is that the overall influence of the technique
is positive at a seasonal timescale.

One motivation for introducing stochastic dynamics in the
CNRM-CM climate forecasting systems was to generate en-
sembles in burst mode instead of lag-average initialization.
This evolution of the initialization technique enables us to
use the same configuration for weekly and sub-seasonal fore-
casts, without significantly degrading the skill of several en-
semble members by starting from older initial conditions.
This study showed however that the impact of the method on
ensemble spread (with respect to perturbing only at forecast
time 0) depended on the area and variable of interest, and was
somewhat limited. The technique could be complemented by
other stochastic methods to perturb the atmospheric physical
tendencies, although interactions between this type of pertur-
bations and dynamical nudging in the model should be care-
fully documented. Developments are currently underway to
include SPPT (Palmer et al., 2009) in the ARPEGE-Climate
model.

An extension of the method considered at CNRM is to in-
troduce flow dependency into the corrections, based on clas-
sification of the correction population depending on the state
of the atmosphere, following the idea explored by D’Andrea
and Vautard (2000). Preliminary studies using classification
of streamfunction fields or based on the state of ENSO gave
disappointing results in re-forecast skill assessments. An in-
teresting perspective to explore this aspect is to take advan-
tage of the long reanalysis data sets such as ERA-20C (Poli
et al., 2016) and 20CR (Compo et al., 2011); however, the
applications in real-time coupled forecasts would be neces-
sarily limited since these reanalyses span periods for which
ocean data are unavailable.

6 Code and data availability

Most parts of the codes comprising the CNRM-CM model
discussed in this paper, including the ARPEGE-Climate v6.1
model, are not available in open source. ARPEGE-Climate
code is available to registered users for research purposes
only. Outputs from the seasonal re-forecasts discussed in this
paper are available upon request to the authors, and some will
be included in the SPECS project repository at the British
Atmospheric Data Centre (BADC, http://browse.ceda.ac.uk/
browse/badc/specs/data/).

The Supplement related to this article is available online
at doi:10.5194/gmd-9-2055-2016-supplement.
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