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Abstract. To improve short-term particulate matter (PM)

forecasts in South Korea, the initial distribution of PM com-

position, particularly over the upwind regions, is primarily

important. To prepare the initial PM composition, the aerosol

optical depth (AOD) data retrieved from a geostationary

equatorial orbit (GEO) satellite sensor, GOCI (Geostation-

ary Ocean Color Imager) which covers a part of Northeast

Asia (113–146◦ E; 25–47◦ N), were used. Although GOCI

can provide a higher number of AOD data in a semicontin-

uous manner than low Earth orbit (LEO) satellite sensors,

it still has a serious limitation in that the AOD data are not

available at cloud pixels and over high-reflectance areas, such

as desert and snow-covered regions. To overcome this limi-

tation, a spatiotemporal-kriging (STK) method was used to

better prepare the initial AOD distributions that were con-

verted into the PM composition over Northeast Asia. One of

the largest advantages in using the STK method in this study

is that more observed AOD data can be used to prepare the

best initial AOD fields compared with other methods that use

single frame of observation data around the time of initializa-

tion. It is demonstrated in this study that the short-term PM

forecast system developed with the application of the STK

method can greatly improve PM10 predictions in the Seoul

metropolitan area (SMA) when evaluated with ground-based

observations. For example, errors and biases of PM10 predic-

tions decreased by ∼ 60 and ∼ 70%, respectively, during the

first 6 h of short-term PM forecasting, compared with those

without the initial PM composition. In addition, the influ-

ences of several factors on the performances of the short-term

PM forecast were explored in this study. The influences of the

choices of the control variables on the PM chemical compo-

sition were also investigated with the composition data mea-

sured via PILS-IC (particle-into-liquid sampler coupled with

ion chromatography) and low air-volume sample instruments

at a site near Seoul. To improve the overall performances of

the short-term PM forecast system, several future research

directions were also discussed and suggested.

1 Introduction

It has been reported that there is a strong relationship be-

tween exposure to atmospheric particulate matter (PM) and

human health (Brook et al., 2010; Brunekreef and Holgate,

2002; Pope and Dockery, 2006). PM has become a pri-

mary concern around the world, particularly in East Asia,

where high PM pollution episodes have occurred frequently,

mainly due to the large amounts of pollutant emissions

from energetic economic activities. In an effort to under-

stand the behaviors and characteristics of PM in East Asia,

Published by Copernicus Publications on behalf of the European Geosciences Union.



18 S. Lee et al.: GIST-PM-Asia v1

chemistry-transport models (CTMs) have played an impor-

tant role in overcoming the spatial and temporal limitations

of observations, and also enable policy makers to establish

scientific implementation plans via atmospheric regulations

and policies. To improve the performance of the PM simu-

lations, integrated air quality modeling systems that consist

of CTMs, meteorological models, emissions, and data as-

similation using ground- and satellite-borne measurements

have been introduced (Al-Saadi et al., 2005; Park et al.,

2011; Song et al., 2008). However, accurate simulations of

PM distributions with CTMs have been challenging, because

of many uncertainties from emission fluxes, meteorological

fields, and chemical and physical parameterizations in the

CTMs. For example, the Korean Ministry of Environment

(MoE) has recently started to implement air quality fore-

casts for PM10, PM2.5 and ozone over the Seoul metropolitan

area (SMA), the largest metropolitan area in South Korea.

However, the forecasting accuracy for high PM10 alert (81–

120 µg m−3) in the current system has been low (<∼ 60 %)

since 2013. Thus, urgent improvements in the PM10 predic-

tions are necessary.

In this context, an improved short-term PM forecast sys-

tem was developed and introduced, based on an analogy

to the system of numerical weather prediction (NWP). Fig-

ure 1a presents a flow diagram of an NWP in which regional

meteorological modeling is conducted using two important

inputs: (i) boundary conditions (BCs) from global meteoro-

logical models and (ii) initial conditions (ICs) prepared via

data assimilation using ground-measured data and balloon-,

ship-, aircraft-, and/or satellite-borne measurements. In con-

trast, a conventional chemical weather forecast (CWF) (e.g.,

forecasts for ozone and PM) has been carried out only using

meteorological fields and pollutant emissions (Fig. 1b). In

the short-term PM forecast system proposed here (Fig. 1c),

one more input is added to the conventional CWF system: the

initial distribution of PM composition. To prepare the initial

PM composition, a scheme that uses geostationary satellite-

derived aerosol optical depths (AODs), is developed in this

study. Similarly, the BCs for the CTM runs are obtained from

global CTM simulations.

In the improved CWF system, AOD data retrieved from

low Earth orbit (LEO) satellite sensors, such as Moderate

Resolution Imaging Spectroradiometer (MODIS) and Multi-

angle Imaging SpectroRadiometer (MISR) can be used to

set up the ICs for the short-term PM forecast (Benedetti et

al., 2009; Liu et al., 2011; Saide et al., 2013). While these

AOD data have an advantage in spatial coverage compared

with those obtained from point stations, the use of the LEO

satellite-derived AODs has another limitation in acquiring

continuous observations over a certain area due to the capa-

bilities of the LEO sensors in their orbital periods and view-

ing swath widths.

Such limitations in using LEO satellite observations can

be overcome with the help of geostationary equatorial or-

bit (GEO) satellite sensors providing semicontinuous ob-

servations over a specific part of the Earth during the day

(Fishman et al., 2012; Lahoz et al., 2011; Zoogman et al.,

2014). Recently, aerosol optical properties (AOPs) from the

Geostationary Ocean Color Imager (GOCI) have become

available. GOCI is the first multi-spectral ocean color sen-

sor onboard the Communication, Ocean, and Meteorologi-

cal Satellite (COMS), launched over a part of Northeast Asia

(113–146◦ E; 25–47◦ N) in 2010, providing semicontinuous

AOD, single scattering albedo (SSA), and fine-mode fraction

(FMF) over a domain of Northeast Asia (Lee et al., 2010).

With GOCI AOD data, a novel approach was developed to

investigate transboundary PM pollution over Northeast Asia

(M. E. Park et al., 2014).

In this study, we carried out hindcast studies (forecast stud-

ies with past data) to find the “best” method to improve

the performance of the short-term PM forecasting using the

GOCI AODs. To do this, we developed a model, Geostatisti-

cal Interpolation of Spatio-Temporal data for PM forecast-

ing over Northeast Asia (GIST-PM-Asia) v1 that includes

(i) a spatiotemporal-kriging (STK) method to spatiotempo-

rally combine the GOCI-derived AODs, (ii) “observation op-

erators” to convert the CTM-simulated PM composition into

AODs and vice versa, and (iii) selection of “control vari-

ables” (CVs) through which the distribution of AODs can be

converted back into the distributions of the PM composition

to be used as the ICs. The uses of the STK method, observa-

tion operators, and CVs are illustrated in Fig. 1. The main ad-

vantages of using the STK method are discussed in detail in

the main text. Several sensitivity studies were also conducted

to improve the understanding of forecasting errors and biases

in the short-term PM forecasting system developed.

With these research objectives and methodology, this pa-

per is organized as follows: the hindcast framework is first

described in detail in Sect. 2. In Sect. 3, the hindcast results

with various configurations are evaluated with ground-based

observations during the high PM episodes in SMA to find

the “best” configuration for future short-term PM forecasts.

Finally, a summary and conclusions are provided in Sect. 4.

2 Methodology

The initial aerosol composition was prepared using AOD

data from both the GOCI sensor and CTM model simula-

tions. For the CTM simulations, the Community Multi-scale

Air Quality (CMAQ; v5.0.1) model (Byun and Ching, 1999;

Byun and Schere, 2006) and the Weather Research and Fore-

cast model (WRF; v3.5.1) (Skamarock and Klemp, 2008)

were used. The STK method and 12 different combinations

of observation operators and CVs were also used for prepar-

ing the distributions of the 3-D PM composition over the

GOCI-covered domain. The CMAQ model simulations with

the 12 different configurations were carried out and the per-

formances were then tested against ground-measured AOD,
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Figure 1. General structure of (a) numerical weather prediction (NWP), (b) conventional chemical weather forecast CWF), and (c) advanced

chemical weather forecast system.

PM10, and PM2.5 composition. The details of these compo-

nents are described in the following sections.

2.1 Meteorological and chemistry-transport modeling

The WRF model provided meteorological data with

15 km× 15 km horizontal grid spacing and 26 vertical layers

extending up to 50 hPa. To obtain highly resolved terrestrial

input data, the topography height from the NASA Shuttle

Radar Topography Mission (SRTM) 3 arcsec database (http:

//dds.cr.usgs.gov/srtm/version2_1/SRTM3) and the land use

information provided by Environmental Geographic Infor-

mation Service (EGIS; http://egis.me.go.kr) were used. Ini-

tial and boundary meteorological conditions for the WRF

simulation were provided by the National Centers for En-

vironmental Protection (NCEP) final operational global tro-

pospheric analyses (http://rda.ucar.edu/datasets/ds083.2). To

improve 3-D temperature, winds and water vapor mixing, ob-

jective analysis was employed by incorporating the NCEP

ADP Global surface and upper air observation data. The me-

teorological fields were provided with 1 h temporal resolu-

tion and were then converted into the input fields for the

CMAQ model simulations by the Meteorology–Chemistry

Interface Processor (MCIP; v4.1) (Otte and Pleim, 2010).

The CMAQ model is a chemistry-transport model that

simulates the chemical fates and transport of gaseous and

particulate pollutants. In this study, the CMAQ modeling

covered Northeast Asia, from 92 to 149◦ E and 17 to 48◦ N,

using 15 km× 15 km horizontal grid spacing (Fig. 2) with

14 terrain following σ coordinates, from 1000 to 94 hPa.

The configurations of the WRF model and CMAQ simula-

tion used in this study are described in Table 1.

Anthropogenic emission inputs were processed by Sparse

Matrix Operator Kernel Emissions in Asia (SMOKE-Asia;

v1.2.1), which has been developed for processing anthro-

pogenic emissions for Asia. Details of SMOKE-Asia were

described in Woo et al. (2012). Biogenic emissions were pre-

pared using the Model of Emission of Gases and Aerosol

from Nature (MEGAN; v2.0.4) (Guenther et al., 2006) with

the MODIS-derived leaf area index (Myneni et al., 2002),

MODIS land-cover data sets (Friedl et al., 2002), and the

meteorological input data described above. For the consid-

eration of biomass burning emissions, daily fire estimates

provided by Fire Inventory from NCAR (FINN) were used

(Wiedinmyer et al., 2011). Asian mineral dust emissions

were not considered in this study. Thus, the periods for model

evaluation were selected during periods when mineral dust

events did not take place.

To take full advantage of the AOD data sets intensively

measured during the Distributed Regional Aerosol Grid-

ded Observation Network in Asia (DRAGON-Asia) cam-

paign, modeling episodes were chosen for the campaign

period from 1 March to 31 May 2012. First, background

CMAQ model simulations were conducted for the 3-month

DRAGON period with 10-day spin-up modeling. After this,

initial conditions were prepared using the STK method, ob-

servation operators and CVs via the combination of GOCI

AODs with the background modeling AOD. Analysis was

carried out for 12 h from 12:00 in local time (LT) on 10 se-

lected high PM pollution days. The hindcast hours are re-

ferred to as H+ 0 to H+ 12. In this study we paid more at-

tention to the performance of the first 12 h PM10 hindcast

results; the analysis of the hindcast results after 13 h is also

discussed briefly in Sect. 3.3.
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Table 1. WRF and CMAQ model configurations.

WRF (v3.5.1) CMAQ (v5.0.1)

Microphysics scheme WRF single-moment 3 class Chemical mechanism SAPRC-99

Long- and short-wave

radiation

Rapid Radiation Transfer Model

for GCMs (RRTMG)

Aerosol module AERO-6

Planetary boundary

layer

Yonsei University scheme Chemistry solver Euler backward iterative (EBI) solver

Land-surface model Noah-MP Photolysis module In-line photolysis calculations

Figure 2. Domains of CMAQ model simulations (black), GOCI sensor coverage (blue), and the Seoul metropolitan area (red). Also shown

are seven AERONET level-2 sites (circles), 58 NAMIS PM10 sites (crosses), and a PM composition observation site (triangle) in the greater

Seoul area, respectively.

In the hindcast analysis, different hindcast runs with

12 combinations of different observation operators and CVs

were conducted, as discussed in Sect. 2.4 and 2.5. We se-

lected one episode from March (28 March), five episodes

from April (8, 9, 14, 17, and 23 April), and four episodes

from May (6, 13, 15, and 16 May), all in 2012, for the analy-

sis associated with three criteria of (i) on the selected days the

average PM10 from 12:00 to 18:00 LT was above 70 µg m−3

over SMA; (ii) on the selected days, the daily coverage of the

GOCI AOD data was at least 20 % over the GOCI domain;

and (iii) on the selected days, dust events were not recorded

over South Korea according to the Korea Meteorological Ad-

ministration (KMA). Additional hindcast runs were also con-

ducted from 7 March 12:00 to 19 March 11:00 LT for evalu-

ating the performances of the hindcast runs for less-polluted

episodes. In this study, we focused on SMA because we were

particularly interested in this area. However, the system in-

troduced here can be applied to other areas inside the GOCI

domain where surface PM observation data are available.

2.2 Observation data

2.2.1 GOCI AOD

As mentioned previously, GEO satellite sensors have impor-

tant advantages compared with LEO satellite sensors, such

as semicontinuously (with 1 h intervals) producing AOP data

over a specific domain of interest. Despite this temporal ad-

vantage, it has been difficult for most GEO satellite sensors

to produce accurate AOPs, because they have only one or

two visible channels. In contrast, the GOCI instrument has

six visible and two near-infrared channels, and can produce

multi-spectral images eight times per day with a spatial res-

olution of approximately 500 m× 500 m with coverage of

2500 km× 2500 km, including part of Northeast China, the

Korean peninsula, and Japan (Fig. 2). Using the 1 h resolved

multi-spectral radiance data from GOCI, the uncertainties of

AOP retrievals can be dramatically reduced (M. E. Park et al.,

2014). The GOCI AOPs were retrieved with multi-channel
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algorithms that can provide hourly AOP data including AOD,

FMF, and SSA at 550 nm (Choi et al., 2015). Compared with

the algorithms from two previous studies (Lee et al., 2010,

2012), the GloA2 algorithm uses an improved lookup table

for retrieving the AOPs, using extensive observations from

the Aerosol Robotic Network (AERONET) and monthly sur-

face reflectance observed from GOCI, and provides 1 h re-

solved AOP data at eight fixed times per day (from 09:30 to

16:30 LT) with 6 km× 6 km spatial resolution. In this study,

the AOD data from the GOCI AOPs were used (because the

SSA and FMF data need further improvements) and also

compared with collection 5.1 10 km MODIS aerosol prod-

ucts from the Aqua and Terra satellites (Levy et al., 2007;

Remer et al., 2005) and collection 6 3 km MODIS aerosol

products from the Aqua and Terra satellites (Munchak et al.,

2013) to present the relative performances of GOCI AOD.

The AERONET AOD data were also used for assessing the

relative accuracy of the GOCI AODs. Figure 3a, b, and

c show the scatter plot analyses of three satellite-retrieved

10 km MODIS AODs, 3 km MODIS AODs, and GOCI

AODs vs. AERONET level 2 AODs over the GOCI domain

during the DRAGON-Asia campaign. All the satellite data

were sampled within spatial and temporal differences of 3 km

and 10 min from the AERONET observations. It should also

be noted that the GOCI and MODIS data were compared

with the AERONET data without the application of the krig-

ing method. First, it was found that GOCI provided more fre-

quent AOD data (N = 2276) than 3 km MODIS (N = 629)

and that GOCI AODs data show comparable regression co-

efficient (R= 0.85), root mean square error (RMSE= 0.25),

and mean bias (MB=−0.19), compared with 3km MODIS

data (R= 0.89; RMSE= 0.16; MB= 0.06). This indicates

that the GOCI AOD data not only have comparable quality

to the MODIS AOD data but also provide a higher number of

data over the GOCI domain. In Fig. 3d, the daily spatial AOD

percent coverages of the Aqua/Terra MODIS and GOCI sen-

sors are compared. It was found that there are a large num-

ber of daily missing pixels in the observations of both satel-

lite sensors (the average percent coverages of Aqua MODIS,

Terra MODIS and GOCI AODs during the period were about

9, 10, and 29 %, respectively).

2.2.2 Ground-based observations

AERONET is a global ground-based sunphotometer network

managed by the NASA Goddard Space Flight Center, pro-

viding spectral AOPs including AOD, SSA, and particle size

distributions, available at http://aeronet.gsfc.nasa.gov (Hol-

ben et al., 1998). To match the wavelength of GOCI AOD

with AERONET AOD, the AOD data at 550 nm were cal-

culated via interpolation, using AODs and Ångström expo-

nent data between 440 and 870 nm from the DRAGON-Asia

level 2.0 data. AOD data from 29 AERONET sites inside the

GOCI domain were used for validating GOCI and STK AOD

Figure 3. Scatter plots of (a) 10 km Aqua/Terra MODIS AODs

vs. AERONET level-2 AODs, (b) 3 km Aqua/Terra MODIS AODs

vs. AERONET level-2 AODs and (c) GOCI AODs vs. AERONET

level-2 AODs at 550 nm during the DRAGON campaign over the

GOCI domain. N , R, RMSE, and MB represent the number of ob-

servations, the regression coefficient, root mean square error, and

mean bias, respectively. Hourly resolved Aqua/Terra MODIS and

GOCI spatial coverages (%) are also shown in (d) from 1 March to

31 May 2012.

products, and those from six AERONET sites in SMA were

selected for evaluating the performance of hindcast AODs.

To analyze hindcast surface aerosol concentrations, the

PM10 observations provided by the National Ambient Air

Monitoring System (NAMIS) network in South Korea were

used. The NAMIS network, operated by the MoE has col-

lected air pollutant concentrations of PM10 measured by an

automatic β-ray absorption method with a detection limit of

2 µg m−3 at 5 min intervals. We selected 58 NAMIS sites in

SMA, the locations of which are shown in Fig. 2, and used 1 h

averaged data for the analysis during the selected episodes.

Ion concentrations of PM2.5 were also measured using a

particle-into-liquid sampler coupled with ion chromatogra-

phy (PILS-IC) and a low air-volume sampler with a Teflon

filter in Yongin City, located downwind of Seoul (Fig. 2).

Details on the measurement methods are described in Lee et

al. (2015) and are not repeated here. The 1 h averaged sulfate

(SO2−
4 ), nitrate (NO−3 ), and ammonium (NH+4 ) concentra-

tions, measured by the PILS-IC, and 24 h averaged SO2−
4 ,

NO−3 , NH+4 , organic carbon (OC), and elementary carbon

(EC), measured by the low air-volume sampler, were used for

further comparison during the selected episodes (Sect. 3.4).

The observed OC concentrations were multiplied by a factor

of 1.5 to estimate organic aerosol (OA) concentrations (He et

al., 2011; Huang et al., 2010).
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2.3 Spatiotemporal kriging

Kriging is a geostatistical interpolation method to estimate

unmeasured variables and their uncertainties, using correla-

tion structure of measured variables. An atmospheric appli-

cation study of the kriging method to estimating PM10 ex-

ceedance days over Europe reported that ST kriging showed

comparable performances to those of the EnKF (ensemble

Kalman filter) approach (Denby et al., 2008).

In this study, the STK method was used to fill out the

missing pixels (Fig. 3d) with the spatial and temporal GOCI

AOD data. The AOD fields produced by ST kriging can be

prepared with a horizontal resolution of 15 km× 15 km from

10:00 to 16:00 LT over the GOCI domain. In this study, the

AOD data at 12:00 LT (H+ 0) during the selected episode

days were used for preparing the initial conditions. The de-

tails and general application of the STK method are pre-

sented in Appendix A. One advantage of using ST kriging

in this study framework is to use large numbers of observa-

tional data (GOCI AODs), compared with other methods. In

fact, the GOCI AOD data are densely available temporally

(with 1 h intervals) and spatially (compared with MODIS

AODs; see Fig. 3a and b). This was the primary reason for

using the STK method in this study. For example, when

initial AOD fields were prepared at a certain time (e.g., at

noon, 12:00 LT: H+ 0), the STK method used not only GOCI

AOD data at 11:30 LT or 12:30 LT but also GOCI AOD data

at 09:30, 10:30, and 13:30 LT, unlike other methods. In the

case of 4 April 2012 (a high PM pollution episode dur-

ing the DRAGON-Asia campaign), other interpolation meth-

ods (e.g., Cressman, bilinear, and nearest-neighbor methods)

could use only the GOCI AOD data of ∼ 88 000 for the

preparation of the initial AOD field at 12:00 LT, whereas the

STK method used the GOCI AOD data of∼ 280 000 (3 times

more AOD data). Sequential data assimilation (DA) meth-

ods such as OI (optimal interpolation) and 3DVAR (three-

dimensional variational data assimilation) can use the same

number of observations as the STK method. However, they

required four data assimilation steps (i.e., 4 h time window

for DA) (Tang et al., 2015) to include observations from

09:30 to 13:30, thus greatly increasing the computational

cost for daily assimilation.

If the observation data are densely available and the dif-

ferences between the observations and model-simulated data

are large (i.e., the model simulations include relatively large

errors and biases), there is less “practical need” to use the

CTM-simulated data in the process of data assimilation. That

is, it would be more desirable if the values of the unobserved

(missing) pixels could be filled in based on “more reliable”

observation data (here, GOCI AODs). This would be par-

ticularly true, when the CTM-predicted AODs are system-

atically underestimated compared with GOCI or AERONET

AODs (as will be shown in Fig. 5a). Additionally, computa-

tion costs of the STK method are so low that the STK AOD

can be calculated rapidly. For example, the 1-day process for

preparing the AOD fields over the GOCI domain takes only

∼ 20 min with two 3.47 GHz Xeon X5690 six-core proces-

sors and 32 GB of memory in the current application of the

STK method. Thus, it can be applied directly to the daily

CWF due to the relatively cheap computation cost. Again,

computation time (rapid calculation) is a central issue in

daily (short-term) chemical weather forecasts. The calcula-

tion of daily three-dimensional semivariograms takes most

of the computation time (regarding the details of calculation

of the daily three-dimensional semivariogram, refer to Ap-

pendix A and Fig. A1).

Connected with these discussions, in the application of

the STK method to the GOCI AODs, the “optimal number”

of observation data is necessary to balance the accuracy of

the data and the computational speed. From many sensitivity

tests (not shown here), the optimal number of observations

for most missing (white) pixels is approximately 100. That is,

the use of more observation data above this optimum num-

ber does not meaningfully enhance the accuracy of AODs

of the missing pixels but simply takes more computation

time. This number of observation data is usually available

for most of the missing (white) pixels of the GOCI scenes

from nearby grids both/either at the concurrent scene spa-

tially within ∼ 100 km and/or at the temporally close snap-

shots within 3 h. Based on these reasons, the STK method

was chosen for this study.

2.4 Observation operator

An observation operator (or forward operator) describes the

relation between observation data and model parameters. For

example, the observation operator in this study converts the

aerosol composition into AODs (and vice versa). Based on

the aerosol composition and the relative humidity (RH) from

the model simulations, simulated AODs at a wavelength of

550 nm (τCMAQ) were calculated with the following obser-

vation operator:

τCMAQ =

N∑
s=1

M∑
l=1

αs,dryfs(RHl)[C]s,lHl, (1)

where N and M denote the number of aerosol species (s)

and model layer (l), respectively, αs,dry the mass extinction

efficiency (MEE) of the species (s) at 550 nm under the dry

condition, fs(RHl) the hygroscopic enhancement factor for

the species (s) as a function of RH at the layer of l, [C]s,l the

mass concentration of the species (s) at the layer of l, andHl
the height of layer l. Here, [C]s,l is selected as the control

variable (refer to Sect. 2.5).

In this study, three observation operators were used for

calculating AODs and updating initial PM composition for

the hindcast studies. The differences in the observation op-

erators are caused mainly by the differences in αs,dry and

fs(RHl) of Eq. (1). The first observation operator was se-

lected from the Goddard Chemistry Aerosol Radiation and
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Table 2. Values used in observation operators for estimating aerosol optical properties (AOPs).

Method for estimating Aerosol Hygroscopic αa
OC

αb
BC

αc
SSAM

αd
SSCM

aerosol optical properties speciation aerosols

Chin et al. (2002) (NH4)2SO4, OC, BC, dust (7 size

bins), sea salt (2 modes)

(NH4)2SO4, OC, BC, sea salt 2.67 9.28 1.15 0.13

Martin et al. (2003) (NH4)2SO4, OC, BC, dust (7 size

bins), sea salt (2 modes)

(NH4)2SO4, OC, BC, sea salt 2.82 8.05 2.37 0.94

Malm and Hand (2007) NH4NO3, (NH4)2SO4, organic

matter, soil, coarse mass, sea salt

NH4NO3, (NH4)2SO4, sea salt 4.00 10.00 1.37 1.37

Dry mass extinction efficiencies (m2 g−1) at 550 nm of a OC, b BC, c sea salt in accumulation mode and d sea salt in coarse mode. Note: in cases of Chin et al. (2002) and Martin et

al. (2003), the AOPs for sulfate were used for calculating AOPs for NH4NO3 and (NH4)2SO4.

Figure 4. Mass extinction efficiencies (MEEs) calculated for (a) SO2−
4

, NO−
3

, and NH+
4

, (b) OAs, (c) BC and (d) sea salt at a wavelength of

550 nm as a function of RH (%) from three observation operators. For the GOCART and GEOS-Chem operators, 50 % of OAs and 20 % of

BC are assumed to be hydrophilic. In sea-salt MEEs, the accumulate and coarse modes are represented as solid and dashed lines, respectively.

Transport (GOCART) model (Chin et al., 2002; hereafter

GOCART operator). Hygroscopic growth rates for SO2−
4 ,

OC, BC, and sea-salt aerosols were considered separately

in this operator. The second observation operator was from

the GEOS-Chem model (the GEOS-Chem operator). The de-

tailed aerosol speciation and MEE values were described in

Martin et al. (2003). The final observation operator is based

on the study of Malm and Hand (2007) (the IMPROVE op-

erator). This observation operator was based on the recon-

struction method with the MEEs and hygroscopic enhance-

ment factors at 550 nm for different types of aerosol species.

Table 2 summarizes the characteristics of the three obser-

vation operators chosen in this study. To consistently con-

sider the characteristics of the three observation operators,

aerosol types (s in Eq. 1) were classified into seven groups:

SO2−
4 , NO−3 , NH+4 , OAs, BC, sea salt, and others, which

mainly consist of PM2.5 trace elements (Reff et al., 2009). In

the classification, internal mixing states of SO2−
4 , NO−3 , and

NH+4 were assumed. It should also be noted that the consid-

eration of NO−3 is important to correctly estimate AOD and

aerosol mass loading in East Asia (R. S. Park et al., 2011,

2014; Song et al., 2008). Figure 4 shows the wet MEE values

(αs,wet; product of αs,dry and fs(RHl) in Eq. 1) calculated for

SO2−
4 , NO−3 , and NH+4 , OAs, BC and sea salt at a wavelength

of 550 nm as a function of RH, indicating that the three dif-

ferent operators can create large differences in the wet MEE

values.

2.5 Selection of control variables

To prepare the distributions of the aerosol composition, the

STK AOD fields should be converted into the 3-D aerosol

composition. To do this, the differences between the STK

AODs and background AODs (often called “observational

increments”: 1AODk =AODSTK,k −AODbg,k; k: grid cell)

should be added to the background model-derived aerosol

composition at each grid cell in connection with the obser-

vation operators (Eq. 1). Which aerosol species is/are se-

lected for allocating1AODk? We selected four types of con-

trol variables (CVs) of particulate species. First, all partic-

ulate species were selected as CVs. In this case, 1AODk
was distributed to all particulate species, with the particu-

late fractions calculated from the background CMAQ model

simulations. The second CV was the selection of SO2−
4

concentration. Despite the large contribution of SO2−
4 to

both AOD and PM concentration in East Asia, model-

estimated SO2−
4 concentrations have shown large systematic

www.geosci-model-dev.net/9/17/2016/ Geosci. Model Dev., 9, 17–39, 2016



24 S. Lee et al.: GIST-PM-Asia v1

Table 3. Definition of model configurations.

Configuration Observation operator Control variable

A1 Chin et al. (2002) Total aerosol mass concentration

A2 SO2−
4

mass concentration

A3 SO2−
4

and OAs mass concentration

A4 SO2−
4

, NO−
3

, NH+
4

and OAs mass concentration

B1 Martin et al. (2003) Total aerosol mass concentration

B2 SO2−
4

mass concentration

B3 SO2−
4

and OAs mass concentration

B4 SO2−
4

, NO−
3

, NH+
4

and OAs mass concentration

C1 Malm and Hand (2007) Total aerosol mass concentration

C2 SO2−
4

mass concentration

C3 SO2−
4

and OAs mass concentration

C4 SO2−
4

, NO−
3

, NH+
4

and OAs mass concentration

underestimations, compared with observed SO2−
4 concentra-

tions (R. S. Park et al., 2011, 2014). This can be related to

either (or both) the uncertainty in SO2 emissions in East Asia

or (and) the uncertainty in the parameterizations of SO2−
4

production in the CTM models (Kim et al., 2013; Lu et al.,

2010; Smith et al., 2011; R. S. Park et al., 2014). In addition,

there is also large uncertainty in the levels of hydroxyl rad-

icals (OH) due to uncertain daytime HONO chemistry, OH

reactivation, in-plume processes and others (Archibald et al.,

2010; Han et al., 2015; Karamchandani et al., 2000; Kim et

al., 2009; Kubistin et al., 2010; Lelieveld et al., 2008; Song

et al., 2003, 2010; Sörgel et al., 2011; Stemmler et al., 2006;

Zhou et al., 2011). Obviously, these uncertainties can influ-

ence the levels of H2SO4 and thus particulate sulfate con-

centrations in the atmosphere. In this case, aerosol mass con-

centrations (except for SO2−
4 ) were the same as those of the

background aerosol concentrations. Third, SO2−
4 and OAs

were chosen to be changed. Although OAs are one of the

major particulate species, it is well known that OA concentra-

tions are also systematically underestimated due to two rea-

sons: (i) the uncertainty in the parameterizations of the sec-

ondary OA formation (Donahue et al., 2006, 2011; Dzepina

et al., 2009; Hodzic et al., 2010; Matsui et al., 2014; Slowik

et al., 2010), and (ii) the uncertainty in emission invento-

ries for anthropogenic and biogenic OA precursors (Guen-

ther et al., 1999; Han et al., 2013; Sakulyanontvittaya et al.,

2008; Tsimpidi et al., 2010; Wyat Appel et al., 2008). In this

case, the mass concentration of surface OAs is assumed to

be equal to the mass concentration of surface SO2−
4 , based

on the ground-based measurement studies over East Asia

(Lee et al., 2009; Zhang et al., 2007, 2012). Thus, 1AODk
accounted for the increments of concentrations from OAs

and SO2−
4 , which are changed independently from the back-

ground concentrations. Finally, SO2−
4 , NO−3 , NH+4 , and OAs

were selected to be changed. In this case, 1AODk was dis-

tributed to the four species selected, with the fractions of

SO2−
4 , NO−3 , and NH+4 calculated from background simu-

lations. The method to change the OA concentration in the

fourth selection of CVs was the same as the method in the

third selection of CVs. The fourth selection of CVs was also

made to consider the thermodynamic balance among SO2−
4 ,

NO−3 , and NH+4 concentrations (Bassett and Seinfeld, 1983;

Saxena et al., 1986; Seinfeld and Pandis, 2012; Song and

Carmichael, 1999; Stelson et al., 1984). It should be noted

that background modeling-derived vertical profiles and the

size distributions of aerosol species were used for convert-

ing 2-D AOD to 3-D PM composition in all the STK cases.

With the combinations of the three different observation op-

erators and four choices of CVs (Table 3), 12 hindcast runs

were made for high PM episodes during the DRAGON-Asia

campaign.

3 Results and discussion

In Sect. 3, the performances of the STK method are evaluated

via comparisons with the AERONET AOD in the GOCI do-

main (Sect. 3.1). Sensitivity analyses were then conducted

to examine the impacts of the observation operators and

CVs on the accuracy of the hindcast runs (Sect. 3.2). After

that, the overall performances of the hindcasts were evalu-

ated with ground-based observations during the high PM10

episodes over SMA (Sect. 3.3). A comparative analysis of

the PM composition between hindcast results and observa-

tions was also conducted to further investigate/analyze the

performance of the hindcast system (Sect. 3.4). In addition,

hindcast results for the periods of less-polluted episodes are

also shown with the best configuration (Sect. 3.5).
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Figure 5. Scatter plots of (a) background CMAQ model AODs,

(b) spatial kriging AODs, and (c) STK AODs vs. AERONET level-2

AODs at 550 nm. Plots of ST kriging with kriging variances (KVs)

less than or equal to 0.04 (d) and larger than 0.04 (e) are also shown.

The color scale shown in (e) and presents the KVs of STK AODs.

The number of spatial kriging AODs in (b) is smaller than those of

(a) and (c) due to the missing hourly AOD fields by the anomaly in

GOCI.

3.1 Evaluation of STK AODs

Figure 5a–c show scatter plot analyses of background

CMAQ-simulated AODs, spatial kriging AODs (i.e., krig-

ing only with the GOCI AODs from one scene) and STK

AODs vs. AERONET level 2 AODs over the GOCI do-

main during the DRAGON-Asia campaign. First, it can be

found that the CMAQ-predicted AODs are underestimated

significantly compared with the AERONET AODs. As dis-

cussed in Sect. 2.3, this was the main reason that we used

the STK method in this study. More weight should be given

to observations because the CTM modeling produces signifi-

cant biases. Second, STK AODs show improved correlations,

compared with the AODs estimated via the spatial kriging

method. Also, the STK AOD data show equivalent levels of

errors and biases, compared with GOCI AOD data. If one

compares Fig. 3b with Fig. 5c, it can be seen that the ST

kriging can effectively produce the AOD fields (also note the

increase in N ).

Figure 5d and e show the scatter plot analysis of the STK

AOD products versus the AERONET AOD data with krig-

ing variances (KVs). It is found that the STK AOD data with

KV≤ 0.04 show a similar scattering pattern and accuracy to

those of GOCI AOD. In contrast, some overestimated out-

liers from the STK AOD data in Fig. 5e (e.g., 1.0–2.0 in the

x axis and 2.0–4.0 in the y axis) show different patterns than

those from the GOCI AOD data. This may be explained by

the relatively large KVs (> 0.04) of such overestimated out-

liers. The KV generally increases when the observations near

a certain prediction point are not available or when nearby

observations have relatively large errors. Thus, when the

GOCI observations are contaminated by optically thin clouds

and they are not removed perfectly, this can increase the lo-

cal variances due to their high cloud optical depth (COD).

These factors can affect the quality of the STK AOD prod-

ucts. In this study, only the STK AOD products having small

KVs (less than 0.04) were used for preparing the initial con-

dition of each data processing step. Therefore, the initial PM

concentrations did not changed where the STK AOD having

large KVs (larger than 0.04; i.e. the right-bottom corner area

in Fig. A2f). Collectively, it appears that the STK method is

a reasonable tool for obtaining realistic AOD values at loca-

tions where the GOCI observations are not available.

3.2 Sensitivity of observation operators and control

variables to AOD and PM10 predictions

To investigate the best combination of the observation oper-

ators and CVs, the AOD and PM10 hindcast runs and sensi-

tivity analyses with the 12 different configurations (Table 3)

were performed. For this, the hindcast AOD and PM10 from

13:00 to 19:00 LT (H+ 1 to H+ 6) on 10 selected episode

days were compared with the ground-measured AOD and

surface PM10. The observations from the six AERONET

sites and nearest NAMIS PM10 stations within 10 km from

the AERONET locations were selected for this compari-

son study (Fig. 2). The AOD values for the background

CMAQ model simulations without the application of the

STK method (noSTK) were also calculated with the GEOS-

Chem observation operator.

Figure 6 shows the soccer plot analysis of the 13 hind-

cast AODs (left panel) and PM10 (right panel) during the

first 6 h of the short-term PM hindcasting on the 10 selected

episode days. In the soccer plot, mean fractional bias (MFB)

and mean fractional error (MFE) (described in Appendix B)

are plotted on the x and y axes, respectively. Using this plot,

the relative discrepancy can be presented by the distances

from the origin of the plot and particular characteristics, such

as systematic bias, can also be shown as a group of scatter

points. Detailed statistical metric values are shown in Ta-

ble 4. All the AODs and PM10 with the application of the

STK method are much better than those from the noSTK

simulation, with reduced errors and biases. Percentage de-

creases in MFE with the STK hindcasts were found to be

60–67 % for AOD and are 50–63 % for PM10. The MFB also

decreased by 67–82 % for AOD and by 56–84 % for PM10.

The noSTK case showed a strong negative bias (i.e., under-

prediction) and the 12 STK cases also showed less, yet still

negative, biases. These negative biases are considered to be

systematic, because of the negative bias of the GOCI AOD

data (Fig. 6). Additionally, the negative biases are due to
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Table 4. Performance metrics for AOD and PM10 hindcasts on the 10 selected episodes at six AERONET sites and nearby NAMIS PM10

stations in SMA.

Configuration AOD (Na
= 277) PM10 (N = 340)

IOAb MFEc MFBd Re RMSEf MBg MNEh MNBi IOA MFE MFB R RMSEj MBj MNE MNB

noSTK 0.48 113.2 −113.2 0.61 0.60 −0.53 70.0 −70.0 0.47 89.0 −88.5 0.54 55.15 −48.40 58.9 −58.4

A1 0.62 37.4 −22.1 0.46 0.36 −0.16 32.5 −13.7 0.60 35.4 −22.7 0.44 36.07 −15.80 31.1 −14.7

A2 0.60 39.8 −20.9 0.41 0.37 −0.15 35.8 −11.3 0.58 39.4 −34.7 0.50 37.13 −24.65 31.6 −25.8

A3 0.63 38.7 −22.5 0.46 0.36 −0.16 34.0 −13.5 0.64 33.0 −23.1 0.52 33.15 −17.07 28.4 −16.2

A4 0.63 37.4 −22.0 0.47 0.35 −0.16 32.6 −13.5 0.64 36.2 −28.3 0.53 34.58 −19.79 30.3 −20.4

B1 0.54 43.1 −27.1 0.33 0.40 −0.18 36.4 −16.2 0.53 41.1 −30.0 0.31 40.01 −20.90 33.9 −20.0

B2 0.51 44.7 −25.2 0.27 0.41 −0.17 39.5 −13.3 0.53 43.8 −39.2 0.37 40.94 −27.50 34.1 −28.5

B3 0.56 42.3 −25.8 0.35 0.39 −0.18 36.6 −15.2 0.56 38.0 −29.6 0.39 37.43 −21.65 31.2 −21.0

B4 0.55 41.9 −24.7 0.34 0.39 −0.17 36.3 −14.2 0.56 40.7 −33.9 0.42 38.30 −23.84 32.8 −24.4

C1 0.50 44.4 −37.5 0.28 0.43 −0.26 34.3 −26.3 0.55 35.8 −14.5 0.32 38.41 −9.82 33.4 −5.4

C2 0.47 45.7 −34.2 0.20 0.43 −0.24 36.7 −22.7 0.55 36.3 −26.0 0.37 36.86 −19.43 30.3 −17.6

C3 0.53 41.7 −30.5 0.34 0.40 −0.22 34.1 −20.5 0.60 32.9 −19.6 0.44 34.07 −14.92 29.1 −12.5

C4 0.53 41.7 −32.4 0.35 0.41 −0.23 32.4 −22.6 0.61 34.8 −21.8 0.44 34.78 −15.68 30.4 −14.0

a The number of paired data, b index of agreement, c mean fractional error, d mean fractional bias, e Pearson product–moment correlation coefficient, f root mean square error, g mean bias, h mean normalized error, and
i mean normalized bias. The units of all of metrics are dimensionless except j in microgram per cubic meter.

Figure 6. Soccer plot analysis for AOD (left panel) and PM10 (right

panel) data from the first 6 h observations and the modeled data at

six selected sites. BL (denoted by black diamond) represents the

case of the bilinear interpolation method discussed in Sect. 3.2.

underestimation of CMAQ-simulated SO2−
4 and OA concen-

trations (Carlton et al., 2008, 2010; R. S. Park et al., 2011,

2014). This issue has been discussed in Sect. 2.5 and is in-

vestigated further in Sect. 3.4.

On the other hand, there are relatively small differences in

errors and biases among the 12 STK cases (Fig. 6). Several

differences among the 12 sensitivity cases were investigated

further. First, the error and bias patterns for the AOD values

were different from those for the PM10 predictions, being as-

sociated with the different observation operators. For exam-

ple, the STK cases with the IMPROVE observation operator

(cases C1, C2, C3, and C4) exhibited a relatively small bias

for PM10 predictions, although they did not in the AOD pre-

dictions. This was likely caused by small wet MEE values

of SO2−
4 , NO−3 , and NH+4 in the IMPROVE observation op-

erator (represented by the green line in Fig. 4). In Eq. (1),

the concentrations of converted aerosol species are inversely

proportional to the MEEs of aerosol species. In the CV cases,

the selections of SO2−
4 and OAs (i.e., A3, B3, and C3) and

SO2−
4 , NO−3 , NH+4 , and OAs (i.e., A4, B4, and C4) showed

better performances for both the AOD and PM10 predictions.

To show the degree of enhanced performances via the STK

GOCI data, we also carried out some hindcast simulations,

using the initial conditions prepared with single-frame GOCI

data at 11:30 LT. The grids that did not have AOD observa-

tions were not filled out in this runs. In Fig. 6, the MFBs and

MFEs of the bilinear interpolation method (denoted as BL)

were −45.05 and 59.52 for AOD and −46.13 and 53.30 for

PM10, respectively. It is shown in Fig. 6 that the use of the

single-frame GOCI data without filling any gap cannot suf-

ficiently improve the performance, compared with the cases

of the STK simulations.

Figure 7 shows the performances of the short-term hind-

cast system with the 13 different configurations via compar-

isons between the hourly averaged PM10 observations and

model PM10 predictions at the six NAMIS sites, on 9 April

and 6 and 16 May 2012, respectively. Only 3-day and six-site

results were selected and presented here, and more compre-

hensive performance evaluations are presented in Sect. 3.3.

While noSTK failed to reproduce the high PM pollution, all

the STK cases showed significant improvements in the sur-

face PM10 predictions. However, there was a tendency in that

the hourly peaks of PM10 were not well captured by the STK

cases.

Consequently, it can be concluded that the combination of

the GOCART observation operator and CVs of SO2−
4 and

OAs (represented by A3) leads to the best results in the cur-

rent hindcast system (Table 4). The use of the GOCART ob-

servation operator and CVs of SO2−
4 , NO−3 , NH+4 , and OAs

(represented by A4) could also provide a comparable perfor-

mance to A3. However, it appears that the differences among

the 12 STK cases were relatively small.
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Figure 7. Time series of hourly PM10 for the six sites over SMA for 9 April (a), 6 May (b), and 16 May (c) in 2012. Observed concentrations

are shown as black circles and the model outputs as the colored lines with their own markers explained in the legend.

3.3 Overall performance evaluation of PM10 hindcast

over SMA

In this section, PM10 observations from the hindcast exper-

iments were compared with the PM10 observations from 58

NAMIS sites to evaluate the overall performance of the cur-

rent hindcast system in SMA. Table 5 provides the statistical

metrics that were calculated separately from the first and the

second 6 h hindcast results. The main characteristics of the

statistical analysis in Table 5 are similar to those at the six

sites discussed in the previous section. First, both errors and

biases of PM10 distributions were significantly reduced after

the application of the STK method. The MFEs and MFBs

in the 12 h STK simulations decreased by ∼ 40 and ∼ 80 %,

respectively.

A distinctive difference was also found in the model per-

formances for the first and the second 6 h runs. During the

first 6 h, all the hindcast results showed negative biases, with

the MFB of∼−100 % for the noSTK cases and∼−40 % for

the STK cases. The performances of the A3 and A4 cases are
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Table 5. Performance metrics for PM10 hindcasting on the 10 selected episodes at 58 NAMIS PM10 stations in SMA. Abbreviations are the

same as those in Table 3.

Configuration H+ 1 to H+ 6 (N = 4823) H+ 7 to H+ 12 (N = 4921)

IOA MFE MFB R RMSE MB MNE MNB IOA MFE MFB R RMSE MB MNE MNB

noSTK 0.45 99.6 −98.7 0.44 62.98 −54.59 63.9 −62.6 0.55 64.7 −36.9 0.30 56.76 −17.77 56.5 −12.9

A1 0.62 42.2 −30.9 0.47 40.64 −21.41 35.6 −19.7 0.62 43.9 1.5 0.37 49.17 5.27 51.2 19.1

A2 0.57 49.1 −43.4 0.48 43.81 −30.49 38.5 −30.4 0.60 45.1 −4.0 0.34 49.81 0.60 49.9 13.1

A3 0.64 40.5 −30.4 0.50 39.46 −21.83 34.2 −20.1 0.63 43.5 5.8 0.39 50.51 9.17 52.7 23.9

A4 0.63 44.6 −36.3 0.52 40.70 −24.99 36.3 −24.7 0.62 43.6 1.2 0.38 49.44 5.10 50.6 18.5

B1 0.54 48.8 −39.6 0.35 45.12 −27.64 38.8 −26.1 0.58 46.0 −3.6 0.31 49.18 0.71 50.8 14.1

B2 0.51 53.9 −48.9 0.36 47.76 −34.14 41.0 −33.9 0.59 46.3 −7.4 0.33 48.73 −2.37 49.1 9.3

B3 0.56 45.9 −37.9 0.40 43.36 −27.48 36.9 −25.8 0.61 44.6 0.7 0.35 48.81 4.07 51.0 17.9

A4 0.56 49.7 −43.0 0.43 44.46 −30.05 38.9 −29.6 0.60 45.2 −3.1 0.34 48.87 1.07 50.0 14.0

C1 0.60 40.4 −22.7 0.39 40.82 −15.98 35.9 −11.7 0.58 45.9 6.6 0.32 51.68 9.84 56.0 26.5

C2 0.56 43.7 −34.3 0.40 42.22 −25.43 35.6 −22.9 0.58 45.9 2.0 0.31 51.37 5.63 53.6 20.7

C3 0.63 39.0 −27.3 0.47 39.00 −20.13 33.3 −17.5 0.61 44.1 7.3 0.37 51.46 10.64 54.3 26.3

C4 0.63 41.2 −29.9 0.48 39.45 −21.30 34.5 −19.4 0.61 44.2 4.7 0.36 50.69 8.29 53.2 23.2

Figure 8. Averaged PM10 of the noSTK case from H+ 1 to H+ 6 (a) and from H+7 to H+13 (b), and the averaged concentrations of case

A3 at the same time series (c and d) for the selected 10 days. Averaged NAMIS PM10 observations are shown with colored circles.

somewhat better than those of the other STK cases (Table 5).

Collectively, the MFEs and MFBs of the STK cases are a fac-

tor of 2–4 smaller than those of the noSTK cases during the

first 6 h.

Figure 8 shows a comparison between the noSTK case and

the A3 case, in terms of the PM10 predictions, during the

first and the next 6 h in SMA with the 6 h averaged NAMIS

PM10 observations. As shown, the A3 case produced better

PM10 predictions during the first and the next 6 h. In addition,

the A4 case (not shown) also provided similar results to the

A3 case, as discussed in Sect. 3.2. It can be confirmed again

that the A3 and A4 cases are able to produce better PM10

predictions against the PM10 observations in SMA.

Hindcast performances from H+ 13 to H+ 24 were also

evaluated with the ground-measured NAMIS PM10 data. In

short, the differences between all the STK and noSTK cases

became smaller than those during the first 12 h (an approxi-

mate difference of 10 % was found at H+ 24, i.e., 24 h after

the hindcast actually began). Based on this, it appears that the

effects of using the initial PM composition on the hindcast
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performances may effectively last during the first 12 h. Af-

ter 12 h, the effects started to diminish. This is due to several

facts: (i) the regions for applying the initial PM composi-

tion in this study were limited only within the GOCI domain

(relatively small region); (ii) although the initial PM compo-

sition was used, its effects can be offset by uncertainties and

errors in emissions as time progressed; and (iii) the large un-

certainties associated with the formation of SO2−
4 and OAs

in the CTMs can also limit the effects of the initial PM com-

position. The latter two are the reasons that there is strong

necessity for both emissions and CTMs to be improved con-

tinuously, even though the initial PM composition is applied

in the short-term forecast activities.

3.4 Evaluation of hindcast performance with observed

PM composition

In the previous section, PM10 mass concentrations were sim-

ply predicted by the short-term hindcast system with 12 dif-

ferent combinations of observation operators and CVs. Al-

though the purpose of this study is to develop a better PM

forecast system for accurately predicting PM10 mass concen-

trations, it is still necessary to more carefully scrutinize the

changes in the PM composition in accordance with the dif-

ferent selections of the CVs.

During the DRAGON-Asia campaign, the PM2.5 compo-

sition was measured for SO2−
4 , NO−3 , and NH+4 with 30 min

intervals and for SO2−
4 , NO−3 , NH+4 , OC and BC with 24 h in-

tervals using the PILS-IC instrument (semicontinuous mea-

surements) and low-air-volume sampler with a Teflon fil-

ter (offline measurements), respectively, in Yongin City near

SMA (Fig. 2). Thus, in this section, the selection of the CVs

is further discussed with the observed PM2.5 composition.

Figure 9 shows the comparison between 1 h averaged

SO2−
4 , NO−3 , and NH+4 concentrations measured via the

PILS-IC instrument and model-predicted concentrations dur-

ing the selected days at the Yongin observation site. Only

the STK cases with the GOCART observation operator (i.e.,

A1, A2, A3, and A4) were selected here. The STK cases

showed significant changes in the PM composition with the

selection of CVs. For example, the A2 and A3 cases tended

to overestimate the SO2−
4 concentrations but underestimated

the NO−3 and NH+4 concentrations, whereas the A1 and A4

cases tended to capture relatively well the trend of the con-

centrations of the three particulate species. This phenomenon

was driven by intraparticulate thermodynamics. That is, if

larger amounts of SO2−
4 are allocated into particles (like the

cases of A2 and A3), then NO−3 tends to be evaporated, be-

cause SO2−
4 is more strongly associated with NH+4 (Song

and Carmichael, 1999). As shown in Fig. 9a and b, when

the SO2−
4 concentrations increase (as in case A2), the NO−3

concentrations decrease accordingly, because NO−3 is evapo-

rated out of the particulate phase as a form of HNO3 (Song

Figure 9. Time-series comparison of 1 h averaged (a) SO2−
4

,

(b) NO−
3

, and (c) NH+
4

concentrations measured with the PILS-IC

instrument and model-predicted concentrations. In (d), 24 h aver-

aged aerosol concentrations in PM2.5 from observations (PILS-IC

instrument and low-air-volume sampler with Teflon filter) are com-

pared with hindcast concentrations at the Yongin City site for 10

selected episodes.

and Carmichael, 1999, 2001). Collectively, the “best” results

were produced from the case A4, as shown in Fig. 9a–c.

The 24 h averaged PM2.5 compositions measured from the

PILS-IC instrument and the low-air-volume sampler with a

Teflon filter during the campaign period are also compared

in Fig. 9d. Again, the observations of the SO2−
4 , NO−3 , and

NH+4 concentrations were obtained from both the PILS-IC

instrument and the low-volume sampler, whereas the con-

centrations of OAs (∼= [OC]× 1.5) and EC were only mea-

sured via the low-air-volume sampler. As shown in Fig. 9d,

the SO2−
4 , NO−3 , and NH+4 concentrations from both sam-

plers showed good agreements (see circles and crosses in

Fig. 9d). The A4 case (the red bars in Fig. 9d) again showed

the best results in the comparison between the observed and

predicted particulate composition, particularly in SO2−
4 and

OAs. In the previous discussion (see Sect. 3.2 and 3.3), the

A3 and A4 cases showed the best performances for predict-

ing PM10 mass concentrations over SMA. This is somewhat

consistent with our analysis in this section. However, in the

case of A3, it can capture the PM mass behaviors (Sect. 3.3)

but does not capture the changes in the PM composition well

(this section). Based on this, it is concluded that the A4 case

would be the best configuration for accurately predicting the

PM composition as well as the PM mass. However, this PM

composition analysis was conducted with observations from

only one site (Yongin City) in this study. Thus, to reach a

firmer conclusion, more intensive analyses with observations

from multiple sites are required in future.
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Figure 10. Time series of hourly PM10 at six sites in SMA for 8 March (a), 10 March (b), and 11 March (c) in 2012. Observed concentrations

are denoted as black circles and the modeled concentrations as colored lines.

3.5 Evaluation of short-term hindcast performances

To further evaluate the performance of the short-term hind-

cast runs, 48 h hindcast simulations with the configuration of

A4 were carried out from 7 to 19 March. The observations

from the six AERONET sites and the nearest NAMIS sta-

tions were analyzed in this study.

The time series of the first and the second 24 h averaged

PM10 at the six sites on 8, 10, and 11 March 2012 are pre-

sented in Fig. 10. Again, reduced errors and biases were

shown in the A4 STK simulations, compared with the noSTK

simulation for polluted episodes (panels a and b in Fig. 10)

and for the less-polluted episode (panel c in Fig. 10). Per-

cent decreases with MFEs of the first 24 h A4 STK hind-

cast were ∼ 40 % for AOD and ∼ 10 % for PM10, and those

with MFBs were ∼ 40 % for AOD and ∼ 100 % for PM10.

In addition, slight improvements in the horizontal distribu-

tions of AOD and PM10 were also found. This was indi-

cated by the increases of correlation coefficients (refer to Ta-

ble S1 in the Supplement). The second 24 h STK hindcasts
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also reduced the errors and biases for AOD and PM10, al-

though the improvements in the spatial distributions were not

shown clearly. More detailed statistical metrics are presented

in the Supplement (Table S1).

4 Summary and conclusions

For the purpose of improving the performance of short-

term PM forecast in South Korea, an integrated air quality

modeling system was developed with the application of the

STK method using the geostationary satellite-derived AOD

data over Northeast Asia. The errors and biases of the STK

AOD showed relatively good agreement, compared with the

AERONET observations. With the combinations of the STK

method along with various observation operators and CVs,

the errors and biases of AOD and PM10 predictions can be

reduced significantly. It was shown that the selection of the

observation operators greatly influence the performances of

the STK hindcast systems. On the other hand, the choice of

CVs tends to affect PM composition. The combination of the

GOCART observation operator and the selection of CVs of

SO2−
4 and OAs (case A3) was found to be the best one for the

PM10 mass prediction. All the hindcast runs with the applica-

tion of the STK method, however, generally showed negative

biases (i.e., underpredictions). This was primarily due to the

underestimation of the GOCI AOD.

Reducing errors and biases in the current system is impor-

tant for further development of the PM forecast system. One

of the potential methods for reducing the errors and biases

is to introduce the MODIS AOD data into the STK stage,

together with the GOCI data. It is expected that doing this

will further reduce the systematic biases, due to the rela-

tively smaller biases of MODIS AOD (as shown Fig. 3). In

addition, the combination of the GOCART observation op-

erator and the selection of CVs of SO2−
4 , NO−3 , NH+4 , and

OAs (Case A4) was found to give the “best” results for the

prediction of particulate composition at one observation site.

However, more intensive measurements of the PM composi-

tion are needed for reaching a more solid conclusion.

The STK AODs used in the current study are expected to

be used in other data assimilation methods. For example, in

the 3DVAR method, the observation error covariance matrix,

which presents the degree of errors of the observations, has

been usually assumed by linear equations or a single con-

stant value (Liu et al., 2011; Schwartz et al., 2012; Shi et al.,

2011). However, as discussed with KVs in Sect. 3.1, the error

covariance of the AOD observations can be improved and the

use of the improved observation error covariance matrix can

help to prepare more accurate AOD fields, for example, via a

3DVAR method. This study is now underway.

In future, planned GEO satellite sensors will give other op-

portunities to use semicontinuous AOD observations at high

spatial and temporal resolutions. Upcoming GEO satellite

sensors scheduled for launch between 2018 and 2020 include

NASA’s Tropospheric Emissions: Monitoring of Pollution

(TEMPO) over North America, ESA’s Sentinel-4 over Eu-

rope, and Korea Aerospace Research Institute (KARI)’s Geo-

stationary Environment Monitoring Spectrometer (GEMS)

over Asia. In the case of the GEMS instrument, it is being

designed to provide backscattered UV/Vis radiances between

300 and 500 nm with a spatial resolution of 5 km× 5 km over

a large part of Asia. Using advanced observations from the

GEMS sensor, it is anticipated that the system developed here

will be able to make significant contributions to further im-

provements in the performances of the PM forecasting sys-

tem in Asia. This improved PM predictions and modeling

framework can also be a core part of the air quality fore-

casting system, a more comprehensive health impact assess-

ments, and radiative forcing estimation over (East) Asia in

future.

www.geosci-model-dev.net/9/17/2016/ Geosci. Model Dev., 9, 17–39, 2016



32 S. Lee et al.: GIST-PM-Asia v1

Appendix A: Spatiotemporal-kriging method

The STK methods assume that measured variables in space

and time (τ(s, t)) can be regarded as a random function, con-

sisting of a trend component (m) and residual component (ε)

of which the mean is zero:

τ(s, t)=m(s, t)+ ε(s, t). (A1)

The unobserved value τ ∗(s, t) can be averaged with weight

using measured values from the surroundings:

τ ∗(s, t)=

n∑
i=1

τ(si, ti)wi(s, t), (A2)

where n is the number of observations in the local neighbor-

hood and wi(s, t) is the kriging weight assigned to τ(si, ti).

The kriging weight is determined by a theoretical semivari-

ogram.

In case of spatial kriging (τ(s)), the semivariogram (γ ) is

the best fit to the semivariance (γ ∗) as a function of spa-

tial lag (h). Assuming the trend component m(s) in τ(s)

is constant over the local domain (i.e., the ordinary kriging

method), the semivariance is defined as

γ ∗(h)=
1

2N(h)

N(h)∑
i=1

[τ(si)− τ(si +h)]
2

=
1

2N(h)

N(h)∑
i=1

[ε(si)− ε(si +h)]
2, (A3)

where N(h) is the number of paired observations at a spatial

distance of h, and τi(si +h) is the ith observation (in this

study, AOD) separated by h from the observation located at

si . The semivariogram is then depicted by a theoretical model

which is the best-fitting curve to the semivariance by mini-

mizing the least squares error. For example, a spherical semi-

variogram (γ ), which is commonly used in the theoretical

models of the atmospheric studies, is estimated by finding

three optimal parameters: (i) nugget (cn), (ii) range (a),

and (iii) partial sill (σ 2
0 ):

γ (h)= cn+ σ
2
0

[
3h

2a
−
h3

2a3

]
(for h≤ a),

γ (h)= cn+ σ
2
0 (for h > a). (A4)

The range parameter indicates the maximum lag in which the

variation of semivariogram is meaningful (Cressie, 1992).

To combine the spatial and temporal data for preparing

the spatiotemporal semivariograms, the temporal informa-

tion can be converted into the spatial information (Gräler et

al., 2012). First, the spatial and temporal semivariograms are

estimated independently using the spherical model from the

daily GOCI AOD data. Second, the ratio of the spatial range

parameter (as) of the spatial semivariogram to the tempo-

ral range parameter (at) of the temporal semivariogram (i.e.,

Figure A1. Two daily three-dimensional semi-variograms from the

GOCI AOD data on 8 April 2012: (a) fitted by the spherical model

(Eq. A4), and (b) estimated by the sampled observations.

spatiotemporal-scale factor, km h−1) is used to convert the

unit of temporal lag into the unit of spatial distance. Conse-

quentially, the 3-D spatiotemporal AOD data are converted

into the 2-D spatial AOD fields. After that, the spatiotempo-

ral semivariogram is provided to predict the AOD fields with

15 km× 15 km spatial resolution from 10:00 to 16:00 LT

over the GOCI domain. For the STK method, the “gstat”

(Pebesma, 2004) and the “spacetime” (Pebesma, 2012) soft-

ware packages in the R environment for statistical com-

puting were used (R Development Core Team, 2011). Fig-

ure A1 presents an example of the 3-D semivariograms from

the fitted model (left) and sample from the GOCI data on

8 April. The mean nugget (cn), range (a), and partial sill

(σ 2
0 ) of the spatiotemporal model semivariogram were 0.025,

583 km, and 0.227, respectively, during the entire DRAGON-

Asia campaign. The average spatiotemporal-scale factor of

∼ 34 km h−1 was calculated indicating that the AODs ob-

served before or after 1 h at certain locations show a simi-

lar correlation pattern to those measured simultaneously at

∼ 34 km apart in the STK model. Figure A2 shows an ex-

ample of spatial distributions of GOCI AOD from 10:30 to

13:30 LT and STK AOD at 12:00 LT with a criteria of KVs

of less than 0.04.
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Figure A2. Spatial distributions of GOCI AOD from 10:30 to 13:30 LT (a–d) and STK AOD at 12:00 LT (e) on 7 April 2012. The STK AOD

at 12:00 LT with a criteria of KVs of less than 0.04 is also shown in (f).
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Appendix B: Statistical metrics

In this study, eight statistical metrics were used for validating

the hindcast results (Chai and Draxler, 2014; Savage et al.,

2013; Willmott, 1981; Willmott et al., 2009; Willmott and

Matsuura, 2005).

Index of agreement (IOA)=

1−

N∑
i=1

(Oi −Mi)
2

N∑
i=1

(
|Oi −Oi | + |MiMi |

)2 (B1)

Mean fractional error (MFE)=

1

N

N∑
i=1

|Mi −Oi |(
Mi+Oi

2

) × 100 (B2)

Mean fractional bias (MFB)=

1

N

N∑
i=1

(Mi −Oi)(
Mi+Oi

2

) × 100 (B3)

Regression coefficient (R)=

N∑
i=1

(
Oi −Oi

)
(Mi −Mi)√

N∑
i=1

(Oi −Oi)2

√
N∑
i=1

(Mi −Mi)2

(B4)

Root mean square error (RMSE)=√√√√ 1

N

N∑
i=1

(Mi −Oi)
2 (B5)

Mean normalized error (MNE)=

1

N

N∑
i=1

(
|Mi −Oi |

Oi

)
× 100 (B6)

Mean bias (MB)=
1

N

N∑
i=1

(Mi −Oi) (B7)

Mean Normalized bias (MNB)=

1

N

N∑
i=1

(
Mi −Oi

Oi

)
× 100 (B8)

In Eqs. (B1)–(B8), N is the number of data and Mi and Oi
are the model value and observation, respectively. The vari-

ables with an overbar are the arithmetic mean of the data.
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Code availability

WRF and CMAQ source codes and R and NCL computer

languages are available to the public. The source codes

and computer languages may be downloaded by following

instructions found at http://www2.mmm.ucar.edu/wrf/users/

downloads.html for WRF, https://www.cmascenter.org/cmaq

for CMAQ, http://cran.r-project.org for R, and https://www.

ncl.ucar.edu/Download for NCL.

The STK module code used in this study was based

on the instruction of Pebesma (2012) available at http://

www.jstatsoft.org/v51/i07 and can be obtained by contacting

S. Lee (noitul5@gist.ac.kr).

The Supplement related to this article is available online

at doi:10.5194/gmd-9-17-2016-supplement.
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