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Abstract. While stand alone satellite and model aerosol

products see wide utilization, there is a significant need in

numerous atmospheric and climate applications for a fused

product on a regular grid. Aerosol data assimilation is an op-

erational reality at numerous centers, and like meteorologi-

cal reanalyses, aerosol reanalyses will see significant use in

the near future. Here we present a standardized 2003–2013

global 1× 1◦ and 6-hourly modal aerosol optical thickness

(AOT) reanalysis product. This data set can be applied to

basic and applied Earth system science studies of signifi-

cant aerosol events, aerosol impacts on numerical weather

prediction, and electro-optical propagation and sensor per-

formance, among other uses. This paper describes the sci-

ence of how to develop and score an aerosol reanalysis prod-

uct. This reanalysis utilizes a modified Navy Aerosol Analy-

sis and Prediction System (NAAPS) at its core and assim-

ilates quality controlled retrievals of AOT from the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) on

Terra and Aqua and the Multi-angle Imaging SpectroRa-

diometer (MISR) on Terra. The aerosol source functions, in-

cluding dust and smoke, were regionally tuned to obtain the

best match between the model fine- and coarse-mode AOTs

and the Aerosol Robotic Network (AERONET) AOTs. Other

model processes, including deposition, were tuned to min-

imize the AOT difference between the model and satellite

AOT. Aerosol wet deposition in the tropics is driven with

satellite-retrieved precipitation, rather than the model field.

The final reanalyzed fine- and coarse-mode AOT at 550 nm

is shown to have good agreement with AERONET observa-

tions, with global mean root mean square error around 0.1

for both fine- and coarse-mode AOTs. This paper includes

a discussion of issues particular to aerosol reanalyses that

make them distinct from standard meteorological reanalyses,

considerations for extending such a reanalysis outside of the

NASA A-Train era, and examples of how the aerosol reanal-

ysis can be applied or fused with other model or remote sens-

ing products. Finally, the reanalysis is evaluated in compar-

ison with other available studies of aerosol trends, and the

implications of this comparison are discussed.

1 Introduction

The importance of aerosol particles in the atmosphere and

climate system is recognized across the Earth sciences. Long

implicated in climate change investigations (e.g., IPCC,

2007, 2013), aerosol particles influence countless other as-

pects of science and society. Obvious impacts include bi-

ologic and visual air quality, including health outcomes

(Laden et al., 2000; Kappos, et al., 2004), defense operations
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and transportation (Wilkinson et al., 2012). Further, aerosol

particles interfere with many aspects of Earth system surveil-

lance, such retrievals of sea surface temperature (e.g., May

et al., 1992; Reynolds et al., 1989; Robock, 1989) and ocean

color (e.g., Gordon, 1997) and land use systems (Song et al.,

2001). Aerosols can also affect atmospheric retrievals or ra-

diances used to constrain temperature, water vapor and CO2

in numerical weather prediction models (Houweling et al.,

2005). In all of the above cases, contiguous spatial and tem-

poral sampling of aerosol loadings is critical. Monitoring so-

lutions using satellite data alone must cope with variable or-

bits (polar, high inclination or geostationary) and sampling

times. Based on this large basic applied science need, there

is considerable demand for consistent gridded aerosol prod-

ucts constructed for numerous applications.

To meet aerosol monitoring requirements, the climate and

Earth systems science community has historically presented

aerosol data as either a free-running model (with the advan-

tage of regularly gridded and timed products, e.g., Tanaka

et al., 2003, Miller et al., 2006, Morcrette et al., 2009, Co-

larco et al., 2010 and Pérez et al., 2011), or irregularly timed

and located satellite data (e.g., Mishchenko et al., 1999; Tor-

res et al., 2002; Hsu et al., 2004; Levy et al., 2010; Kahn et

al., 2010). In both cases, the products are underdetermined.

Models have poorly resolved emissions, evolution and sinks,

and can be affected by errors in the underlying meteorolog-

ical model, whereas satellite data have limited coverage and

underdetermined retrievals based on assumptions that lead to

a series of spatially and temporally correlated biases (e.g.,

Shi et al., 2011a). Ultimately, models and remote sensing

products present different aspects of atmospheric character-

istics. When model and satellite products are compared, con-

textual and sampling biases appear (e.g., Zhang and Reid,

2009). For daily and more rapid analysis, such as for many

specific Earth system science process study questions or in-

tersensor correction, neither approach can adequately repre-

sent the full state of the aerosol system.

To bridge modeling and remote sensing data sources,

numerous operational numerical weather prediction centers

have embarked on sophisticated aerosol data assimilation ef-

forts of both passive and lidar satellite sensors (e.g., Collins

et al., 2001; Weaver et al., 2007; Zhang et al., 2008, 2011;

Benedetti et al., 2009; Sekiyama et al., 2010). Satellite prod-

ucts are screened, empirically corrected and assimilated into

models to provide systematic best-available analyses of the

aerosol environment. The next step in this process is to

develop best-available reanalyses for community use. Just

as meteorological reanalysis such as the National Center

for Atmospheric Research/National Centers for Environmen-

tal Prediction (NCAR/NCEP) (e.g., Kalnay et al., 1996)

and European Centre for Medium-Range Weather Forecasts

(ECMWF) (e.g., Uppala et al., 2005; Dee et al., 2011) are

commonly applied for meteorological applications, aerosol

reanalyses are likely to be destined to be useful data sources

for initial analysis or systematic global studies for aerosol

sciences.

Like meteorological reanalyses, aerosol reanalyses are

generated through a rerun of a model that assimilates his-

torical observational data. Aerosol reanalyses aim to be a

best-available, contiguous, gridded product with consistent

temporal reporting. It combines advantages of data accuracy

from satellite products and data consistency from modeling.

The data should have good spatial and temporal coverage and

be easy to use. But an aerosol reanalysis is not simply just a

rerunning of the model with aerosol data assimilation. First,

strict quality assurance and quality control processes need to

be applied to the satellite data that goes into an assimilation

system, such that the model input is as consistent as possible

over the reanalysis period. Biased retrievals in the data as-

similation system could result in erroneous features that can

propagate in the short term. Lack of consistency in the model

or data can lead to artifacts that could be mistaken for clima-

tological trends or spurious aerosol events. Second, the per-

formance of the underlying aerosol forward model should be

optimized to its upper limit through a series of tunings to the

aerosol sources and wet/dry removal processes. This helps to

avoid large and frequent corrections via the data assimilation

cycle, so that the natural model field is as close as possi-

ble to the satellite product and the final reanalysis product is

smooth and fluent in space and time.

In this paper, we present the Naval Research Laboratory’s

development of an aerosol reanalysis product for applied sci-

ence use through the assimilation of NASA Terra and A-train

satellite sensors into the Navy Aerosol Analysis and Predic-

tion System (NAAPS). The goal is to provide a best-available

aerosol optical thickness (AOT) product for applications that

require this parameter. As the system develops and verifica-

tion data sets become available, the publicly released anal-

ysis will include many other aspects of the aerosol system,

including three-dimensional concentrations and radiative ef-

fects such as fluxes and heating rates. Our goals for the ini-

tial development of the NAAPS reanalysis and this paper are

threefold.

1. Development of a baseline applications data set:

NAAPS has always been operationally focused, with

frequent operational transitions. In support of basic

research and climatology applications; however, the

NAAPS model often requires re-runs with updated pa-

rameterizations. With individual case studies being ex-

amined dozens of times per year, we wish to support

such endeavors by developing an accurate AOT product

that is consistent in quality and time.

2. Development of a baseline verification data set: any ap-

plication of the baseline data set will require a compre-

hensive description of the NAAPS model when run in

reanalysis mode, and how this differs from the oper-

ational version of NAAPS. The methods and data for
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characterizing the reanalysis performance must be care-

fully examined and documented.

3. Development of a framework for future development:

we wish to investigate the degree to which reanalysis

represents the true atmospheric state and the extent that

it can be used to study climatologically relevant aerosol

features like trend and radiative impacts. As more satel-

lite products mature, they can also be incorporated into

the reanalysis. The analysis presented here is intended

to be a template for characterization of future reanalysis

data sets as they become available.

While the aerosol system is a highly complex internal mix-

ture of anthropogenic, biogenic, open-burning and wind-

driven emissions, ultimately it is AOT and its simple partition

into fine- and coarse-mode contributions that we can actu-

ally measure and verify globally. Reanalyses on atmospheric

gas composition and/or aerosols are also in development at

ECMWF (Inness et al., 2013) and NASA (Buchard et al.,

2015). The aerosol models used for generating these reanaly-

ses are independent in their underlying meteorology, as well

as aerosol sources, sinks, microphysics and chemistry. The

AOT assimilation methodologies, the observed AOT data to

be assimilated, and the pre-assimilation treatments of input

data are also different. Validation of multivariate reanaly-

ses of atmospheric composition is a very complex task, and

a comprehensive evaluation is needed. This study focuses

exclusively on the development and validation of a 550 nm

modal (fine mode, coarse mode and total) AOT reanalysis.

In this paper, we provide an up-to-date description of the

primary NAAPS model, noting differences between the re-

analysis and operational versions. Our emphasis is on the de-

velopment of a modal NAAPS AOT analysis. We describe

the methods used to tune modeled aerosol processes. The

data assimilation system used to fuse the model and obser-

vations is described, as well as the satellite data products

used in the reanalysis. This is followed by a basic description

of the reanalyzed global fine- and coarse-mode 550 nm AOT

fields and their verification. We conclude with a brief synop-

sis and discussion of our findings. We provide documentation

of strengths and pitfalls of reanalysis products including ad-

vice on interpreting like products. For example, we discuss

how the data assimilation system affects diurnal aerosol rep-

resentation or how long-term trends are represented in the

simulation that has static industrial emissions. We also dis-

cuss the difficulty in keeping meteorological input consistent

at decadal levels. We conclude with a project synopsis and

outlook for future experiments.

2 Description of Model: NAAPS and NAVDAS-AOT

The foundation of this AOT reanalysis is the NAAPS and its

associated aerosol data assimilation components. NAAPS is

an offline aerosol transport model, which has seen wide use

in the community for global aerosol life-cycle research, con-

textual information, field mission planning and operations.

The original NAAPS model was based on the Danish

Eulerian hemispheric model (Christensen, 1997), although

since then there have been a number of upgrades to model

advection and microphysics. NAAPS has been run quasi-

operationally at the United States Naval Research Labora-

tory (NRL) since 1998, and became the world’s first op-

erational global aerosol model in 2006 with implementa-

tion at the Fleet Numerical Meteorology and Oceanography

Center (FNMOC). The Navy Atmospheric Variational Data

Assimilation System (NAVDAS) for AOT (NAVDAS-AOT;

Zhang et al., 2008) was operationally implemented in 2010.

The system assimilates quality assured and quality controlled

two-dimensional Moderate Resolution Imaging Spectrora-

diometer (MODIS) AOT at 550 nm. In its current operational

configuration, NAAPS makes 6-day forecasts, 4 times a day

at 1080× 540 global (1/3◦) spatial resolution and 42 vertical

levels driven by truncated T425L60 resolution Navy Global

Environmental Model (NAVGEM) meteorology (Hogan et

al., 2014). Papers describing the development of the opera-

tional NAAPS include Witek et al. (2007) for sea salt, Reid

et al. (2009) for biomass-burning smoke and Westphal et

al. (2009) for dust. Updates to the operational model can be

found at http://www.nrlmry.navy.mil/aerosol/.

In converting NAAPS from a forecast model to a reanaly-

sis system for the A-train 2003–2013 time period, we desire a

system that is consistent spatially and temporally in time and

fits within our computational constraints. This requires, at

times, significant departures from the operational model, and

some reduction in resolution. In this section, we describe the

NAAPS model configured for reanalysis mode, its AOT as-

similation package and the associated MODIS, Multi-angle

Imaging SpectroRadiometer (MISR) and precipitation satel-

lite data used to initialize and assimilate into the model. We

also describe the tuning processes necessary to help ensure

spatial and temporal consistency within the reanalysis period.

2.1 Meteorology fields

The current operational version of NAAPS is driven by

NAVGEM (Hogan et al., 2014), a global T425L60 spectral

model that has only been available since September 2013.

The NAAPS reanalysis described in this paper is driven by

the recently decommissioned Navy Operational Global At-

mospheric Prediction System (NOGAPS) analysis fields for

2003–2013. A full NAVGEM reanalysis is under construc-

tion that will allow for higher horizontal and vertical resolu-

tion to better constrain future runs of the reanalysis. The NO-

GAPS model is a global model that is spectral horizontally

and energy-conserving finite difference (sigma coordinate) in

the vertical (Hogan and Rosmond, 1991; Hogan and Brody,

1993); 4 times a day, the weather forecast models provide 6-

day forecasts of the dynamical and surface analysis fields to

NAAPS at 3 h intervals. The reanalysis uses only the 00:00,
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06:00, 12:00 and 18:00 Z analyses with the associated 3 h

forecast fields to make up the 3 h time series of dynamical

forcing. NOGAPS variables used by NAAPS are the topog-

raphy, sea ice, surface stress, surface heat flux, surface mois-

ture flux, surface temperature, surface wetness, snow cover,

stratiform precipitation, convective precipitation, lifting con-

densation level, cumulus fractional coverage, cumulus cloud

height, surface pressure as well as three components of the

wind, temperature and relative humidity. For data assimila-

tion, NOGAPS uses the NAVDAS, which is still used opera-

tionally for assimilation of a large variety of conventional and

satellite-based observations (Daley and Barker, 2001). While

NOGAPS has had some resolution changes over the 2003–

2013 study period (ranging from T159 to T319), spectrally

truncated NOGAPS meteorology data are incorporated into

the NAAPS reanalysis for each 6 h time step at the prescribed

1× 1◦ resolution.

As the primary sink of aerosol particles, the precipitation

component of NOGAPS is worth special attention. Often in

large-scale models the parameterized precipitation schemes

for tropical regimes generate widespread light precipitation,

while the long-term total precipitation amount is compara-

ble to observations (Dai, 2006; Sun et al., 2007). Similarly,

global models also have difficulty placing significant con-

vective cells, particularly moderately sized squall lines or

coastal thunderstorms. Diurnal precipitation cycles are also

poorly represented by numerical models. These character-

istics of model precipitation are shown to affect removal

of aerosol particles and can have significant impact on re-

gional AOT simulations (Wilcox and Ramanathan, 2004;

Xian et al., 2009). For the reanalysis, tropical precipitation

from NOAA Climate Prediction Center (CPC) MORPHing

technique (CMORPH; Joyce et al., 2004) is used when-

ever available to improve aerosol wet deposition in the man-

ner described in Xian et al. (2009), in which cloud struc-

ture from the model is retained but precipitation flux is

changed accordingly. CMORPH combines infrared (IR) and

passive microwave data (PMW) retrieved from instruments

onboard multiple geostationary and lower-orbiter satellites.

CMORPH was chosen for this role as it appears to have

the best representation of temporal and spatial patterns of

tropical precipitation among satellite precipitation products

(Janowiak et al., 2005; Sapiano and Arkin, 2009).

2.2 Aerosol model

As noted above, NAAPS is a global aerosol model origi-

nated in the mid-1990s from a hemispheric sulfate chem-

istry model developed by Christensen (1997). Dust, sea salt

and smoke have been added to the original model, and are

documented in Westphal et al. (2009), Witek et al. (2007)

and Reid et al. (2009), respectively. Given that what is com-

monly referred to as regional pollution or haze is a result of

complex anthropogenic and biogenic emissions and chem-

istry, here we replaced the simplified Christensen (1997) SO2

and sulfate chemistry. As elaborated in Sect. 2.2.6, anthro-

pogenic SO2, sulfate and organics, are combined with bio-

genic emissions to form an anthropogenic and biogenic fine

(ABF) aerosol particle species.

2.2.1 Aerosol model dynamics

The equations solved in the model have the form

∂qi

∂t
=−

(
u
∂qi

∂x
+ v

∂qi

∂y
+ σ̇

∂qi

∂σ

)
+

(
Kx
∂2qi

∂x2
+Ky

∂2qi

∂y2
+
∂(02Kz

∂qi
∂σ
)

∂σ

)
+Pi −Qi, (1)

where qi is the mass mixing ratio (kg kg−1) for the species

i, qi = ci/ρ, where ci is the mass concentration (kg m−3)

and ρ is the density of air (kg m−3), x and y are the hori-

zontal coordinates (in meter along longitude and latitude di-

rections), σ is the terrain-following vertical coordinate (σ =

p/ps, where p is the present pressure and ps surface pres-

sure) that ranges from 1 at the surface to 0 at the model top,

u,v, σ̇ are the advection velocity in the x,y and the ver-

tical directions of the σ -coordinates, Kx and Ky are hori-

zontal diffusion coefficients that are assumed to be constant

(Kx =Ky = 6×104 m2 s−1) and Kz is the vertical diffusion

coefficient based on the Monin–Obukhov similarity theory

for the surface layer (Obukhov, 1971). The Kz profile is ex-

tended to the whole boundary layer by using a simple extrap-

olation (Hertel et al., 1995). Finally, 0 = dσ/dz (m−1). Pi
are the sources and Qi are the sinks for the species i.

Equation (1) is solved on a spherical grid with 1◦× 1◦

horizontal resolution and 25 vertical irregular σ -coordinate

levels in the reanalysis product presented here. The average

depth of the first layer is∼ 30 m, and consecutive layers grad-

ually increase in depth towards the top layer, which ends

at ∼ 18 km (70 hpa). Advection is calculated using a semi-

Lagrangian scheme (Staniforth and Côté, 1991), with depar-

ture points calculated using the method of Ritchie (1987).

Horizontal and vertical diffusion are calculated with a finite-

element method (e.g., Bathe, 2006).

2.2.2 Aerosol optical properties in NAAPS

Aerosol microphysics are treated relatively simply in

NAAPS. This is in response to the computational needs of an

efficient operational forecast model, its operational require-

ments (e.g., forecast severe visibility reducing events) and the

fact that in comparison with the uncertainties in source func-

tions as well as transport meteorology, microphysics is rel-

atively well constrained. Dry mass concentrations are fore-

casted with Eq. (1) and AOT for each aerosol species is

computed assuming an effective particle size with respect

to mass. Aerosol particles in NAAPS are treated as exter-

nal mixture of the aforementioned species and do not interact
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Table 1. Optical properties for dry aerosol particles at 550 nm in NAAPS.

Species aeff (µm) αext (m2 g−1) αscat (m2 g−1) αabs (m2 g−1) ω◦ g

ABF 0.14 3.48 3.13 0.35 0.90 0.60

Dust 2.50 0.59 0.52 0.07 0.88 0.73

Smoke 0.17 4.48 3.99 0.50 0.89 0.58

Sea Salt 1.50 1.42 1.41 0.01 0.99 0.68

where αext,αscat and αabs are the bulk mass extinction, scattering and absorption efficiencies, ω◦ the single-scattering

albedo and g the asymmetry factor. aeff is the bulk effective radius. “ABF” stands for anthropogenic and biogenic fine

particles.

with each other. With these assumptions, extinction and AOT

can be calculated using bulk values of optical properties that

have been derived from theory and observations. The calcu-

lations for scattering (bscat, m−1), absorption (babs, m−1) and

extinction coefficients (bext, m−1), plus the integrated optical

thickness (τ , unitless) are, respectively,

bscat,i(λ,x,y,σ )= ci(x,y,σ )αscat,i(λ)fi[r(x,y,σ )]), (2)

babs,i(λ,x,y,σ )= ci(x,y,z)αabs,i(λ), (3)

bext,i(λ,x,y,σ )= bscat,i(λ,x,y,σ )+ babs,i(λ,x,y,σ ), (4)

and

τi(λ,x,y)=

0∫
1

bext,i(λ,x,y,σ )
1

0
dσ, (5)

where αext, αscat and αabs are the mass extinction, scattering,

and absorption efficiencies respectively (m2 g−1), and fi is a

scattering hygroscopic growth factor.

The bulk mass extinction, scattering and absorption effi-

ciencies, along with single-scattering albedo and asymmetry

factor for the four aerosol species at wavelength λ= 550 nm

are given in Table 1. For ABF, dust and sea salt, the values

are taken from the Optical Properties of Aerosol and Clouds

(OPAC) database (Hess et al., 1998). The chosen coefficients

for ABF are weighted towards the more absorbing aerosol

particles that are generated by less developed countries that

dominate global aerosol fields (Dubovik et al., 2002). Optical

properties for smoke are treated similarly, with both empir-

ical derivations and theory derived from Reid et al. (2005a,

b).

The effect of humidity on particle light scattering for each

aerosol species is represented by the Hänel (1976) formula-

tion of the hygroscopic growth factor fi(r) (unitless), defined

as

fi(r)=

[
(1− r)

(1− ro)

]−γi
, (6)

where r is the relative humidity, γi is an empirical species-

dependent exponent and ro is the reference relative humid-

ity that is set equal to 30 %. In NAAPS, γi is taken as 0.5

for ABF particles assuming 40 % sulfate and 60 % organic

aerosols. In comparison, γi is 0.63 for sulfate (Hänel, 1976),

0.18 for smoke (Reid et al., 2005b), 0.46 for sea salt (Hegg

et al., 2002; Ming and Russell, 2001) and zero for dust (Li-

Jones et al., 1998). A maximum allowed r is 95 %. We as-

sume absorption αabs is not affected by humidity.

2.2.3 Sink processes in NAAPS

Dry deposition to the surface is accounted for through a de-

crease of the aerosol concentration in the lowermost model

layer, assuming a dry deposition flux

FDDi = c1ivdi, (7)

where c1i is the mass concentration (kg m−3) in the first layer

above the surface for the species i, and vdi is the dry deposi-

tion velocity, which is a function of aerosol type and surface

type.

For particle deposition over water, the dry deposition ve-

locity vd is set to 0.0002 m s−1 for anthropogenic and bio-

genic fine particles, 0.0003 m s−1 for smoke loosely follow-

ing the theoretical relation between over water vd and particle

radius in Slinn and Slinn (1980), assuming bulk effective ra-

dius listed in Table 1 for the two types of aerosols. vd is set to

0.001 m s−1 over water for dust particles after tuning to min-

imize AOT corrections through the data assimilation process

(more details in Sect. 2.4.2). Dry deposition of sea salt to

open water is given by the formula in Slinn and Slinn (1980),

assuming a dry mass mean radius near 1.5 µm, and written as

vdss = CdU10, (8)

where Cd = 1.3× 10−3 is the drag coefficient, and U10 the

wind speed at 10 m above the sea surface in m s−1.

For particle deposition over land, the method of Walcek

et al. (1986) is used and the explicit expression for vd is the

same as in Christensen (1997; Eq. 9), which is a function of

surface friction velocity and Monin–Obukhov length, which

is a measure of the stability of the surface layer (Obukhov,

1971, Eq. 26). This is written as

www.geosci-model-dev.net/9/1489/2016/ Geosci. Model Dev., 9, 1489–1522, 2016
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vd =


u∗

a

(
1+

(
−300

L

)2/3
)

for L < 0

u∗

a
for L > 0

, (9)

where u∗ is the surface friction velocity in m s−1, a = 500

(except for a forest with leaves, where a = 100) and L is the

Monin–Obukhov length. vd is calculated using Eq. (9) for all

the aerosol species in the model.

Gravitational settling is also applied to the aerosol parti-

cles in the model. Dry deposition is only applied in the lower-

most model layer, whereas gravitational sedimentation takes

place within the whole vertical domain except the lowermost

model layer, as it is taken into account in vd .

The wet deposition of particles is assumed to be similar to

that for sulfate aerosol, based on a simple scavenging ratio

formulation (e.g., Iversen, 1989). The scavenging coefficient

is calculated in the same way as in Witek et al. (2007), as a

function of the precipitation mass flux with different below-

cloud and in-cloud scavenging ratios, written as

W (σ)=


3bc

H

Pa (σ )

ρw

below cloud scavenging

3c

H

P (σ)

ρw

in cloud scavenging

, (10)

where Pa (σ ) and P (σ) (kg m−2 s−1) are the total down-

ward flux densities of precipitation mass at a given σ -level

below or in a precipitating cloud, respectively. H is an effec-

tive thickness for scavenging (set to 1000 m), 3bc = 1× 105

is the below-cloud scavenging ratio, 3c = 7× 105 is the in-

cloud scavenging ratio and ρw is the density of water.

2.2.4 Dust

Dust emissions occur whenever the friction velocity exceeds

a threshold value, snow depth is less than a critical value, and

the surface moisture is less than a critical value (Westphal et

al., 1988). The dust emission flux follows the equation

Fdust = cefu
4
∗, (11)

where ef is the erodible fraction of a grid box (unitless),

u∗ is the surface friction velocity with the threshold value

of 0.6 m s−1 for dust mobility, and c is a scaling con-

stant of 4.5× 10−7 g m−2 s−1. In the operational version of

NAAPS, the erodibility map is empirically derived from the

United States Geological Survey Land Cover Characteristic

Database and Total Ozone Mapping Spectrometer Aerosol

Index values (Walker et al., 2009). While in general the op-

erational version of NAAPS has good dust scores, NAAPS

clearly has a high bias for dust for the Sahara. For the reanal-

ysis, the use of Ginoux et al. (2001) dust sources mitigated

much of this bias. The Ginoux et al. (2001) erodibility map

associates dust sources with topographic depressions and has

many of the same features as seen in Westphal et al. (1988),

yet its geologic input data tightened individual source areas.

Regional source tuning is also applied in the NAAPS re-

analysis, which is described in Sect. 2.4. Dust is emitted into

the bottom two layers of the model (below 100 m) when

friction velocity exceeds the threshold and surface wetness

is below a critical value (0.4). Then, dust is transported

by model dynamics both horizontally and vertically in the

boundary layer and the free troposphere. Dust removal in-

cludes sedimentation, dry deposition and wet removal, which

is constrained with CMORPH precipitation within the trop-

ics. Dust is assumed to be totally hydrophobic and hence the

hygroscopic growth factor is set to 1.

2.2.5 Sea salt

The sea salt component for operational NAAPS and the

NAAPS reanalysis was developed by Witek et al. (2007). Sea

salt emissions are driven dynamically by sea surface wind.

The sea salt dry mass flux Fssa (kg m−2 s−1) from the surface

is based on the whitecap method and the Monahan’s formu-

lation of the source function (Monahan et al., 1986), and has

the empirical form

Fssa = asU
bs
10 , (12)

where U10 is the wind speed at 10 m above the sea surface

in m s−1, as = 1.37× 10−13 and bs = 3.41 for particles with

diameters from 1.6 to 16 µm. Dry deposition of sea salt over

water is proportional to the sea surface wind speed, follow-

ing Slinn and Slinn (1980) and over land follows Eq. (9). Sea

salt particles are assumed to undergo hygroscopic growth de-

pending on ambient atmospheric relative humidity, following

the growth rate shown in Eq. (6). The sea salt scattering co-

efficient is based on swelled particles, while absorption coef-

ficient is assumed not effected by the swell.

2.2.6 Anthropogenic and biogenic fine particles (ABF)

The most significant change to NAAPS microphysics for the

reanalysis is the development of a method to account for

complex anthropogenic and biogenic species while not sig-

nificantly increasing the computational cost of the model.

Originally, the only anthropogenic emissions and predictive

variables within NAAPS were SO2 and sulfate. However,

organic species constitute one of the most important con-

tributors to the mass of atmospheric aerosols (Zhang et al.,

2007; Jimenez et al., 2009), and indeed commonly dominate

the submicron aerosol mass and AOT. This organic aerosol

mass, while having a significant component attributable to

primary organic aerosol (POA) emission, is predominantly

secondary organic aerosol (SOA; i.e., created in the atmo-

sphere from volatile organic carbon (VOC) precursors in the

gas phase, such as, isoprene, terpenes and aromatics; Zhang

et al., 2007). These precursors are largely biogenic in ori-

gin. Ultimately, the complex chemical interactions between
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anthropogenic and biogenic emissions result in a photochem-

ical soup that cannot be directly linked to a single origin.

For realistic simulation of AOT, primary and secondary or-

ganic aerosols must both be included in the NAAPS model

in some form. To be consistent with the NAAPS reanaly-

sis’ philosophy of simple and tractable physics, the sulfur-

related species has been replaced with a bulk ABF mass cate-

gory to account for the entire class of anthropogenic and bio-

genic emissions and their secondary particle products. This

species class includes all accumulation mode particles, in-

cluding biogenic marine, outside of open biomass burning,

as described in Sect. 2.2.7. The first component of this mix-

ture is the original sulfur chemistry. Sulfate aerosols are pro-

duced by chemical processes in the atmosphere from gaseous

precursors, mainly sulfur dioxide (SO2) from anthropogenic

sources and dimethylsulfide (DMS) from biogenic sources.

For NAAPS reanalysis, SO2 emissions are updated from

Global Emissions InitiAtive (GEIA) version 1A (i.e., 1985)

(Benkovitz et al., 1996) to Monitoring Atmospheric Compo-

sition & Climate/CityZen EU projects (MACCity) inventory

2005–2010 average (Granier et al., 2011; Diehl et al., 2012),

which reflects the increased emission in India and China over

the past decade and also includes monthly variation. DMS

emission fluxes at the air–sea interface are computed using

the Saltzman et al. (1993) parameterization, with the monthly

DMS seawater concentrations from Lana et al. (2011). DMS

are immediately converted to 95 % sulfur dioxide and 5 %

sulfate in the model. SO2 chemistry follows Hoffmann and

Calvert (1985), in which oxidation of sulfur solution (S(IV))

by hydrogen peroxide (H2O2) and dissolved ozone (O3)

are considered climatologically. We assume background oxi-

dants H2O2 and O3 are not depleted by reactions. Ultimately,

sulfur chemistry accounts for roughly one-half of all non-

biomass-burning fine-mode AOT.

Inclusion of POA in the NAAPS reanalysis is straightfor-

ward, including the major VOC species that act as precursors

for the SOA. We apply the 2005–2010 monthly mean MAC-

City data base for anthropogenic (industrial and transport)

emissions of POA and SOA precursors (Granier et al., 2011),

the Bond et al. (2004) biofuels data with a monthly scaling

factor based on Jeong (2011), and the Precursors of Ozone

and their Effects in the Troposphere (POET) climatological

monthly emissions inventory for biogenic VOCs (Olivier et

al., 2003). For the actual SOA formation process, the Volatil-

ity Basis Set (VBS) approach has been adopted (Donahue et

al., 2006; Ahmadov et al., 2012). This greatly reduces both

the number of necessary precursor species and the number

of SOA products from the vast numbers needed to explicit

represent SOA formation and evolution by formulating the

conversion process in terms of a limited number of precur-

sor species and volatility classes (four in our case) for the

reaction products. The reaction yields for the various VBS

classes, upon which the approach ultimately depends, are de-

rived from numerous chamber studies as cited, for example,

in Ahmadov et al. (2012) and Donahue et al. (2006). Phase

partitioning is done as per Pankow (1994).

To further simplify the inclusion of organic aerosols in the

NAAPS model, both the POA and SOA are calculated in a

“preprocessor” at model initialization. For the SOA, this in-

cludes calculation of the yield of SOA product mass from

the emissions inventory VOC’s, based on the VBS model,

and the treatment of this mass as a primary aerosol emis-

sion, similar to the POA. Utilizing the similarity in micro-

physical and optical properties of organic aerosol (OA) and

sulfate, the model carries POA and SOA together with sul-

fate as aforementioned “anthropogenic and biogenic fine”.

This approach has some obvious shortcomings, but it car-

ries minimal computational cost and has much improved the

simulation of AOT, especially the model bias and correla-

tion with Aerosol Robotic Network (AERONET) over India,

China and eastern United States.

2.2.7 Biomass-burning smoke

Biomass burning has a wide coverage globally, from the trop-

ics to the high latitudes, and it significantly impacts the to-

tal light absorption budget (Bond et al., 2013). Unlike other

aerosol sources that are meteorologically driven (e.g., dust

and sea salt) or prescribed in a seasonal or monthly inventory

(e.g., pollution), smoke emissions have significant variability

that hinders easy parameterization. Configuring the NAAPS

model with biomass-burning aerosols as a separate species

permits explicit hypothesis testing about the sources, sinks

and optical properties of these aerosols. Operational NAAPS

has adopted the satellite-active fire hotspot-based approach

through the Fire Locating and Modeling of Burning Emis-

sions (FLAMBE1.0; Reid et al., 2009; Hyer et al., 2013). The

model converts the smoke emission to total mass injected by

multiplying by the fire size. This value is then divided by

the area of the grid cell and the fire duration to create a flux

as an hourly input to the model. FLAMBE can use satellite

fire products from either geostationary sensors, which offer

faster refresh rates and observation of the full diurnal cycle,

or polar orbiters, which have greater sensitivity. Polar orbit-

ing satellites have significant biases not only in their daily

sampling pattern, but also additional artifacts from day to day

shifts in the orbital pattern (e.g., Heald et al., 2003; Hyer et

al., 2013). Over the reanalysis period, multiple changes in

the geostationary constellation posed a challenge for consis-

tency of the smoke source function. Therefore, a polar-only

version of FLAMBE was created for the reanalysis.

Given that the NAAPS reanalysis coincides with the

NASA Earth Observing System (EOS) system, MODIS-

based fire products and emissions are applied. MODIS orbits

have a 16-day repeat cycle, with daily coverage of the globe

excepting small gaps between orbits at the Equator. Areas

that are not covered one day are centered on the orbit the

next. The Fire Inventory from NCAR (FINN; Wiedinmyer

et al., 2011), which is also based on MODIS active fire de-
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tections, uses a 3-day moving average to account for gaps

and orbital variations. After testing multiple coverage cor-

rections, we found that for the reanalysis a simple two-day

maximum (previous day and present day) fire signal largely

mitigated orbital effects and thick clouds in a tractable way.

This correction is consistent with the self-sustained nature of

regional fire emissions, and further improves upon the scores

presented in Reid et al. (2009).

Smoke injection height combined with boundary layer

mixing has a strong influence on how smoke is dispersed.

Most plumes are observed as constrained within the plane-

tary boundary layers, especially within the tropics and sub-

tropics (Tosca et al., 2011; Campbell et al., 2013). Large bo-

real fires can pump smoke to higher altitudes, though these

fires constitute only a very small portion of the total fires and

global budget of AOT (Fromm and Servranckx, 2003; Kahn

et al., 2008). In NAAPS, smoke is injected into the bottom

four layers of the model, which is approximately the bottom

400 m of the model. Tuning of injection height to match ob-

served aerosol vertical profiles is feasible in regional studies

(e.g., Wang et al., 2013). However, we use the uniform injec-

tion height in NAAPS, considering that boundary layer pro-

cesses generally quickly mix aerosols well within the bound-

ary layer or below the models significant inversion height

to produce a result similar to the observations of Kahn et

al. (2008).

2.3 AOT assimilation

The core of the NAAPS AOT reanalysis is AOT assimilation

using the NAVDAS-AOT (Zhang et al., 2008). NAVDAS-

AOT is a system that, by default, assimilates quality-

controlled two-dimensional MODIS AOT at 550 nm into

NAAPS. It additionally has the ability to perform three-

dimensional (3DVAR) assimilation using the Cloud Aerosol

Lidar with Orthogonal Polarization (CALIOP) product of

Campbell et al. (2010) in Zhang et al. (2011). The main im-

pact of 3DVAR assimilation is redistribution of aerosol mass

vertically, while conserving the total column mass and AOT.

CALIOP data are available for only part (2006–2013) of the

reanalysis period; therefore, in this first study we perform

2DVAR AOT assimilation only.

2.3.1 Formulation of NAVDAS-AOT

The NAAPS prognostic variable is the three-dimensional

aerosol mass concentration. A 2DVAR approach is adopted

for AOT assimilation simply because AOT retrievals from

MODIS and MISR are a column-integrated aerosol optical

property. The 2DVAR AOT assimilation is realized through

three steps:

1. Convert NAAPS mass concentration AOT:

τbλ =Hm_τ (Cm)+ εbλ , (13)

where τbλ is the background (prior analysis) AOT vec-

tor, Cm is the NAAPS mass concentration, and Hm_τ is

the forward operator that represents the conversion of

NAAPS mass concentration to AOT. εbλ is the error in

τbλ introduced by the Hm_τ operator.

2. Two-dimensional variational assimilation of the AOT

field:

τaλ = τbλ +PbH
T
[
HPbH

T
+R

]−1

[τoλ −H
(
τbλ

)
], (14)

where τaλ is the analysis AOT vectors, τoλ is the obser-

vation AOT vector, and H is the observation operator

that represents any necessary spatial and temporal inter-

polations from the background to observational space.

Pb and R are the background error covariance and ob-

servational error covariance matrices, respectively. The

analysis field can be considered as the background (τbλ)

plus a correction term (the second term on the right-

hand side of Eq. 14), which is the difference between the

observation and background vectors weighted by the ra-

tio of background error covariance matrix to total error

covariance matrix in the observational space.

3. Convert the analysis AOT vectors to NAAPS mass con-

centration:

Cm =Hτ_m

(
τaλ

)
+ εm, (15)

where Hτ_m is the backward operator that performs the

conversions from AOT to NAAPS mass concentration.

In the backward operation, a scaling factor is applied to

the vertical profile of aerosol mass based on the ratio of

the AOT correction and background AOT, while keep-

ing the hygroscopic growth rate (Eq. 6) unchanged. εm

is the error inCm introduced by theHτ_m operator. Both

εm and εbλ can be transformed as part of the error term

of τbλ , which is assumed to be zero for this study.

2.3.2 Observational and background model error

covariance matrices

Both observational and model errors could contain system-

atic bias, either of which could be removed or minimized

through pre-processing. For example, our quality assurance

(QA) and quality control (QC) methodology (Sect. 2.3.3) at-

tempts to remove systematic bias as much as possible from

the AOT observations. Likewise the tuning process described

in Sect. 2.4 attempts to remove systematic bias from the

model background. Thus, both model background and ob-

servations are assumed to be unbiased in NAVDAS-AOT.

In NAVDAS-AOT, observational errors are assumed to

be uncorrelated. Thus, only observational error variances

are needed. The error variances for the gridded satellite

AOT data are computed by the summation of instrumen-

tal error variances and sample error variances (Zhang et
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al., 2008). The instrumental error variance is estimated

through the comparison of satellite and ground-based sun-

photometer data as shown in Zhang and Reid (2006) and Shi

et al. (2011a) for MODIS Dark Target, and Shi et al. (2014)

for MISR aerosol products. The sample error variance mea-

sures the variance in the gridded mean (or the representative

error variance). For a 1◦ latitude by 1◦ longitude grid, the

sample error variance is derived by the spatial variance of the

AOT data of the grid divided by the number of observations

that are used in computing the gridded mean value.

The background error covariance is computed for any

given two horizontal model grid locations m and n based on

the following equation:

Pmnb = [Smb ]
1/2C

1/2

b [S
n
b ]

1/2, (16)

where Pmnb is the background error variance for horizon-

tal grid locations of m and n. Smb and Snb are the model

error variances at grid locations m and n, respectively. Cb

is the horizontal background error correlation between the

two grid locations. Similar to observational error variances,

model error variances are also estimated using ground-based

sun-photometer data, and the values are reported in Zhang

et al. (2008). The Cbvalues are computed using the second-

order auto-regressive (SOAR) approximation (Daley and

Barker, 2001),

Cb(m,n)= (1+Rmn/L)exp(−Rmn/L). (17)

Here Rmn is the great circle distance between m and n. L is

the horizontal error correlation length. The horizontal error

correlation length is estimated through evaluating the differ-

ences in AOT between satellite observations and 6 h model

forecasts as a function of horizontal distance. L is set to

200 km for this study based on Zhang et al. (2008).

2.3.3 Input data for NAVDAS-AOT and its

preprocessing treatment

The basis of input data for the reanalysis is operational

MODIS Collection 5 AOT (Levy et al., 2007, 2010; Remer et

al., 2005, 2008) and MISR AOT products (Martonchik et al.,

2009; Kahn et al., 2009, 2010). MODIS Deep Blue for Col-

lection 5 is not used here due to bias issues, but it is expected

that improvements in Collection 6 will be made and the data

could be assimilated (Shi et al., 2013). Extensive QA and QC

procedures applied to the MODIS C5 AOT are conducted

as described in Zhang et al. (2006) and Shi et al. (2011a)

for over water and Hyer et al. (2011) for over land. These

QA/QC procedures are especially important for this applica-

tion, because the analysis must be heavily weighted to the

observations to allow assimilation for correction of errors

such as missing dust and smoke sources. Under these circum-

stances, the impact of noisy data is large and proper filtering

and correction of data is critical. QA/QC procedures imple-

mented for MODIS and MISR AOT include (a) strict checks

for removal of possible cloud contamination, (b) corrections

for the lower boundary condition, such as wind speed to cor-

rect for white caps and specular reflection over water and

surface albedo over land and (c) aerosol micro-physical cor-

rections based on derived fine-mode fraction over water and

regionally over land. This strict quality assuring and qual-

ity control procedure is necessary to remove outliers and

minimize erroneous aerosol features in MODIS that would

adversely impact the model and propagate through the sys-

tem. Currently, the total global data loss through screening

of MODIS is about 40 %, with a reduction of absolute er-

rors of 10–30 % over water (Zhang et al., 2006; Shi et al.,

2011a). over land, the QA/QC procedures reduce data vol-

ume by ∼ 60 % and improve the global fraction of MODIS

AOT within 0.05± 20 % of AERONET (Hyer et al., 2011).

The data are aggregated into a 1◦× 1◦ grid that matches the

model resolution where additional buddy checks are applied.

A benefit of a reanalysis is that observations that are not

timely enough to be incorporated into an operational run

can be utilized. Thus, while MODIS products are used in

all versions of NAAPS, for the reanalysis we can make use

of MISR. Though narrower in swath than MODIS, and thus

providing less relative coverage, MISR has two key bene-

fits. First, MISR is on Terra and its imaging swath is in the

MODIS sun-glint region. Hence, MODIS plus MISR com-

pletes the MODIS swath with full coverage. Second, the

MISR over land algorithm has an advantage over retrievals

conducted with other sensors in its handling of the lower

boundary condition, provided that AOT< 0.8. In particular,

there are large spatially correlated discrepancies between the

retrieved MODIS and MISR AOT in regions of high albedo

as a result of deficiencies in the MODIS lower boundary con-

dition (Shi et al., 2011b). Notable regions of discrepancy be-

tween MODIS and MISR include the Andes Mountains, Sa-

haran, the Arabian Peninsula and Central Asia (Shi et al.,

2011b). Further, MISR can retrieve AOT in desert region

at high efficacy where the operational MODIS Collection 5

Dark Target products cannot, thus providing further coverage

in desert regions. QA and QC procedures, including the use

of MODIS cloud mask products to reduce cloud contamina-

tion in MISR data sets and applying various quality checks

and empirical corrections on MISR level 2 aerosol products,

are conducted to generate data assimilation (DA)-quality data

sets (Shi et al., 2011c, 2014). Then the data are aggregated

into a 1◦ latitude by 1◦ longitude grid.

Data assimilation using NAVDAS-AOT is used to produce

a new analysis after every 6 h of NAAPS integration time.

The MODIS and MISR level 2 aerosol products are typically

acquired in a 6 h range centered on the nominal valid time of

the analysis (i.e., 00:00, 06:00, 12:00 and 18:00 UTC) from

NASA data servers. Then QA/QC processes convert MODIS

and MISR level 2 data into filtered, corrected and aggregated

AOT observations with associated uncertainty estimates for

assimilation in NAVDAS-AOT. After QA/QC processes, the

general pattern of data coverage from MODIS and MISR for
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Figure 1. An example of the general pattern of data coverage from MODIS (Aqua+Terra) and MISR for each AOT assimilation cycle at

the valid time of the analysis, i.e., 00:00, 06:00, 12:00 and 18:00 UTC, in NAVDAS-AOT. The MODIS and MISR AOT data displayed here

are after strict QA/QC processes for 11 August 2011. The MODIS and MISR data assimilated in each NAVDAS-AOT cycle were acquired

in a 6 h range centered on the nominal valid time of the analysis.

each assimilation cycle is shown in Fig. 1. The observed ge-

ographic pattern is attributed to the fact that MODIS and

MISR AOT retrievals are limited to daytime and a limited

range of sun-sensor geometries. The longitudinal range for

which MODIS and MISR data available in a given assimi-

lation cycle are limited because Terra and Aqua are in sun-

synchronous orbits with equatorial overpass times of 10:30

and 13:30 local solar time, respectively.

For the MODIS sensors, overlapping coverage between

Terra and Aqua over the 6 h data acquisition period does oc-

cur and a mean of Terra and Aqua weighted to the number

of level 2 retrievals from each sensor. The contribution of

each individual sensor to the total volume of the MODIS DA-

quality data is about 50 % on average, although this number

is highly variable on the 6-hourly basis, with the variabil-

ity depending on the observability of the sensors (cloudy

vs. non-cloudy, land vs. ocean, etc.). Because of its nar-

rower swath compared to MODIS, the data volume of the

MISR DA-quality data is only about 22 % on average of

that of MODIS. Approximately half of the MISR DA-quality

data overlaps with MODIS. When overlapping of MISR and

MODIS 1◦× 1◦ 6-hourly DA-quality data occurs, the mean

of the two is taken for final assimilation purpose.

The seasonal geographic distribution of the total num-

ber of 6-hourly 1◦× 1◦ fused MODIS and MISR DA qual-

ity AOT data averaged over 2003–2013 is shown in Fig. 2

(left column). Areas with high cloud coverage, including the

Intertropical Convergence Zone and the subtropical stratus

cloud deck regions, have relatively less data. In the polar re-

gions, cloud contamination often exists in satellite-retrieved

AOT data, leading to elevated AOTs. The Southern Ocean

is an example of cloud-enhanced MODIS AOT, for instance

(Toth et al., 2013). As a result, high-latitude AOT data are fil-

tered out in the QA/QC process. The cutoff latitudes for AOT

data to be assimilated are 40◦ S over water for the Southern

Hemisphere and 80◦ N for the Northern Hemisphere. In addi-

tion, because MODIS and MISR AOT observations are only

available during daylight, and thus there are no observations

during polar nights, this results in more data counts in boreal

summer than in boreal winter. Figure 2 also shows that areas

with bright desert (e.g., Saharan, the Arabian Peninsula and

Central Asia) or snowy/icy surfaces (e.g., Andes Mountains,

Greenland and high latitude in boreal winter) have relatively

less data to be assimilated, as these regions are mainly filled

in by MISR retrievals that have a revisit time of 7 days on

average rather than a revisit time of 1 day by MODIS.

The start date of the reanalysis is 1 January 2003, based

on the availability of the observational data used in the re-

analysis. Terra MODIS and MISR AOT data are first avail-

able in March 2000, and Aqua MODIS AOT is first avail-
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Figure 2. Properties of the 6-hourly 1× 1◦ MODIS+MISR data assimilation quality AOT data for JJASON (June–November, upper) and

DJFMAM (previous year December–May, lower) averaged over 2003–2013 (June 2003–May 2013): (left) total number of the DA-quality

data, (right) seasonal mean of the total AOT at 550 nm. Blank area indicates no available data. Annotations at the bottom left in the AOT

figures show the area mean AOTs over ocean and over land averaged for 40◦ S–60◦ N.

Figure 3. The time series of 6-hourly data count of the global

1× 1 grid MODIS (Terra+Aqua) (red), MISR (green), and fused

MODIS–MISR data assimilation quality AOT (blue). Dots show 6-

hourly data counts, and the solid lines represent the 30-day-running

average. The seasonal variation of the data volume is mainly related

to the fact that more AOT data are discarded for the Southern Hemi-

sphere high latitudes than the Northern Hemisphere high latitudes

considering cloud contamination (see text for details).

able in July 2002. An additional consideration is CMORPH

precipitation data, which is used to replace model precipita-

tion within the tropics, is not available until December 2002.

Since the required spin-up time for the aerosol model is

1 month, the reanalysis starts at 1 January 2003. Figure 3

shows the time evolution of 6-hourly data counts of the

global MODIS, MISR and the fused 1◦× 1◦ grid DA qual-

ity AOT in dots and their center-point 30-day-running av-

erage in solid lines. Throughout the reanalysis time period

(2003–2013), the data counts of the DA-quality data are rel-

atively stable, despite small dips in December 2003 in both

MISR and MODIS and October 2008 in MISR due to the

upstream data being unavailable. The data count of the fused

MODIS and MISR DA-quality data is about 3800 during bo-

real summer and 2400 during boreal winter, on average. This

essentially follows the seasonal variation of the MODIS DA-

quality data count, which makes up about 80 % of the to-

tal fused MODIS and MISR DA-quality data. Half of the

remaining 20 % is attributed to MISR alone and half is at-

tributed to the overlapping MISR and MODIS DA-quality

data. The seasonal variation of data volume is mainly related

to the fact that more AOT data are discarded for the South-

ern Hemisphere high latitudes than the Northern Hemisphere

high latitudes as a result of cloud contamination, and no ob-

servations are available during polar nights (Fig. 2).

2.4 Tuning studies

While AOT data assimilation from sensors such as MODIS

and MISR improves NAAPS performance (Zhang et al.,

2014), the natural NAAPS model performance is equally im-

portant for generating a final reanalysis product that aims to

match observations. Previous studies have shown that aerosol
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Figure 4. Selection of regions for this study. Antarctica is excluded. All AERONET sites that have valid L2 data for the study period

(2003–2013) are in black dots. The selected sites for detailed validation (Sect. 3.2.3) are highlighted with red diamonds.

source functions, inherent within the natural runs, are one of

the largest uncertainties with respect to aerosol modeling of

AOT (e.g., Kinne et al., 2003). As a result, a series of source-

tuning exercises have been carried out on the natural model,

using AERONET and satellite AOT observations for con-

straint. The tuning exercises consisted of running the model

multiple times while iteratively adjusting model source and

sink parameters. Smoke emissions and dust erodibility, for

regions as shown in Fig. 4 with some additional divisions as

shown in Table S1 in the Supplement, were tuned by iterative

comparison between NAAPS model output without data as-

similation and AERONET data, as described in Sect. 2.4.1.

Emissions for some regions not covered by AERONET, as

well as aerosol sink parameters, were constrained using the

AOT assimilation correction field as described in Sect. 2.4.2.

A list of the corrections applied is given in Table S1. The

range of variation in optical properties of dry aerosols re-

ported in the literature (e.g., Hess et al., 1998; Kinne et al.,

2003) is small compared to other uncertainties; therefore, we

adopted the optical properties described in Sect. 2.2.2 with-

out additional tuning.

2.4.1 Tuning of aerosol sources with AERONET

The AERONET (http://aeronet.gsfc.nasa.gov), a ground-

based global-scale sun-photometer network, has been pro-

viding high-accuracy measurements of aerosol properties

since the 1990s (Holben et al., 1998, 2001). AERONET in-

struments measure sun and sky radiance at several wave-

lengths, ranging from the near ultraviolet to near infrared

during daytime. It is often used as the primary standard

for validating satellite products and model simulations (e.g.,

Kahn et al., 2010; Levy et al., 2010; Colarco et al., 2010).

Since there are no AERONET data at 550 nm, measurements

from multiple wavelengths (380 to 1020 nm) were used to

estimate both fine- and coarse-mode AOTs at 550 nm, based

on the spectral deconvolution method (SDA) of O’Neill et

al. (2001, 2003). Extracted fine- and coarse-mode AOTs from

AERONET AOTs are then compared to ABF plus smoke and

sea salt plus dust, respectively. The SDA product has been

verified using in situ measurements (Kaku et al., 2014) and

has been shown to be able of capturing the full modal char-

acteristics of fine and coarse particles while avoiding the un-

certainties that come from using static diameter thresholds,

at 0.8 or 1.0 µm, for example. Further, the SDA has also

been shown to eliminate any potential cloud bias in fine-

mode AOTs from AERONET (Chew et al., 2011), although

thin cirrus contamination into the coarse-mode AOT can still

be problematic in some regions such as Southeast Asia and

Equatorial Africa (Chew et al., 2011; Huang et al., 2011).

Only cloud-screened, quality-assured level 2 AERONET

data are used in this study (Smirnov et al., 2000), and the

sites are marked with black dots in Fig. 4. Within the re-

analysis time period, nearly 600 regular sites provided valid

observational data. AERONET Distributed Regional Aerosol

Gridded Observation Networks (DRAGON) observations are

concentrated over a small area and a short period of time,

and they are excluded from this study to avoid the effect of

uneven sampling on the results from the statistical analysis.

Spatially, the 1× 1◦ grids in which the AERONET Level 2

data fall within are identified, and the model AOT is sampled

from these identified model grids. Temporally, AERONET

level 2 data are binned into 6-hourly intervals centered at

the model synoptic output times of 00:00, 06:00, 12:00 and

18:00 UTC and then averaged within the bins. The model

AOT at 550 nm is sampled consistently with AERONET:

we extract the model AOT at a site using only times when

AERONET had measurements. A second approach is tested,

in which the model data are interpolated onto AERONET

observation times. Validation results from the two method-

ologies are similar.
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Empirical regional tuning of smoke and dust emissions

is based on the fine- and coarse-mode AOT comparisons

with AERONET. The globe is divided into 16 regions, as

shown in Fig. 4, each having their own distinct aerosol char-

acteristics. For example, South America, southern Africa,

peninsular Southeast Asia and insular Southeast Asia have

a prevailing smoke aerosol species during burning seasons,

while northern Africa and Southwest Asia are dust domi-

nated. East Asia and Indian Peninsular have mixed dust and

pollution. Regional emission tuning factors were generated

by using the regional bias and slope of the linear regression

between pairwise NAAPS and AERONET AOT. This is done

for 2009–2011 when AERONET data is more abundant than

earlier years. Seasonally, data are grouped into the boreal

winter–spring (December to next-May) and boreal summer–

fall (June to November) time periods. These bi-seasonal tem-

poral stratifications account for the major monsoonal and cli-

matic shifts in the atmosphere while preserving major aerosol

seasons such as, for the boreal summer/fall, the August–

October biomass-burning seasons in southern Africa, South

America and maritime continent, the June–August African

dust season, and the United States and European summer

haze seasons.

Regional emission factors, in the form of linear scaling

factors applied to the original source functions for smoke

and dust, are derived for each aerosol active season for the 3

years. For a single tuning factor, it differs slightly from year

to year and season to season to a certain range. An average

over the six seasons is taken to generalize this tuning factor

for the reanalysis. The model is then run using the corrected

emissions and the results are validated regionally against

AERONET to determine whether the tuning improved bias,

correlation, and root mean square error (RMSE). Addition-

ally, the fine-/coarse-mode AOT time series of NAAPS and

AERONET are reviewed for each site in the region to ensure

the tuning is sensible. This process is repeated iteratively to

refine the tuning. In Table S1, the values of the regional mul-

tipliers for smoke emission based on the 2-day maximum

MODIS-only FLAMBE data base are listed. Also provided

are the regional multipliers for soil erodibility, which are

used to modify the dust source (Ginoux et al., 2001). The tun-

ing factor for soil erodibility changes twice over the 11 years

to accommodate the land surface parameterization changes

in the meteorological analysis.

2.4.2 Tuning with AOT assimilation

correction/increment field

The total number of operational AERONET sites has grown

to over 300 in recent years. However, the network’s global

coverage is uneven with the majority of sites located

over land where they are easily accessible. The available

AERONET data are often not representative of major aerosol

impact regions, and it does not optimally sample for the

biases that remote sensing products may have (Shi et al.,

2011b). In particular, open oceans have few AERONET sites.

In regions with sparse AERONET data coverage, aerosol

sources and parameters, such as sedimentation and dry de-

position for ocean regions, are tuned using satellite AOT as-

similation correction/increment fields. The monthly means

of the daily AOT corrections (i.e., the difference between the

assimilation posterior and the model prior) are a good indica-

tor of the model performance globally. The correction maps

can be used to quickly identify geographic regions where the

model succeeds or does poorly. A region in which the data

assimilation consistently suppresses aerosol mass could in-

dicate a region with excessive aerosol emissions, or deficient

removal, with the assumption that aerosol transport has much

smaller uncertainty.

Since satellite products have uncertainties, especially over

land, we rely on source corrections inferred from AERONET

except where there are no representative sites close to the

known source area (e.g., southern African biomass-burning

region). Over the ocean where AERONET has only a few

sites globally, satellite data assimilation plays an irreplace-

able role, not only because of the good spatial and temporal

coverage of satellite AOT data, but also because of its much

smaller uncertainty compared to the over land AOT product

(Hyer et al., 2011). Dust dry deposition velocity over wa-

ter is tuned based on the AOT correction over the tropical

Atlantic where African continental dust outflow is located,

and is set to 0.001 m s−1. To minimize the AOT correction

over the global ocean, especially high-latitude regions where

surface wind is large, we also update the sea salt dry depo-

sition velocity over water from a constant to a function of

surface wind speed following Eq. (8). This effectively re-

duces the negative AOT correction over high-wind regions.

This approach does not account for possible sources of error,

including sea salt emission parameterization, biases in sur-

face wind that drives emission and biases in boundary layer

relative humidity that affects hygroscopic growth of the sea

salt particles. In particular, our approach assumes that meteo-

rological fields are correct, and implements correction solely

to the uncertain parameters of aerosol sources and sinks.

3 Reanalyzed aerosol optical thickness

In this section, we focus on evaluating the reanalysis AOT

at 550 nm apportioned into fine- and coarse-mode contribu-

tions. The sum of the fine- and coarse-mode AOTs consti-

tutes the total AOT. These are what we consider the key

reanalysis output variables. Dust and sea salt are consid-

ered coarse-mode aerosols and the ABF and smoke aerosols

are considered fine-mode aerosols, given the simple micro-

physics of the NAAPS model. Seasonally, the boreal winter–

spring (December to next-May, i.e., DJFMAM) and boreal

summer–fall (June to November, i.e., JJASON) time periods

are investigated. When performing bi-seasonal long-term av-
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Figure 5. 2003–2013 averaged bi-seasonal (June–November, i.e., JJASON, and December–May, i.e., DJFMAM) total (upper), fine (middle)

and coarse (bottom) AOTs at 550 nm from NAAPS with and without AOT data assimilation. Annotations at the bottom left in the figures

show the area mean AOTs over ocean and over land averaged for 40◦ S–60◦ N.

eraging, we use only data in the June 2003–May 2013 time

period, so that each individual month has an even weighting.

3.1 Global distribution of AOT and seasonal variability

The bi-seasonally averaged total, fine-mode and coarse-mode

AOTs at 550 nm for the 2003–2013 time period are pre-

sented in Fig. 5. Results are shown for the reanalysis and

a parallel model run using tuned source and sink parame-

ters but without AOT data assimilation. The fused MODIS–

MISR DA-quality AOT for the same time period are shown

in Fig. 2 (right column) for comparison. The total AOTs for

both the NAAPS runs with and without AOT data assimi-

lation look very similar to the fused DA-quality MODIS–

MISR AOT. Prominent fine-mode features include pollution

over East Asia and India, as well as biomass burning in south-

ern Africa, South America and the maritime continent in JJA-

SON. Distinguishable coarse-mode features include Saharan

dust, Arabian and central Asian dust and the circumpolar sea

salt belt over the Southern Ocean. For DJFMAM, the total

AOTs for both the NAAPS runs with and without AOT data

assimilation also look very similar to the fused DA-quality

MODIS–MISR AOT. As for the fine-mode AOT, in addi-

tion to the year-round pollution over East Asia and India,

biomass burning in central Africa and peninsular Southeast

Asia shows up for the DJFMAM season. As for the coarse-

mode AOT, dust over Sahara, Sahel, Arabian Peninsula and

East Asia are clear and the circumpolar sea salt belt over the

southern ocean is persistent. The seasonal global average to-

tal AOTs for over ocean and over land from the reanalysis

are also similar to those of the fused DA-quality MODIS–

MISR AOT. The NAAPS run without AOT assimilation has

slightly higher global average total AOTs for over ocean and

over land, mainly attributed to higher fine-mode AOT aver-

ages.

The similarity between the NAAPS runs with and without

AOT data assimilation implies that the AOT correction by

the data assimilation process is small and the whole model

tuning process is effective. The resemblance between the re-

analysis (NAAPS with AOT data assimilation) AOT and the

fused MODIS–MISR AOT indicates that the data assimila-

tion system works well in adjusting model fields to the clos-

est observations. In this study, the model tuning process is

considered equally as significant as the AOT data assimila-

tion in influencing the final reanalysis. As the DA-quality

satellite AOT data can reflect relatively small global cover-

age (Figs. 1, 2), areas not covered by the DA-quality satel-

lite AOT would be highly impacted by the natural model

(NAAPS without data assimilation). More details on the im-

pact of tuning versus the DA on the model performance are

provided in Appendix A.

For this type of comparison (Fig. 5), which is done with

all available model and satellite data, we should also expect

some difference between the satellite retrievals and the re-

analysis, resulting from contextual biases in satellite products

such as clear-sky biases (Zhang and Reid, 2009). Satellite re-

trievals for AOT mainly occur over clear sky, while the model

depicts both clear and cloudy situations. Aerosol conditions

can be very different between clear and cloudy sky, which

is often associated with weather systems. For example, dur-

ing the South American and southern African burning season

(corresponding to JJASON), the southeast outflow regions

from the southeast coast of the continents into the southern

oceans are found to have lower seasonal average AOT for

clear sky compared to cloudy/all sky, as smoke plumes are

often transported along with the cloud system (Zhang and

Geosci. Model Dev., 9, 1489–1522, 2016 www.geosci-model-dev.net/9/1489/2016/
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Figure 6. (Top) time series of the daily total number of global

regular AERONET L2 observations (excluding observations at

DRAGON sites) binned into 6-hourly intervals (to match the model

output resolution) for the AOT reanalysis period. (Bottom) time se-

ries of the RMSE of the reanalysis total AOT (black), fine-mode

AOT (blue) and coarse-mode AOT (red), all at 550 nm, validated

with AERONET. The daily average 6 h RMSEs are in small dots

and the corresponding 90-day-running averages are in solid lines.

Reid, 2009). This clear-sky bias is also discernable compar-

ing MODIS AOT and the reanalysis AOT (Figs. 2 and 5).

3.2 Validation with AERONET

For validation purposes, we use the quality-assured

AERONET level-2 product. The reanalysis AOTs are com-

pared with AERONET 6-hourly total, fine- and coarse-mode

AOTs at 550 nm.

3.2.1 Global overview

Over the reanalysis period (2003–2013), the number of

AERONET observations that can be paired with model data

gradually increases with time (Fig. 6 top). The daily volume

of global 6-hourly AERONET data has more than doubled in

2012 compared with 2003. The data count in 2013 decreases

slightly due to the long processing time required for validat-

ing AERONET level 2 data (instruments need to be removed

from the field and recalibrated; Smirnov et al., 2000). As

there are more AERONET sites in the Northern Hemisphere

than in the Southern Hemisphere and AERONET measure-

ment only occurs during daytime, there are more AERONET

observations during boreal summers than winters. Polar and

high-latitude sites have few or no observations in winter,

which raises a temporal sampling issue in validation for these

regions. AERONET sampling also covaries with the seasonal

AOT assimilation cycle, as high-latitude regions are less in-

fluenced by AOT assimilation during the wintertime.

Despite the uneven seasonal sampling, the 90-day-running

average of the RMSE of reanalysis AOTs is quite stable

throughout the reanalysis time period (Fig. 6 bottom), at

Figure 7. Pairwise comparison of the global 6-hourly reanalysis

AOT and AERONET AOT with respect to total (left), fine (middle)

and coarse (right) modes at 550 nm for JJASON (upper) and DJF-

MAM (bottom) for the entire reanalysis time (2003–2013). The nor-

malized data density is shown in color. The solid magenta line rep-

resents a Theil–Sen linear regression and the corresponding equa-

tion is shown, where τN is the NAAPS reanalysis AOT and τA is the

AERONET AOT. The solid blue line is a least-squares linear regres-

sion and the corresponding equation is not shown. Also shown are

the bias, root mean square error (RMSE), square of the Pearson’s

correlation coefficient (r2), total number of stations (Nstation) and

total number of 6-hourly AERONET data (Ndata).

around 0.1 for both fine- and coarse-mode AOTs and 0.14

for the total AOTs. Daily average RMSE can occasionally

exceed 0.4.

Figure 7 provides the comparison of the pairwise 6-hourly

reanalysis AOT and AERONET AOT for all of the avail-

able global sites during the reanalysis time period. The nor-

malized data density is shown in color. AOT data from

AERONET and the reanalysis are binned at a resolution of

0.01 and density of each bin is colored relative to the maxi-

mum density in the sample. Also shown are the basic statis-

tics of the comparison: the total number of stations and the 6-

hourly observations, bias, RMSE, square of the Pearson cor-

relation coefficient (r2) and the linear regression parameters

of the Theil–Sen method (Theil, 1950; Sen, 1968). The slope

of the Theil–Sen linear regression is defined as the median of

the slopes determined by all pairs of two-dimensional sam-

ple points. It is a robust linear regression that is insensitive to

outliers and more accurate than the least-squares regression

for potentially skewed data. For reference, also shown is the

linear least-square regression line, which is more sensitive to

outliers.

For both JJASON and DJFMAM, the global reanalysis

fine-mode AOT has a small positive bias of slightly less than

0.01, while the coarse-mode AOT has a negative bias close to

−0.02. The resulting bias for total AOT is −0.01. It is note-
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worthy that perhaps a portion of the AERONET coarse-mode

bias is due to cirrus contamination (Chew et al., 2011), which

will be mitigated in the next major revision of AERONET

data. The RMSE values for both fine- and coarse-mode 6-

hourly AOTs are ∼ 0.1, except that the RMSE of the coarse

AOT is a little higher (0.11) during DJFMAM and a little

lower during JJASON (0.08). The seasonality of RMSE for

coarse-mode AOT is more apparent than that of the fine-

mode AOT, which is consistent with Fig. 6. RMSE for the

total AOT is 0.14 for both seasons, consistent with Fig. 6

as well. r2 is close to 0.65 for fine-mode AOT and close to

0.61 for coarse-mode AOT for both seasons. r2 for the total

AOT is about 0.7, which is slighter better than the individual

fine-/coarse-mode AOTs. The slope of the Theil–Sen regres-

sion lines is greater than 1 (around 1.3) for the fine-mode

AOT, less than 1 (around 0.8) for the coarse-mode AOT, and

very close to 1 for the total AOT for both seasons. All of the

above statistical numbers indicate that the fine-mode AOT

has a small high bias while the coarse-mode AOT has a small

low bias on average and globally. There is little seasonal dif-

ference in the mode statistics (fine, coarse and total modes)

for the whole globe.

As monthly data is often used in climate studies, we also

evaluate the reanalysis monthly averaged AOTs (Fig. 8).

Monthly averages are obtained only when the total num-

ber of 6-hourly AERONET data exceeds 10. For validation

purposes, the monthly average reanalysis AOT is calculated

based on the available 6-hourly data that can be paired with

AERONET data. With the high-frequency signals (e.g., daily

variability) smoothed out, the monthly average exhibits a bet-

ter match with AERONET data over all. For both seasons and

all modal AOTs, the monthly averages in the scatter plots

are more aligned with the 1 : 1 lines, RMSE is roughly 50 %

lower (0.07 for total AOT, 0.05 for fine- and coarse- mode

AOTs) and r2 about 0.2 higher on average (with a maximum

of 0.90 for the total AOT in DJFMAM and a minimum of

0.74 for the coarse AOT in JJASON). While absolute bias

is unaffected by averaging, there appears a slope bias in lin-

ear regression results. Sites that may have a low background

punctuated by severe events will appear in the regression dif-

ferently from sites with a consistent but high background.

This results in slope bias in regression of monthly averaged

AOT values, demonstrating the dangers of applying monthly

mean data to downstream calculations such as radiative forc-

ing. Such calculations need to be conducted at the finest spa-

tial and temporal scales achievable, with accounting for res-

olution effects.

Figure 9 shows the cumulative distribution function (CDF)

of AOT errors compared with AERONET for total, fine and

coarse AOTs, respectively, using 6-hourly data. As a reas-

surance, the CDF of AOT errors compared with MODIS and

MISR DA-quality data is also shown. Because the seasonal

differences for the global validation statistics are small, the

two seasons are combined for the CDF analysis. As expected,

the reanalysis total AOT is in good agreement with MODIS

Figure 8. Same as Fig. 7, except for the monthly average of pairwise

6-hourly mode AOTs at 550 nm. Monthly average is obtained only

when the total number of 6-hourly AERONET data exceed 10 to

ensure temporal representativeness. The monthly average reanalysis

AOT here is calculated based on the available 6-hourly data that can

be paired with AERONET data.

and MISR DA quality AOTs, though slightly less agreement

with MISR than MODIS is found as the relative number of

MISR data involved in AOT assimilation is much less. More

than 95 % of the reanalysis total AOT has an AOT error

falling in the AOT error range of [−0.05, 0.05] compared

with MODIS or MISR. The reanalysis AOT has larger errors

with respect to AERONET. The crossing points of the CDF

curves and the zero AOT error line (and the −0.1/+0.1 er-

ror lines) show that about 35 % fine-mode AOT has a low

bias (4 % with error less than −0.1) and the other 65 % has

a high bias (6 % with error greater than 0.1) compared to

AERONET. For coarse-mode AOT, about 60 % has a low

bias (7 % with error less than −0.1) and 40 % has a high bias

(2 % with error greater than 0.1). For the total AOT, about

44 % has a low bias (10 % with error less than −0.1) and

56 % has a high bias (8 % with error greater than 0.1). On

average the fine AOT has a slightly high bias and the coarse

AOT has a slightly low bias, which is consistent with the scat-

ter plot result (Fig. 7).

3.2.2 Regional evaluation

Figures 10, 11 and 12 show box-whisker plots of the pairwise

comparisons of regional reanalysis 6-hourly modal AOT vs.

AERONET: percentiles marked in the plots are 95, 90, 75,

50, 25, 10 and 5 %, for the regions defined in Fig. 4 for 2003–

2013. Also shown are regional mean AOTs designated by

a diamond for AERONET and “+” for the reanalysis. De-

tailed statistics associated with Figs. 10–12 (including sep-

aration into two seasons) are provided in the Supplement.

These include seasonal means and medians of the reanaly-
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Figure 9. Cumulative distribution function for the reanalysis 6-

hourly AOT errors compared to AERONET L2, MODIS and MISR

data assimilation-quality data with respect to the available total, fine

and coarse modes at 550 nm for the entire reanalysis time period

(2003–2013).

Figure 10. Comparison of regional fine-mode AOT at 550 nm of

the reanalysis (red) at 95, 90, 75, 50, 25, 10 and 5 % percentiles

to the pairwise AERONET L2 data (black) for the regions defined

in Fig. 4 for the 10-year time period (June 2003–May 2013). Also

shown are the regional mean of the reanalysis and AERONET fine-

mode AOTs in “+” and diamond, respectively. Green triangles rep-

resent the root mean square error (RMSE) of the reanalysis. Red

dots represent the square of the Pearson correlation coefficient (r2)

between the reanalysis and the AERONET observations.

sis and AERONET, along with reanalysis bias, RMSE, r2,

Theil–Sen linear regression parameters and number of valid

data points for each region and the globe.

In general, the reanalysis follows the regional variation

found in AERONET for fine-mode, coarse-mode and total

AOTs. For the fine-mode AOT, the reanalysis matches well

with AERONET with respect to the regional means, medians,

and variance. However, the results vary by region (Fig. 10).

The regional means and medians are the same or slightly

larger than those of AERONET for all regions, except East

Figure 11. Same as Fig. 10, except for coarse-mode AOT at 550 nm.

Figure 12. Same as Fig. 10, except for total AOT at 550 nm. Also,

AOT value greater than 1.0 is cropped in this figure.

Asia and insular Southeast Asia, where the means are smaller

than AERONET. The high AOT regions are the develop-

ing East Asia, Indian subcontinents, peninsular and insular

Southeast Asia. These regions also have the highest RMSE

values varying between 0.15 and 0.2, while RMSE values of

other regions are all below 0.1. The low bias in mean fine-

mode AOT in East Asia and insular Southeast Asia is mostly

due to the model’s inability to capture the magnitude of large

fine aerosol events (e.g., extreme pollution and biomass-

burning events). The r2 of most regions fall between 0.5 and

0.9. The best performing region is South America, whose r2

is greater than 0.8, indicating the reanalysis captures the tem-

poral variation in fine-mode aerosols, which are attributed

mostly to biomass-burning smoke. Regions with worse r2 in-

clude western continental United States (W. CONUS), north-

ern Africa, Southwest Asia and insular Southeast Asia, with

r2 around 0.4–0.5.

The coarse-mode AOT, overall, agrees less well with

AERONET than the fine-mode AOT with respect to the re-
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gional means, medians, variances and correlations (Fig. 11).

Many regions have generally very low coarse AOT; RMSE

for these regions will be low, but r2 will also be low due to the

small dynamic range. The most prominent high coarse-mode

AOT regions are the dusty northern African and Southwest

Asian domains. The moderate coarse-mode AOT regions are

the dust-influenced Indian subcontinent, East Asia and Cen-

tral America. These regions have relatively large RMSE (be-

tween 0.1 and 0.2), except central America (< 0.1), com-

pared to other regions (< 0.1). Except for Southwest Asia,

the oceanic region, boreal North America, W. CONUS and

Australia, where the reanalysis mean coarse-mode AOT is

comparable to that of AERONET, other regions show mean

low biases. The low bias, relative to the mean AOT, is gener-

ally small, except for peninsular and insular Southeast Asia.

The bias over these regions is attributed largely to the known

thin cirrus contamination in AERONET L2 data (Chew et

al., 2011; Huang et al., 2011). Thin cirrus cloud is a signif-

icant challenge for sun-photometer AOT measurement, as it

is easily mis-categorized as coarse-mode aerosols by the in-

strument. The persistent occurrence of high thin cirrus cloud

over these regions elevates the mean coarse-mode AOT and

thus the mean total AOT substantially. For example, at Sin-

gapore, a representative site for the insular Southeast Asia,

34 % of AERONET L2 AOT data are found to be coincident

with Micro-Pulse Lidar Network (MPLNET)-observed cir-

rus clouds (Chew et al., 2011). The estimated range of posi-

tive AOT bias in AERONET L2 data over Singapore, due to

unscreened cloud presence, ranges from 0.03 to 0.06. Taking

this estimated AOT bias of AERONET L2 data into account,

the reanalysis coarse-mode AOT would be very close to re-

ality. A similar situation exists for the peninsular Southeast

Asia, based on the estimated cirrus cloud contamination in

AERONET data at the regionally representative Pimai, Thai-

land, site (Huang et al., 2011).

The r2 of the coarse-mode AOT are less than those of the

fine-mode AOT for most regions, except for northern Africa,

Southwest Asia, Europe–Mediterranean and India, which

have a strong dust influence. Insular and peninsula Southeast

Asia have the worst correlations as expected, mostly because

of the cirrus cloud contamination in AERONET data. Other

regions, which have small AOT variations (e.g., dynamical

data range less than 0.1), tend to have small r2 ’s, e.g., boreal

North American and W. CONUS.

The total AOT, which is the sum of the coarse-mode

AOT and fine-mode AOT, has a validation feature that

combines the validation properties of the two AOT modes

(Fig. 12). The regional variation of total AOT follows that

of AERONET well. The variance of the reanalysis for each

region is smaller overall than that of AERONET, suggest-

ing the difficulty in capturing extreme events with the model

and assimilation system and a tendency to underestimate the

magnitude of extreme events and overestimate in very clean

conditions. A smaller AOT variance is known to be a typ-

ical model behavior among aerosol models (Kinne et al.,

2006; Sessions et al., 2015) and is a persistent challenge to

the aerosol modeling community. The reanalysis does not

perform as well with respect to mean bias and RMSE over

East Asia, the Indian subcontinent and insular and peninsu-

lar Southeast Asia, where complicated aerosol environments

often exist. For example, dust is often mixed with various

kinds of pollutants over East Asia and the Indian subcon-

tinent, which hinders satellite AOT retrievals and impacts

model performance through AOT data assimilation. Over in-

sular Southeast Asia, constant high cloud cover poses sig-

nificant observability issues (Reid et al., 2013), reducing the

availability of successful satellite retrievals of AOT, in addi-

tion to artificial high AOTs caused by cirrus contamination

in AERONET data. This region also has a complicated fire

regime that is systematically undersampled by the observa-

tions used to drive the smoke emissions in the model (Miet-

tinen et al., 2013). The large discrepancies between the re-

analysis and AERONET for coarse AOTs over insular and

peninsular Southeast Asia affect the reanalysis means and

medians for total AOTs, but to a lesser degree, since fine-

mode aerosols are the dominant aerosol type for the these re-

gions. Most regions have r2 between 0.5 and 0.8. W. CONUS

has the smallest r2, which is about 0.376, among all regions,

reflecting the challenge for the model to simulate the small

variance of the AOT there.

3.2.3 Site-by-site validation

Site-by-site validation of the NAAPS reanalysis was con-

ducted relative to the International Cooperative for Aerosol

Prediction (ICAP) Multi-Model Ensemble (ICAP-MME;

Sessions et al., 2015) as a baseline. Overall, ICAP-MME

was shown to outperform any individual models with regard

to RMSE in 550 nm AOT forecast (Sessions et al., 2015).

By ranking, the ICAP-MME was typically first or second

against all models at individual sites using 1-year worth of

data. Since most of the ICAP models include AOT assimi-

lation as well, the NAAPS reanalysis was compared to the

ICAP-MME. The 21 AERONET sites used in the ICAP-

MME study were agreed upon by the world’s major center

developers, as the most representative of each region. The

same two seasonal periods (DJFMAM and JJASON of 2012)

are used. In Fig. 4, these sites are marked with red squares.

The ICAP-MME is run daily at 00:00 UTC for 6-hourly fore-

casts out to 120 h. The best-available ICAP MME data (clos-

est to analysis) for this comparison is the consensus mean

of 6 h forecast at 00:00 UTC; thus, the NAAPS reanalysis is

at an advantage in this comparison due to the lagged AOT

assimilation cycle in the ICAP-MME.

Table 2 shows the name of each site, its location and the

prevailing aerosol type, along with all statistics relating to the

total AOT at 550 nm for the two seasons. The same statistics

for fine- and coarse-mode AOTs are listed in Tables 3 and

4, respectively. The values of bias and RMSE are in bold,

bold with underline and italic, depending on whether the re-
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Table 3. Same as Table 2, except for fine-mode AOT at 550 nm.

Site Mean AERONET Bias RMSE r2 N

fine AOT

winter summer winter summer winter summer winter summer winter summer

Alta Floresta 0.07 0.21 0.02 0.02 0.04 0.11 0.49 0.77 35 203

Baengnyeong 0.26 0.25 0.04 0.01 0.14 0.16 0.75 0.74 213 215

Banizoumbou 0.15 0.07 −0.03 0.07 0.14 0.11 0.17 0.16 493 396

Beijing 0.37 0.47 −0.05 −0.10 0.32 0.34 0.57 0.79 322 110

Capo Verde 0.08 0.06 0.01 0.03 0.07 0.05 0.33 0.30 283 312

Cart Site 0.06 0.09 0.01 0.02 0.03 0.04 0.69 0.70 335 419

Chapais NA 0.08 NA 0.02 NA 0.05 NA 0.73 0 112

Chiang Mai 0.50 0.14 −0.04 0.02 0.22 0.08 0.82 0.48 297 161

Crozet Island 0.01 0.02 −0.01 −0.01 0.01 0.01 NA∗ NA∗ 18 41

Gandhi College 0.31 0.43 0.02 0.05 0.11 0.23 0.71 0.41 315 311

GSFC 0.07 0.13 0.01 0.01 0.04 0.06 0.59 0.72 272 297

Ilorin 0.36 0.13 0.00 0.08 0.15 0.13 0.50 0.23 411 182

Kanpur 0.34 0.41 0.01 0.06 0.14 0.26 0.71 0.27 385 281

Minsk 0.09 0.10 0.01 0.01 0.04 0.05 0.53 0.47 156 180

Moldova 0.11 0.11 0.02 0.02 0.06 0.06 0.44 0.59 197 347

Monterey 0.03 0.04 0.02 0.00 0.02 0.02 NA∗ NA∗ 80 77

Palma de Mallorca 0.05 0.09 0.00 0.00 0.02 0.03 0.91 0.61 24 401

Ragged Point 0.03 0.03 0.02 0.01 0.03 0.02 NA∗ NA∗ 285 227

Rio Branco 0.04 0.16 0.01 0.03 0.02 0.08 NA∗ 0.86 144 328

Singapore 0.21 0.34 −0.04 −0.07 0.14 0.18 0.13 0.58 71 192

Solar Village 0.11 0.13 0.07 0.06 0.09 0.07 0.09 0.36 77 318

analysis performance is the same, better or worse than the

ICAP MME mean 6 h forecast, respectively. Over a majority

of the sites, the total AOT of the reanalysis is the same or

better than the ICAP-MME with respect to bias and RMSE.

The exceptions are the Beijing and Solar Village AERONET

sites. Singapore is uncertain, as the low biases in fine-mode

AOT contributes less than half of the total low bias, imply-

ing the dominant bias is the coarse-mode AOT bias, which

is affected by thin cloud contamination in AERONET data.

Cases, where the reanalysis is the same or better than the

ICAP-MME in bias and RMSE occur less for the coarse-

mode AOT than for the total AOT. On the one hand, the total

AOT is assimilated in the reanalysis while the coarse-mode

AOT is not. So, the total AOT is better constrained with satel-

lite observations. On the other hand, the ICAP-MME consen-

sus mean for dust/coarse-mode AOT includes an additional

independent aerosol model relative to the total AOT consen-

sus (five vs. four models), which makes the dust AOT ensem-

ble exhibit better performance among all the models com-

pared with the total AOT ensemble performance (Sessions et

al., 2015).

The AOT seasonal difference is very clear for sites with

outstanding seasonal aerosol features. For example, higher

total and fine-AOT values attributed to biomass burning are

observed in JJASON over Alta Floresta, Rio Branco and Sin-

gapore and in DJFMAM over Chiang Mai. Seasonal differ-

ences are also found over Ilorin with higher AOT in DJF-

MAM relative to JJASON, due to both dust and biomass-

burning activities. It is generally true that absolute bias and

RMSE increase with increasing values of AOT, so a sea-

sonal variation in bias and RMSE is also discernable for the

sites with large seasonal AOT variations. r2 of the above

sites in their biomass-burning seasons are generally very

good (above 0.8 except for Singapore), indicating that the

reanalysis captures the timing and variability of large smoke

episodes quite well.

Overall, the sign of the bias and the order of magnitude

of the bias and RMSE values for the selected sites are con-

sistent with the regional evaluations in Figs. 10–12 (and the

tables in the Supplement). For high AOT sites (e.g., Bani-

zoumbou, Beijing, Chiang Mai, Gandhi College, Ilorin and

Kanpur), the reanalysis generally has a low bias, as a result

of the model and/or the data assimilation system being inca-

pable of capturing the amplitude of high AOT events. An ex-

ception is Solar Village, though its dominant aerosol species,

which is dust/coarse-mode aerosol, is also biased low in AOT

during DJFMAM. Low bias in high AOT events is quite com-

mon among aerosols models (Kinne et al., 2006; Sessions

et al., 2015). The discrepancy can arise solely as a function

of spatial and temporal resolution: the average AOT for a

grid cell in an aerosol plume will be systematically lower

than the peak observed point AOT in that plume. However,

shortcomings of aerosol sources or insufficient representa-

tion of near-source aerosol processes can also cause bias.

Sometimes the discrepancy can be reduced by AOT assim-

ilation, but the probability of a successful retrieval declines
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Table 4. Same as Table 2, except for coarse-mode AOT at 550 nm and for sites in which the coarse mode is dominated by dust.

Site Mean AERONET Bias RMSE r2 N

coarse AOT

winter summer winter summer winter summer winter summer winter summer

Baengnyeong 0.13 0.09 0.00 −0.01 0.07 0.05 0.47 0.63 213 215

Banizoumbou 0.52 0.35 −0.08 −0.15 0.29 0.23 0.50 0.55 493 396

Beijing 0.24 0.15 −0.09 −0.07 0.31 0.16 0.12 0.37 322 110

Capo Verde 0.28 0.33 0.01 −0.04 0.09 0.12 0.89 0.74 283 312

Gandhi College 0.29 0.27 −0.10 −0.13 0.14 0.23 0.50 0.57 315 311

Ilorin 0.63 0.17 −0.09 −0.06 0.30 0.11 0.65 0.49 411 182

Kanpur 0.27 0.29 −0.09 −0.09 0.14 0.15 0.65 0.69 385 281

Palma de Mallorca 0.03 0.11 0.00 −0.02 0.01 0.05 0.53 0.83 24 401

Ragged Point 0.12 0.18 −0.02 −0.01 0.06 0.06 0.72 0.85 285 227

Solar Village 0.52 0.25 −0.05 0.01 0.24 0.10 0.24 0.71 77 318

for higher AOT events, and this phenomenon is amplified by

the application of AOT QA/QC procedures. The largest de-

parture for both seasons in total AOT occurs over Beijing,

where the coarse-mode bias contributes a little more to the

total bias in DJFMAM and the fine-mode bias contributes a

little more in JJASON. Among all sites, the maximum RMSE

occurs over Beijing in both seasons for the total and the fine-

mode AOT and in DJFMAM for coarse-mode AOT. JJASON

RMSE is smaller for the reanalysis than for the ICAP-MME,

implying that global models uniformly do not do well here.

r2 of the coarse-mode AOT at Beijing is also the worst for

both seasons, while r2 values for the fine and total AOTs are

reasonable (0.54 in DJFMAM and 0.76 in JJASON for to-

tal AOT, and a little better for fine AOT). The frequent mix-

ture of pollution, dust and clouds along with varying surface

properties also hinders satellite retrievals, not only reducing

the number of successful retrievals but also contributing to

large errors in retrieved AOT (e.g., Shi et al., 2011b; Zhang et

al., 2014). Similar situations exist for Ilorin, where a Sahelian

biomass-burning system is often mixed with dust episodes in

DJFMAM, and for Gandhi College and Kanpur, the two In-

dian sites, in both seasons.

For moderate to low AOT sites, including Cart Site, Cha-

pais, Goddard Space Flight Center (GSFC), Minsk, Moldova,

Monterey and Palma de Mallorca, the reanalysis performs

well, with the biases falling between −0.02 and 0.02, RMSE

values less than half of their site mean AOTs for all modes

(all less than 0.07), and r2 between 0.42 and 0.85. Over

Crozet Island, a remote oceanic site in the southern Indian

Ocean, the reanalysis has a relative large high bias (compared

to its very low mean) likely due to overestimation of sea salt.

On the contrary, the fine-mode AOT has a slightly low bias,

which may be an indication of insufficient DMS emission or

too much removal.

Several sites are affected by similar aerosol sources at dif-

ferent distances, allowing us to examine transport phenom-

ena using these sites. Banizoumbou, which is located deep in

the Sahara, has the largest bias (negative) and RMSE, and

the lowest r2 for the coarse and total AOT modes among

all the African-dust-impacted sites. Capo Verde, located on

an island off the west coast of northern Africa, has high

coarse-mode AOT, but with much smaller bias and RMSE

and high correlation (r2 is ∼ 0.88 for DJFMAM and ∼ 0.77

for JJASON for both total and coarse AOTs), benefiting from

AOT assimilation. Farther downwind of northern Africa and

across the Atlantic Ocean, Ragged Point in Barbados, shows

even smaller biases and RMSEs and very high correlation (r2

greater than 0.81 for total AOT in both season, and for coarse

AOT in JJASON). Palma de Mallorca, which is a receptor site

for Saharan dust transported across the Mediterrean Sea, has

bias, RMSE and correlation similar to Ragged Point.

The performance of the reanalysis has a tendency to in-

crease with the distance from the source region, especially

over water. The main reasons for this are (1) aerosol mod-

els normally have larger uncertainties in aerosol sources than

aerosol transports (Kinne et al., 2003), (2) there is limited

satellite AOT data over the bright desert regions for the

model to assimilate (Fig. 2), while there are a lot more op-

portunities for the model AOT to be corrected by assimila-

tion along dust transport paths and (3) the atmosphere acts

to smooth out near-source variability that is often at finer

scales than the effective resolution of the model. These ef-

fects can also be seen when comparing the reanalysis perfor-

mance over Beijing and Baengyueong, an island site in South

Korea downwind of Beijing, for both fine- and coarse-mode

AOTs.

3.3 AOT trend

There is debate over the use of AOT reanalyses to document

and understand climatic trends, similar to the debate asso-

ciated with meteorological reanalysis. However, the decadal

trends derived from the reanalysis are largely in line with

other studies using stand alone satellite products (Zhang and

Reid, 2010; Hsu et al., 2012) for a similar time period.

This helps to evaluate the reanalysis from another perspec-

www.geosci-model-dev.net/9/1489/2016/ Geosci. Model Dev., 9, 1489–1522, 2016



1510 P. Lynch et al.: An 11-year global gridded AOT reanalysis (v1.0)

Figure 13. Trends of the deseasonalized reanalysis total AOT at

550 nm over 2003–2013 (unit: 100×AOT year−1). The dotted ar-

eas have passed the 95 % statistical significance level (see text and

Zhang and Reid, 2010, for details).

tive. Figure 13 shows the trend of the deseasonalized total

AOT over the whole reanalysis period (2003–2013), using

the same calculation method as in Zhang and Reid (2010),

where the significance of the trend analysis is estimated fol-

lowing the method of Weatherhead et al. (1998). Many ar-

eas show trends consistent with the satellite-only results of

Zhang and Reid (2010) and Hsu et al. (2012): Indian Bay

of Bengal, Arabian Peninsula and Arabian Sea, Bohai Sea

in East Asia and the downwind region of southern African

biomass-burning area, which have a positive trend, and the

east coast of North America, Europe, central South Amer-

ica biomass-burning area and southern Indian Ocean, which

have a negative trend. The reanalysis also exhibits a weak

negative trend off the coast of dusty western Africa that is

similar to other studies, though not statistically significant.

The non-trend (zero trend) region with statistical significance

in the south subtropical Pacific Ocean is also consistent with

other studies.

An arguable trend appears in the maritime continent,

where Zhang and Reid (2010) report a non-significant pos-

itive trend, while Hsu et al. (2012) and our reanalysis here

report a non-significant or significant negative trend based

on slightly different study periods (Study periods are 2000–

2010, 1998–2010, and 2003–2013 in Zhang and Reid, 2010,

Hsu et al., 2012, and this paper, respectively). Because 1997–

1998 was a strong El Niño period and 2010–2012 are La

Niña years, corresponding to strong and weak fire activities

in the maritime continent, respectively, trends for these dif-

ferent periods can be expected to differ systematically. Stud-

ies show that the climate and the associated fire/smoke ac-

tivity in the maritime continent are controlled by El Niño–

Southern Oscillation (ENSO) on the interannual timescale

(e.g., Reid et al., 2012; van der Werf et al., 2004). The mar-

itime continent is anomalously dry during El Niño years and

experiences more fire activity and thus smoke aerosols com-

pared to La Niña years, and there is a good correlation be-

tween ENSO and AOT there (e.g., Hsu et al., 2012; Xian et

al., 2013). The different AOT trends over the maritime conti-

nents obtained with the use of slightly different time periods

suggest the importance of checking the possible controlling

climate variability on aerosol trend analysis depending on the

timescales of interest. Similarly, the negative AOT trend in

northern Africa and off the coast of western Africa is likely

impacted by the Atlantic Multidecadal Oscillation (AMO),

North Atlantic Oscillation (NAO) and ENSO activities as Sa-

haran dust is also shown to be correlated with these climate

variabilities (Evan et al., 2006; Hsu et al., 2012; Wang et al.,

2012).

This reanalysis uses non-trending source functions for sul-

fate, DMS, organic aerosol emissions and dust erodibility. It

is worth noting that even with static source functions and

no volcanic source, the data assimilation has successfully

picked up the positive trend downwind of the Hawaiian Is-

lands due to the enhanced degassing activity of the Kilauea

volcano since 2008 (e.g., Beirle et al., 2014). In a parallel

model run, where AOT data assimilation is turned off, trends

disappear over the east coast of North America and Europe

or change sign over the Bay of Bengal while retaining their

signs in most other regions (not shown). This indicates that

AOT trends over the eastern United States, Europe and Bay

of Bengal are related to anthropogenic emission changes.

Opposite to the trend shown in the DA run, western African

and the downwind subtropical Atlantic region show a strong

positive trend in the natural run. There could be many pos-

sible reasons, such as an artifact of stronger surface wind in

the meteorological model over the study period, or changes

in vegetation which are not captured in the meteorological

model or the dust source function.

The positive trend over the southern African biomass-

burning area and its downwind subtropical Atlantic region

and the negative trend over central South American biomass-

burning region are by and large a result of increasing fire

emissions over southern Africa and decreasing fire emissions

over South America exhibited in FLAMBE (not shown). The

smoke emission trends in the above regions are consistent

with the trends found with other satellite fire detection prod-

ucts for the same time period (Giglio et al., 2013). Trends

over other regions are most likely relevant to climate vari-

ability or changes in climate, especially changes in meteoro-

logical variables that covary with aerosol processes. For ex-

ample, the aforementioned negative trend over the maritime

continent is very likely closely related to ENSO cycles. In

another example, the decreasing dust trend in the northern

Africa dust outflow region of the tropical Atlantic is shown

to be caused mainly by a reduction in surface winds over dust

source regions rather than changes in land surface properties

in modeling studies (Chin et al., 2014; Ridley et al., 2014).

The Arabian Peninsula experiences increasing AOT,

which may result from the observed decreasing precipita-

tion for the similar time period (Almazroui et al., 2012). The
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Figure 14. Monthly mean 550 nm reanalysis and AERONET L2 mode AOTs at six AERONET sites, Alta Floresta in the Amazon, Beijing

in East Asia, Capo Verde off the west coast of northern Africa, GSFC in East CONUS, Solar Village in Arabian Peninsula, and Venice in

Italy. The solid blue line is a linear regression of the reanalysis total AOT. The red solid line is a linear regression of the AERONET total

AOT, only available when there is continuous data through the time. Monthly mean AERONET AOT is obtained only when the total number

of 6-hourly AERONET data exceeds 10 to ensure temporal representativeness. Annotations for each time series show bias, RMSE and r2 of

monthly averages for unpaired comparisons; paired comparisons, using reanalysis values sampled to match available AERONET data, are

shown in parentheses.
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negative AOT trend over the southern Indian Ocean is con-

sistent with the trend analysis using MISR AOT data (Mur-

phy, 2013). However, this trend in our analysis results solely

from trends in the source and sink function, because AOT

is not assimilated in this region in our system. The decreas-

ing trend in the southern Indian Ocean AOT in the model is

mainly caused by a decreasing trend in the surface winds in

the meteorological model, NOGAPS (not shown). Observa-

tional studies, however, have found that wind speed over the

southern oceans has increased in the past 2 decades (Young

et al., 2011; Hande et al., 2012). The question of why the sur-

face wind in NOGAPS decreases and AOT decreases in the

southern oceans during the 2003–2013 time period requires

additional investigation but is beyond the scope of this study.

Figure 14 shows the monthly mean NAAPS reanalysis

and AERONET L2 modal AOT at six AERONET sites

chosen for their relatively long-term record under differ-

ent aerosol regimes: Alta Floresta in the Amazon, domi-

nated by biomass-burning smoke during the burning sea-

son; Beijing in East Asia, dominated by anthropogenic fine-

mode aerosols year round with mixed dust and pollution in

the spring time; Capo Verde off the west coast of north-

ern Africa, dominated by Sahara/Sahel dust; GSFC in east

CONUS, dominated by anthropogenic fine-mode aerosols;

Solar Village in the Arabian Peninsula, dominated by dust;

and Venice in Italy, dominated by pollution-related fine-

mode aerosols and influenced by Saharan dust in spring time.

Also shown are linear regression lines based on the total

AOTs, indicative of AOT trends. Annotations in each time

series show bias, RMSE and r2 of the total AOT and the

dominant modal AOT, calculated with reanalysis monthly av-

erages (unpaired). Statistics from a paired comparison using

reanalysis data sampled to match available AERONET data

are shown in parentheses.

Overall, the reanalysis follows the seasonal and interan-

nual variability in AERONET data for the total AOT quite

well, and to a lesser extent for the coarse- and fine-mode

AOTs. The pairwise comparison shows better correlation

with AERONET than that calculated with all data, and,

generally smaller absolute bias and RMSE. The decreasing

trends over Alta Floresta, GSFC and Venice, the increas-

ing trend over Beijing (slight) and Solar Village, and the in-

significant trend over Capo Verde are consistent with the re-

gional trends shown in Fig. 13, and qualitatively agree with

AERONET. Over GSFC, the reanalysis has captured the ev-

ident decrease in total and fine-mode AOT since 2008. The

June–July–August average AOT drops about 0.14 (from 0.37

to 0.23) for the total AOT and 0.12 (from 0.29 to 0.17) for the

fine-mode AOT comparing the years before and after 2008.

It drops about 0.09 (from 0.31 to 0.22) for the total AOT and

0.08 (from 0.27 to 0.19) for the fine-mode AOT in the re-

analysis, with a low bias in total AOT and a minimal bias in

fine-mode AOT for the season.

4 Summary and discussion

This paper describes a nearly 11-year global 550 nm modal

AOT reanalysis product developed at the Naval Research

Laboratory, with a spatial resolution of 1× 1◦ and a temporal

resolution of 6 h. The reanalysis uses the Navy Aerosol Anal-

ysis and Prediction System (NAAPS) with regionally tuned

source functions at its core and assimilates quality-controlled

Terra and Aqua Collection 5 Moderate Resolution Imaging

Spectroradiometer (MODIS) and Multi-angle Imaging Spec-

troRadiometer (MISR) AOT. Aerosol wet deposition in the

tropics is constrained with satellite-retrieved precipitation.

Dry deposition parameters over ocean are also adjusted by

minimizing AOT corrections in AOT assimilation. By val-

idating the reanalysis fine- and coarse-mode AOTs and to-

tal AOT with Aerosol Robotic Network (AERONET) level-2

product, we report the following findings:

4.1 Global representation

Compared with 6 h average AERONET data, global mean

RMSE values for both fine- and coarse-mode AOTs are

around 0.1, and the RMSE for the total AOT is ∼ 0.14.

AOT RMSE decreases 50 % when monthly averaging is ap-

plied. On a global average, coarse-mode AOT has a slightly

negative bias (−0.02), which is partially compensated by a

slightly positive bias of the fine-mode AOT (0.01). In gen-

eral, the fine-mode AOT matches AERONET slightly better

than the coarse-mode AOT, reflected in the bias, RMSE and

correlation. These numbers vary among different regions pre-

sumably because of regionally specific aerosol features.

Since total AOT is being assimilated, the total AOT has

a smaller uncertainty relative to the coarse- and fine-mode

AOT. Currently, there is no way to validate speciated AOTs

if two or more aerosol species are present in the same size

mode. We would expect the relative uncertainty of the speci-

ated AOTs to be larger than the modal AOTs. The data qual-

ity of satellite-retrieved AOT is generally better over water

than over land because of the relatively simple surface opti-

cal properties of water (e.g., Levy et al., 2005; Remer et al.,

2005). Under the same AOT data assimilation frequency (or

same amount of data to be assimilated), the reanalysis per-

forms relatively better over oceanic and coastal regions/sites

than land regions/sites.

4.2 Regional representation

The reanalysis captures the regional and seasonal AOT vari-

ations skillfully. The range of the regional reanalysis AOT

values are generally smaller than those of AERONET (i.e.,

high bias for small AOTs and low bias for high AOTs), which

is commonly seen among aerosol models, especially with

coarse spatial and temporal resolution (e.g., Kinne et al.,

2006; Sessions et al., 2015). Challenging regions for the re-

analysis are East Asia, Indian subcontinent and Sahel, where
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there are often mixed fine- and coarse-mode aerosols. The re-

analysis generally performs better in the long-range transport

regions than the source regions. For example, the reanalysis

AOT of the Caribbean islands sites, which are the receptor

sites of African dust, matches AERONET observations better

than the land sites within the African continent. A field cam-

paign analysis of remotely transported smoke aerosols from

Borneo and Sumatra islands found good agreement between

the reanalysis AOT and the smoke concentrations therein and

in situ measurements taken in the open ocean west of the

Philippines (Reid et al., 2015).

4.3 Trends

The trends calculated from the reanalysis are similar to other

studies using stand alone satellite products (Zhang and Reid,

2010; Hsu et al., 2012) in both aerosol transport regions and

source regions. Over regionally representative sites, the re-

analysis trend in modal AOT also agrees qualitatively well

with the trend in AERONET data. This provides a reassur-

ance of the quality of the reanalysis product. It is also worth

noting that without trending source functions for sulfate and

organic aerosols precursors, the data assimilation system has

successfully reproduced regional AOT trends that are related

to emission changes in the past decade. For example, a pos-

itive trend over India is attributed to emission growth. Sig-

nals of other low-frequency climate variability are also dis-

cernable in the reanalysis AOT. For example, using an earlier

version of the NAAPS AOT analysis, the modulation effect

of the Madden–Julian Oscillation on smoke AOT over the

maritime continent is found (Reid et al., 2012).

4.4 Role of AOT data assimilation

Overall, the data assimilation system is very effective in cor-

recting the modeled AOT and bringing it as close as possi-

ble to the satellite observations, and spreading the informa-

tion to the neighboring grid cells through a correlation length

scale. In the time steps following assimilation, the informa-

tion is further propagated downstream. The data assimila-

tion system plays an indispensable role in picking up AOT

trends in the regions affected by emission changes that are

not represented in the model. However, the data assimilation

system, associated with the assimilable data, also has limita-

tions. Satellite AOT retrievals characterize the optical proper-

ties of a column, and it does not carry any information about

aerosol vertical profiles or speciation. So the total AOT is

constrained through AOT data assimilation. The relative ver-

tical profile in three-dimensional extinction and speciation of

the aerosols are uniformly varied to match the posterior AOT.

The geographical coverage of the MODIS+MISR data to be

assimilated can cover only up to about a quarter of the Earth

in one data assimilation cycle (Fig. 1). AOT of one area can

be updated by the data assimilation system only once per day

on average (at most twice per day) and only during the local

daytime. This affects the aerosol diurnal cycle in the reanaly-

sis, as all the nighttime AOT are purely driven by the natural

model while daytime AOT can be controlled by the data as-

similation system. Repetitively adding or shedding aerosol

mass and thus AOT in one area through data assimilation can

make the AOT evolution unphysical. Because AERONET

measurements occur during the local daytime, the validation

results here may not represent the reanalysis skill for other

times of day.

4.5 Data consistency in time

Even though the data assimilation system has the capabil-

ity of capturing the trend observed in stand alone satellite or

AERONET AOT analyses, the inconsistency in the meteo-

rological analysis of Navy Operational Global Atmospheric

Prediction System (NOGAPS) in the past decade poses a big

challenge in the development of a long-term global AOT re-

analysis product. NOGAPS experienced several upgrades in

the reanalysis period, including improved land surface pa-

rameterization, which impacts dust production trends.

A meteorological reanalysis is intended to provide a more

consistent atmospheric state for aerosol simulations. But me-

teorological reanalyses have a data consistency issue as well,

because observations being assimilated change significantly

with time (e.g., Dee et al., 2011). For example, with the ever-

increasing satellite observations of the past 2 decades, more

and more satellite data are being assimilated for one or more

meteorological variables. With the demise or periodic mal-

function of some satellite instruments, some data became

unavailable. This impacts the final meteorological reanaly-

sis, and consequently the AOT reanalysis. The NOAA Cli-

mate Prediction Center MORPHing (CMORPH) precipita-

tion data, which is used to replace NOGAPS precipitation in

the tropics, is only available after December 2002. Its usage

can impact regional AOT significantly in a natural model run

(Xian et al., 2009). For areas not covered by the CMORPH

product, any model precipitation performance change in time

can be a potential issue for AOT trend analysis.

4.6 Recommendations for application

a. It is ideal for quick and consistent identification of large

aerosol events globally or regionally. It can serve as a

reference and provide the general background aerosol

information without temporal or spatial discontinuity

for field campaign analysis.

b. The reanalysis AOT can be used to provide global and

regional AOT climatologies for climate and applied sci-

ence applications.

c. The reanalysis AOT can be used in different scale analy-

sis, from daily to interannual. The diurnal AOT analysis

should be performed with caution considering the possi-
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ble artifact feature introduced by the AOT assimilation

cycle.

Our future direction for the NAAPS aerosol reanalysis will

be focused on three-dimensional extinction and mass con-

centration of single aerosol species, with special emphasis

on the vertical dimension. The ability of NAAPS assimilat-

ing the Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) lidar backscatter coefficient data (Campbell et al.,

2010; Zhang et al., 2011, 2014) will aid in this effort.

Code and data availability

The NAAPS model code is a property of the US

Naval Research Laboratory and is not available to

the public. However, the NAAPS reanalysis data are

available at http://usgodae.org/cgi-bin/datalist.pl?dset=nrl_

naaps_reanalysis&summary=Go. The data on this server are

updated as model improvements are made and reruns are

completed.
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Appendix A: Impact of tuning of sources and sinks vs.

AOT data assimilation upon model performance

To show the relative importance of the tuning process on

sources and sinks versus the AOT data assimilation to re-

analysis performance, four model runs with difference con-

figurations were conducted. AOT results from these four runs

were intercompared and validated with AERONET L2 data.

The four model configurations are NAAPS without tuning

(that is to say the original native version of NAAPS from

which the reanalysis was originally based), NAAPS with

tuning, NAAPS without tuning but with AOT data assimi-

lation, and the final reanalysis version, which is with both

tuning and AOT assimilation. The four model runs all cover

December 2010–November 2011 1-year time period. Inter-

annual tuning was not conducted to preserve a measure of

consistency within the model itself. The AOT data assimila-

tion process, the input data and its pre-DA treatment are kept

the same for the DA runs. The “tuning” processes on the

sources and sinks include the addition of organic aerosols,

updated SO2 and DMS emissions, use of CMORPH pre-

cipitation to replace model precipitation within 30◦ S–30◦ N,

usage of the FLAMBE MODIS 2-day-maximum regionally

tuned smoke emissions and applying regional-tuned factors

on dust erodible fraction. For example, through the tun-

ing exercises dust emission for 2011 is reduced from 1510

to 953 Tg, and biomass-turning smoke emission is reduced

from 180 to 85 Tg globally.

Table A1 shows the 550 nm total, fine- and coarse-mode

AOT bias, RMSE, r2 and Theil–Sen linear regression slope

against AERONET from the four model runs. With the tun-

ing of sources and sinks, RMSE decreases about half, bias

and r2 also significantly improved for coarse, fine and to-

tal AOTs for the natural model run. The linear regression

slope is also much closer to 1 for the fine and the total AOTs,

and about unchanged for the coarse AOT compared to the

NAAPS run without sources and sinks tuning. The absolute

bias, RMSE and r2 are comparable with those of the DA run

without the tuning; i.e., through the tuning process on the

baseline (NAAPS_untuned), similar validation result can be

obtained as through the AOT assimilation on the baseline.

This indicates that the tuning process on sources and sinks is

as equally important as the AOT data assimilation process.

AOT data assimilation based on the tuned NAAPS further

improves the validation statistics. For example, the RMSE is

reduced about 20 % for the coarse, fine and total AOTs com-

paring the reanalysis to the NAAPS_tuned. When comparing

the DA runs (reanalysis vs. DA_untuned), there are also dis-

cernable improvements on bias, RMSE and r2 resulted from

the tuning process. The linear regression slope is improved

for the fine AOT and about the same for the total AOT. The

regression slope is worsened for the coarse AOT (0.64 for

the reanalysis), because the model, like other aerosol mod-

els, faces challenges successfully resolving dust events over

Sahel, East Asia and Indian subcontinent regions (e.g., Ses-

sions et al., 2015). While the untuned model has slightly high

biased coarse AOT, which makes the regression slope more

tilted. The linear regression slope of the reanalysis based on

all the 11-year data is 0.85 (Fig. 7) though, better than the

2011 level.

The Figs. A1 and A2 show the global coarse, fine and to-

tal AOT distributions from the four model runs for the two

seasons of 2011, i.e., JJASON and DJFMAM respectively.

For both seasons, it is obvious that the natural NAAPS run

without tunings has the most different AOT distributions and

global averages among the four runs. The three other runs

look more similar to each other, which is consistent with the

validation statistics shown in Table A1. For JJASON the nat-

ural NAAPS run without tunings has the lowest global mean

AOTs among the four runs, yet the highest AOTs near dust

and smoke source regions in South America and southern

Africa. This indicates possible excessive emissions in these

regions and excessive removal over water, which are tuned

through applying smaller emission factors for smoke and

dust and lower dry deposition velocity for dust over water in

the tuning process. For both seasons, the tuned NAAPS run

without DA has slightly high bias in the fine AOT (see also

Table A1) and the bias is slightly larger in DJFMAM than in

JJASON, most probably resulted from excessive addition of

organic aerosols during boreal winter.

Compared to the reanalysis, the DA run without source

and sink tuning, exhibits similar global total AOT distribu-

tion. However, some differences between the two are notice-

able for the fine and coarse AOTs. For example, over the

Indian subcontinent the AOT partitioning between the fine

and coarse AOTs differs significantly. The contribution of the

fine-mode aerosols to the total AOT dominates the contribu-

tion of the coarse-mode aerosols in the reanalysis. Whereas

the total AOT is predominantly attributed to the coarse-mode

aerosols in the DA run without tunings. Over the south-

ern flank of the Himalayas, where fine-mode aerosols from

industrial and biofuel emissions often prevail over coarse-

mode (refer to Kanpur site in Tables 2–4), the fine-mode frac-

tion is increased from∼ 0.3 in the DA run without tunings to

∼ 0.7 in the reanalysis. This illustrates the importance of the

tuning processes in yielding a better AOT partitioning be-

tween the fine and coarse modes.

www.geosci-model-dev.net/9/1489/2016/ Geosci. Model Dev., 9, 1489–1522, 2016
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Table A1. Statistics of the coarse, fine and total AOTs at 550 nm from four model runs compared with AERONET L2 data. The four model

runs are from four different model configurations, including NAAPS without sources and sinks tuning, NAAPS with tuning, NAAPS without

tuning but with AOT data assimilation, and the reanalysis version, which is with both the tuning and the AOT assimilation. The comparison

is based on 1-year time period (December 2010 to November 2011). The global AERONET mean is 0.085, 0.102 and 0.187 for coarse, fine

and total AOT, respectively, obtained with averaging 97 654 valid 6-hourly L2 data from 285 stations.

AOT bias RMSE r2 Regression slope

coarse fine total coarse fine total coarse fine total coarse fine total

NAAPS_untuned 0.008 −0.030 −0.022 0.17 0.19 0.26 0.33 0.05 0.15 0.59 0.69 0.81

NAAPS_tuned −0.005 0.021 0.016 0.10 0.10 0.16 0.45 0.47 0.48 0.58 0.98 0.89

DA_untuned 0.014 −0.025 −0.011 0.09 0.11 0.14 0.58 0.41 0.56 0.90 0.75 0.80

Reanalysis −0.013 0.006 −0.007 0.08 0.08 0.13 0.59 0.63 0.65 0.64 1.00 0.77

Figure A1. 6-month-average (June–November 2011) total (upper), fine (middle) and coarse (bottom) AOTs at 550 nm from four NAAPS

runs with different configuration: NAAPS without tuning, NAAPS with tuning processes on sources and sinks, NAAPS without tuning but

with AOT data assimilation and the reanalysis version, which is with both tuning and AOT assimilation. Annotations at the bottom left in the

figures show the area mean AOTs over ocean and over land averaged for 40◦ S–60◦ N.

Figure A2. Same as the Fig. A1, except for December 2010–May 2011 6-month-average.

Geosci. Model Dev., 9, 1489–1522, 2016 www.geosci-model-dev.net/9/1489/2016/
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The Supplement related to this article is available online

at doi:10.5194/gmd-9-1489-2016-supplement.
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