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Abstract. Hough functions are the eigenfunctions of the

Laplace tidal equation governing fluid motion on a rotating

sphere with a resting basic state. Several numerical methods

have been used in the past. In this paper, we compare two

of those methods: normalized associated Legendre polyno-

mial expansion and Chebyshev collocation. Both methods

are not widely used, but both have some advantages over

the commonly used unnormalized associated Legendre poly-

nomial expansion method. Comparable results are obtained

using both methods. For the first method we note some de-

tails on numerical implementation. The Chebyshev colloca-

tion method was first used for the Laplace tidal problem by

Boyd (1976) and is relatively easy to use. A compact MAT-

LAB code is provided for this method. We also illustrate the

importance and effect of including a parity factor in Cheby-

shev polynomial expansions for modes with odd zonal wave

numbers.

1 Introduction

Hough functions are the eigenfunctions of the eigenvalue

problem of the following form:

F(2)+ γ2= 0, (1)

where F is a linear differential operator, the Laplace tidal

operator, defined as

F(2)≡
d

dµ

(
1−µ2

σ 2−µ2

d2

dµ

)
(2)

−
1

σ 2−µ2

[
s

σ

σ 2
+µ2

σ 2−µ2
+

s2

1−µ2

]
2,

with µ= sinφ ∈ [−1,1], φ being the latitude, s the zonal

wave number, and σ the dimensionless frequency normal-

ized by 2� (� the earth’s rotation rate), while

γ ≡
4a2�2

gh
(3)

is Lamb’s parameter (Andrews et al., 1987, p. 154), with a

being the earth’s radius, g the acceleration due to the earth’s

gravity, and h the so-called equivalent depth.

Several numerical methods have been used to solve the

eigenvalue problem for the Laplace tidal equation in the past.

Hough (1898) pioneered the solutions of the Laplace tidal

equations using spherical harmonic expansion, or equiva-

lently spherical harmonic Galerkin method, so eigenfunc-

tions of the eigenvalue problem (Eq. 1) that describe the lat-

itudinal dependence are often called Hough functions (Flat-

tery, 1967; Longuet-Higgins, 1968; Lindzen and Chapman,

1969). Each function of latitude and longitude is expanded

as a Fourier series in longitude using the usual Fourier func-

tions, cos(sλ) and sin(sλ), where s, an integer, is the “zonal

wave number”, and λ is the longitude. Each longitudinal

trigonometric function is multiplied by a latitudinal basis

function which depends on the zonal wave number s. Hough

and his successors used a latitudinal basis of unnormalized

associated Legendre polynomials (ALPs). Both Kato (1966)

and Flattery (1967) used the method of continued fractions to

solve for eigenvalues one by one with iterations. This is not

the most convenient method to work with, and some eigen-

values could be missed. Chen and Lu (2009) also discussed

calculation of Hough functions following the same original

formulation without showing any details on numerical pro-

cedures.
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Computation of Hough functions based on expansion in

terms of normalized ALPs was first used by Dikii (1965). It

was later elaborated in a note by Groves (1981), along with

a method of evaluating related wind functions. Jones (1970)

used group-theoretical methods to obtain a matrix represen-

tation of Hough functions by expanding in normalized spher-

ical harmonics.

Although it is closely related to the original method of ex-

pansion in terms of unnormalized ALPs, expansion in terms

of the normalized ALPs leads to two symmetric matrices for

symmetric and anti-symmetric modes. This has both compu-

tational and conceptual advantages over the original expan-

sion in unnormalized ALPs: (1) the eigenvalue problem of

symmetric matrix can be solved very accurately by the Ja-

cobi method (e.g., Demmel and Veselić, 1992), and (2) sym-

metry guarantees that all of the “eigenvalues are real and that

there is an orthonormal basis of eigenvectors” (Golub and

Van Loan, 1996, p. 393).

There is also another way of computing Hough functions

or global normal modes, such as Longuet-Higgins (1968),

Kasahara (1976), and Žagar et al. (2015), also using spheri-

cal harmonic expansion, in which the equivalent depth is as-

signed (for each zonal wave number) and the frequency of

the normal modes is obtained as the eigenvalues. This is dif-

ferent from the eigenvalue problem for tidal waves in which

the wave frequencies and zonal wave number are specified

and eigenvalues are obtained and used to compute equiva-

lent depths, just as stated in the original eigenvalue problem

(Eq. 1).

The collocation method was first applied to compute

Hough functions by Boyd (1976). His latitudinal basis func-

tions replace associated Legendre functions by cosine func-

tions of colatitude ϕ multiplied by a “parity factor” which is

sin(ϕ) for odd zonal wave number s and the constant one for

even zonal wave numbers. The parity factor is explained in

Appendix C. In addition, the modified latitudinal variable

µ≡ cos(ϕ)= sin(φ) ∈ [−1,1]

is often used to analyze and solve differential equations in

spherical geometry. The reason is that trigonometric func-

tions are replaced by powers of µ, simplifying almost every-

thing. And denoting the Chebyshev polynomials by Tn(x),

Chebyshev’s famous identity shows that

Tn(µ)= Tn(cos(ϕ))= cos(nϕ), n= 0,1, . . ..

Thus a Fourier cosine series in colatitude is, with the same

coefficients, also a Chebyshev polynomial series in µ.

Boyd (1976) and Orszag (1974) listed several advantages

of Chebyshev polynomial collocation over spherical har-

monic Galerkin approximations. First, cosines/Chebyshev

polynomials are much simpler than associated Legendre

functions, which are different for each different zonal wave

number s. Second, collocation, which evaluates and interpo-

lates, is much easier to program than the Galerkin method,

which integrates. These advantages make it much easier to

apply the Chebyshev collocation method than the spherical

harmonic Galerkin method. See also Hesthaven et al. (2007,

Chapter 3) for a discussion of advantages of Fourier colloca-

tion methods over the Fourier–Galerkin methods.

In this paper we compare the solution of the eigenvalue

problem for the Laplace tidal operator using two numeri-

cal methods, the normalized ALP expansion method and the

Chebyshev collocation method. Both methods are not widely

used, but both have some advantages over the commonly

used unnormalized ALP expansion. For the first method we

note some details of numerical implementation as the denom-

inators in some terms of matrix entries can become zero. For

the second method a compact MATLAB code is provided

to facilitate its use. We also discuss other related issues and

show that there is no accuracy penalty in using the Cheby-

shev collocation method.

2 Computation of Hough functions

In this section, we compare two methods for computing

Hough functions: one using the normalized ALP expansion,

the other using the Chebyshev collocation method.

2.1 Computation of Hough functions using normalized

associated Legendre polynomial expansion

The first method uses the expansion in terms of normalized

ALPs (e.g., Groves, 1981). To solve the Laplace tidal equa-

tion, first expand 2 in terms of the unnormalized associated

Legendre polynomials P sr :

2=

∞∑
r=s

crP
s
r (µ). (4)

Substituting into the Laplace tidal equation Eq. (1), one ob-

tains

Qr−2cr−2+ (Mr − λ)cr + Sr+2cr+2 = 0, (r>s), (5)

where

Qr−2 =
(r − s)(r − s− 1)

(2r − 1)(2r − 3)[s/σ − r(r − 1)]
, (6a)

Mr =
σ 2
[r(r + 1)− s/σ ]

r2(r + 1)2
(6b)

+
(r + 2)2(r + s+ 1)(r − s+ 1)

(r + 1)2(2r + 3)(2r + 1)[s/σ − (r + 1)(r + 2)]

+
(r − 1)2(r2

− s2)

r2(4r2− 1)[s/σ − r(r − 1)]
,

Sr+2 =
(r + s+ 2)(r + s+ 1)

(2r + 3)(2r + 5)[s/σ − (r + 1)(r + 2)]
, (6c)
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and

λ=
gh

4a2�2
=

1

γ
. (7)

These equations were first given by Hough (1898); see also

Lindzen and Chapman (1969).

The normalized associated Legendre polynomials Pr,s are

defined in terms of the unnormalized associated Legendre

polynomials P sr by

Pr,s =

[
2(r + s)!

(2r + 1)(r − s)!

]− 1
2

P sr . (8)

Expanding2 in terms of the normalized associated Legendre

polynomials Pr,s ,

2=

∞∑
r=s

arPr,s(µ), (9)

we have (Dikii, 1965; Groves, 1981)

Lr−2ar−2+ (Mr − λ)ar +Lrar+2 = 0 (r>s), (10)

where

Lr = (11a)

[(r + s+ 1)(r + s+ 2)(r − s+ 1)(r − s+ 2)]
1
2

(2r + 3)[(2r + 2)(2r + 5)]
1
2 [s/σ − (r + 1)(r + 2)]

,

Mr =−
σ 2
− 1

(s/σ + r)(s/σ − r − 1)
(11b)

+
(r − s)(r + s)(s/σ − r + 1)

(2r − 1)(2r + 1)(s/σ + r)[s/σ − r(r − 1)]

+
(r − s+ 1)(r + s+ 1)(s/σ + r + 2)

(2r + 1)(2r + 3)(s/σ − r − 1)[s/σ − (r + 1)(r + 2)]
.

Equation (10) can be written in a matrix form for the coef-

ficients vector x = [as,as+1,as+2,as+3, . . .]
T as the matrix

eigenvalue problem F0x = λx, with matrix F0 defined as

F0 =



Ms 0 Ls 0 0 . . .

0 Ms+1 0 Ls+1 0 . . .

Ls 0 Ms+2 0 Ls+2 . . .

0 Ls+1 0 Ms+3 0 . . .

0 0 Ls+2 0 Ms+4 . . .
...

...
...

...
...

. . .


. (12)

Or it may be written as, respectively, F1x1 = λ1x1, x1 =

[as,as+2, . . .]
T for symmetric modes, with matrix F1 defined

as

F1 =


Ms Ls 0 0 . . .

Ls Ms+2 Ls+2 0 . . .

0 Ls+2 Ms+4 Ls+4 . . .
...

...
...

...
. . .

 , (13)

and F2x2 = λ2x2, x2 = [as+1,as+3, . . .]
T for anti-symmetric

modes, with matrix F2 defined as

F2 =


Ms+1 Ls+1 0 0 . . .

Ls+1 Ms+3 Ls+3 0 . . .

0 Ls+3 Ms+5 Ls+5 . . .
...

...
...

...
. . .

 . (14)

These are real symmetric matrices, and the eigenvalue prob-

lem can be solved accurately using the Jacobi methods (e.g.,

Golub and Van Loan, 1996, Chapter 8). The computed eigen-

vectors are the expansion coefficients.

A few remarks on unnormalized versus normalized ALP

expansion are in order here. The unnormalized polynomials

(not just ALPs, but Legendre and Chebyshev and Hermite

polynomials too) have survived because the canonical unnor-

malized forms have polynomial coefficients that are integers

or rational numbers. This is convenient for many applica-

tions, such as when using exact arithmetic in computer alge-

bra. Note that this property carries over to the Galerkin ma-

trix elements for the Hough differential equation, which are

rational functions of r and s in Eq. (6). Also, for some pur-

poses it is very convenient to use polynomials which are all 1

at µ= 1, as true for unnormalized Chebyshev and Legendre

polynomials. The bad news is that unnormalized polynomi-

als generate bigger roundoff errors in all calculations, not just

computing matrix eigenvalues. The Galerkin matrix element

formulas are more complicated for normalized polynomials.

As we noted above, a particular advantage of working with

normalized ALPs is that the discretization matrix becomes

a symmetric matrix. Spectral discretizations often generate a

few inaccurate eigenvalues with nonzero imaginary parts, but

the eigenvalues of a symmetric tridiagonal matrix are always

real.

A note on numerical implementation is relevant here, since

denominators of terms inMr can become zero. We found that

Eq. (6b), instead of Eq. (11b), of Mr should be used, even

though the two forms are equivalent. In addition, we should

set that last term of Eq. (6b) of Mr to zero when it becomes

a form of 0/0. Thus, to compute the (s = 2,σ = 1) modes or

SW2 (semidiurnal, westward propagating, zonal wave num-

ber 2) modes, we should set the last term of Eq. (6b) to zero

when r = s = 2.

The Fortran 90 source code of the Jacobi eigenvalue algo-

rithm implemented by Burkardt (2013) can be used to solve

the two symmetric matrix eigenvalue problems. It can actu-

ally, for the (s = 1,σ = 0.5) modes or DW1 (diurnal, west-

ward propagating, zonal wave number 1) tide, compute the

one infinite eigenvalue with P2,1 as the eigenmode, “the most

important odd mode” (Lindzen and Chapman, 1969, p. 151)

since P2,1 ∝ sinφ cosφ. So in this way we will not miss any

important eigenvalue or eigenfunction; see Sect. 3 for a dis-

cussion on the “missing” modes for the solar diurnal modes

and the completeness of Hough functions. When using MAT-

LAB, we can set any inf matrix entry to realmax and then
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1480 H. Wang et al.: Computation of Hough functions

Figure 1. The first few symmetric and anti-symmetric Hough modes for DW1 (s = 1, σ = 0.5) of scalar fields, computed using the normal-

ized associated Legendre polynomial (ALP) expansions. Panels (a, b) are for symmetric modes; (c, d) are for anti-symmetric modes. The

labels are [−1] for the first negative mode with largest negative eigenvalue, [+1] for the first positive mode with largest positive eigenvalue,

and [0] for the so-called missing mode with zero eigenvalue or infinite equivalent depth.

use the MATLAB function eig to solve the matrix eigen-

value problem. It is also preferable to compute eigenvalues

for symmetric and anti-symmetric modes separately, espe-

cially when there are interior singularities, e.g., for the DW1

tide. A MATLAB implementation is shown in Appendix B1.

Using the method of expansions in the normalized as-

sociated Legendre polynomials, truncated at rmax = 60 on

94 Gaussian quadrature points, we compute eigenvalues and

eigenfunctions for several important solar tides. We use so-

lar day instead of sidereal day in our computations. The first

several equatorial symmetric and anti-symmetric modes for

DW1 are shown in Fig. 1. The first several equatorial sym-

metric and anti-symmetric modes for SW2 of scalar fields

are shown in Fig. 2a–b. The first several equatorial symmet-

ric and anti-symmetric modes for (s = 3,σ = 1.5) modes or

TW3 (terdiurnal, westward propagating, zonal wave number

3) for temperature field are shown in Fig. 3. For complete-

ness, a method of computing Hough functions for the hori-

zontal wind components by Groves (1981) (with correction)

is presented in Appendix A.

2.2 Computation of Hough functions using Chebyshev

collocation method

The Chebyshev collocation method was first used by Boyd

(1976) to solve the Laplace tidal problem. Expand2 in terms

of the Chebyshev polynomials Tn(µ):

2(µ)= sinmϕ

N∑
n=0

bnTn(µ), with m=mod(s,2), (15)

which includes a parity factor sinϕ for the odd zonal wave

number s (Orszag, 1974; Boyd, 1978), where ϕ is colatitude,

ϕ = π/2−φ. See Appendix C for an explanation of the parity

factor. The Chebyshev collocation points can be defined in

different ways. When the interior or “roots” points are used,

they are defined as (e.g., Boyd, 2001, p. 571)

µi = cos

(
(2i− 1)π

2N

)
, i = 1, . . .,N, (16)

where N is total number of collocation points. By using

the differential matrices, it is straightforward to apply the

Chebyshev collocation methods to any differential opera-

tors. Discussion on property of Chebyshev polynomials and

collocation method can be found in Boyd (2001) and Tre-

fethen (2000). A MATLAB implementation is shown in Ap-

pendix B2.

Parity requirement is discussed in Orszag (1974). To quote

from Orszag (1974),

If parity requirements are violated, then differen-

tiability is lost (at the boundaries, i.e., at the poles),

possibly resulting in slow convergence of series

expansions and associated Gibbs’ phenomena. It

is important that assumed spectral representations

not impose an incorrect symmetry on a solution if

infinite-order accurate results are desired

(see also Boyd, 1978).

To show how accuracy is affected by the parity factor, we

compare the eigenfunction expansion coefficients bn com-

puted with or without the parity factor in Fig. 4. For both

Geosci. Model Dev., 9, 1477–1488, 2016 www.geosci-model-dev.net/9/1477/2016/
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Figure 2. The first few symmetric and anti-symmetric Hough modes for SW2 (s = 2, σ = 1), computed using the normalized ALP expan-

sions. The left panels are symmetric modes, and the right panels are anti-symmetric modes, except panels (e, f) which are reversed. Panels (a,

b) are for the scalar fields, (c, d) for the zonal wind component, and (e, f) for the meridional wind component. The labels are conventional.

Figure 3. The first few symmetric and anti-symmetric Hough modes for TW3 (s = 3, σ = 1.5) of scalar fields, computed using the normalized

ALP expansions. The left panels are symmetric modes, and the right panels are anti-symmetric modes.

terdiurnal and pentadiurnal tides, when the parity factor is re-

moved, only limited lower-order algebraic convergence rates

are achieved: fourth order for terdiurnal and seventh order

for pentadiurnal. When the parity factor is included, spec-

tral or exponential convergence is restored. Thus including

the parity factor improves the accuracy dramatically, so so-

lutions are less affected by singularities when they exist. It is

important to include the parity factor when computing eigen-

values and eigenfunctions for DW1 (s = 1,σ = 0.5) modes

(see Sect. 2.3). A theoretical justification for the parity factor

is given in Appendix C.

The MATLAB code listed in Appendix B2 includes a par-

ity factor for the odd zonal wave number. It also computes

Hough modes for horizontal wind components. The com-

puted eigenvalue in this case is just (negative) γ , and from

Eq. (3) we can compute the corresponding equivalent depths

www.geosci-model-dev.net/9/1477/2016/ Geosci. Model Dev., 9, 1477–1488, 2016
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Figure 4. The absolute value of the expansion coefficients bn in Eq. (15), truncated at N = 150. The left panels are for the terdiurnal

tides, s = 3, σ = 1.5, for eigenfunction with eigenvalue γ = 17.2098: (a) without parity factor, (b) with parity factor. The right panels are

for pentadiurnal tides s = 5, σ = 2.5, for eigenfunction with eigenvalue γ = 22.9721: (c) without parity factor, (d) with parity factor. An

empirical fitting curve is also shown in red dash.

Table 1. Number of good eigenvalues of three tidal waves: DW1,

SW2 and TW3, computed with different truncation N using two

different methods: I – normalized ALP expansion, II – Chebyshev

collocation.

N DW1-I DW1-II SW2-I SW2-II TW3-I TW3-II

8 2 0 2 0 3 1

16 6 1 6 5 10 6

24 10 3 10 9 16 13

32 16 9 14 13 22 19

40 22 14 20 18 28 25

48 28 15 24 22 36 32

56 32 24 29 27 42 39

64 38 29 34 32 48 45

72 43 29 38 37 56 52

80 49 39 44 42 62 59

h. Hough functions are simply the computed eigenvectors

(with different normalization factors that are irrelevant) when

Chebyshev differential matrices are used. So the eigenvalue

and eigenvector problem we solve can be viewed as a di-

rect discretization of the original operator eigenvalue prob-

lem (Eq. 1).

2.3 Comparison of the two methods

Table 1 compares the number of good eigenvalues that can

be obtained using the two methods. The “good” eigenvalue

is defined as one whose relative error

Erel(λ̂)=
|λ− λ̂|

|λ|
(17)

is less than 10−6, where λ is the eigenvalue computed at high

truncation N = 160. This definition is somewhat arbitrary

but is useful for comparisons. It shows that for DW1 about

60 % of the computed eigenvalues are good using the nor-

malized ALP expansion method and about 50 % of the com-

puted eigenvalues are good using the Chebyshev collocation

method; for SW2 a little over 50 % of the computed eigenval-

ues are good using both methods; and for TW3 the number

of good eigenvalues is about 75 % for both methods. We note

that for DW1 only about 15 % of the computed eigenvalues

are good without parity factor, contrasted to 50 % with par-

ity factor. This again illustrates the importance of preserving

correct parity.

Considering the “unusual difficulties” in solving the eigen-

value problem of the Laplace tidal equation using general

numerical methods, as remarked by Bailey et al. (1991), it

is remarkable that the Chebyshev collocation method with a

Geosci. Model Dev., 9, 1477–1488, 2016 www.geosci-model-dev.net/9/1477/2016/
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parity factor for odd zonal wave number can be used so suc-

cessfully in solving the eigenvalue problem of the Laplace

tidal equation.

3 A remark on the completeness of Hough functions

Although the completeness of Hough functions for zonal

wave number s and period T = (s+ 1)/2 days was ques-

tioned earlier by Lindzen (1965), completeness was later

proved by Holl (1970) with further analysis by Homer

(1992). Giwa (1974) proved by direct computation that, for

zonal wave number s and period T = (s+1)/2 days, Hough

functions for tidal oscillations are the same as the associ-

ated Legendre polynomials P ss+1, and Hough functions form

a complete set of orthogonal functions.

One advantage in using the normalized associated Legen-

dre polynomials as basis functions, as shown in Sect. 2.1, is

that the eigenvalue problem becomes an eigenvalue problem

for two real symmetric matrices: one for symmetric modes

and one for anti-symmetric modes. The spectral theory of

(Hermitian) symmetric matrices tells us that these real sym-

metric matrices have “a complete set of orthogonal eigenvec-

tors, and that the corresponding eigenvalues are real” (e.g.,

Lax, 2002, Chapter 28). Thus this approach in a heuristic way

shows the completeness of Hough functions.

4 Summary and conclusions

In this paper, we briefly survey the numerical methods for

computing eigenvalues and eigenvectors for the Laplace tidal

operator. In particular we compare two numerical meth-

ods: the normalized ALP expansion and Chebyshev collo-

cation. The normalized ALP expansion method leads to two

symmetric matrices which can be solved very accurately. It

also has an advantage in providing another conceptual un-

derstanding for the completeness of eigenfunctions (Hough

functions) of the Laplace tidal operator. We also note some

details on numerical implementation and provide a MAT-

LAB code.

The Chebyshev collocation method was first used by Boyd

(1976) for computing the eigenvalues for the Laplace tidal

problem. Here we compared this method with the ALP ex-

pansion and found that both are producing comparable re-

sults. The Chebyshev collocation method uses Fourier cosine

series in colatitude as the basis functions and is relatively

easy to work with. A compact MATLAB code is provided

to facilitate the use of the Chebyshev collocation method for

the Laplace tidal problem.

The Chebyshev polynomial expansion method is merely a

Fourier cosine expansion method in disguise (Boyd, 2001).

In using the Chebyshev collocation method, it is important

to include a parity factor in Chebyshev polynomial expansion

for odd zonal wave number modes, as illustrated in the paper.

www.geosci-model-dev.net/9/1477/2016/ Geosci. Model Dev., 9, 1477–1488, 2016



1484 H. Wang et al.: Computation of Hough functions

Appendix A: Hough functions for the horizontal wind

components

Hough function for the horizontal wind components are

(Groves, 1981; Lindzen and Chapman, 1969)

2u =
(1−µ2)

1
2

σ 2−µ2

[
s

1−µ2
−
µ

σ

d

dµ

]
2, (A1a)

2v =
(1−µ2)

1
2

σ 2−µ2

[
(s/σ )µ

1−µ2
−

d

dµ

]
2, (A1b)

for the eastward and northward components, respectively.

These can be evaluated numerically by discretizing the

differential operators or evaluated recursively as follows

(Groves, 1981). Let

Su = cosφ 2u, Sv = cosφ2v; (A2)

then from Eq. (A1) we have

σSu−µSv − (s/σ )2= 0, (A3a)

µSu− σSv − (1/σ)D2= 0, (A3b)

where D = (1−µ2)d/dµ. Note that the factor of 1/σ before

D2 in Eq. (40) is missing in Groves (1981). For s>0, we

expand Su and Sv in terms of the normalized associated Leg-

endre polynomials,

Su =

∞∑
r=s

urPr,s(µ), Sv =

∞∑
r=s

vrPr,s(µ), (A4)

and use Eq. (9) for expansions of 2, as well as the recur-

rence relations for the normalized associated Legendre func-

tions (which can be verified or derived from the recurrence

relations for the unnormalized associated Legendre polyno-

mials)

µPr,s = brPr−1,s + br+1Pr+1,s, (A5a)

DPr,s = (r + 1)brPr−1,s − rbrPr+1,s, (A5b)

where

br = [(r
2
− s2)/(4r2

− 1)]
1
2 ; (A6)

then the coefficients of Pr−1,s give

brur = σvr−1− br−1ur−2 (A7a)

− (1/σ)[(r − 2)ar−2br−1− (r + 1)arbr ],

brvr = σur−1− br−1vr−2− (s/σ )ar−1. (A7b)

The first several equatorial symmetric and anti-symmetric

modes for SW2 (s = 2,σ = 1) for the zonal wind com-

ponents computed using the above method are shown in

Fig. 2c–f. We also used the second-order central finite-

difference method to discretize the differential operators in

Eqs. (A1a) and (A1b). Comparison of Hough mode com-

putations for wind components using the method presented

above and the finite-difference method shows no visual dif-

ferences, except at the two end points where the one-sided

finite difference has to be used. The MATLAB code listed

in Appendix B1 also computes Hough functions for the hori-

zontal wind components using the central difference method.

Appendix B: Listing of the MATLAB codes for

computing Hough functions

In this Appendix, we list the MATLAB codes that can be

used to compute eigenvalue and eigenvectors or Hough func-

tions for the Laplace tidal equation. One uses the normalized

ALP method, and the other uses the Chebyshev collocation

method.

B1 The normalized ALP method

The first MATLAB code uses the normalized ALP method.

MATLAB function pmn_polynomial_value.m (https:

//people.sc.fsu.edu/~jburkardt/m_src/legendre_polynomial/

pmn_polynomial_value.m) is used to compute normalized

associated Legendre polynomials. MATLAB function lgwt.m

(http://www.mathworks.com/matlabcentral/fileexchange/

4540-legendre-gauss-quadrature-weights-and-nodes/

content/lgwt.m) is used to compute the Gaussian quadrature

points. And considering the cumbersome programming

with the normalized ALP method, in computing the Hough

functions for horizontal wind components, we use the central

difference method with MATLAB function central_diff.m

(http://www.mathworks.com/matlabcentral/fileexchange/

12-central-diff-m/content/central_diff.m).

% NALP_HOUGH- Compute Hough functions
% using normalized associated Legendre
% polynomials ( ALP)
clear; format long e
a = 6.370d6; g = 9.81d0;
omega = 2.d0 * pi/(24.d0 * 3600.d0);
%s = 1.d0 ; sigma = 0.4986348375d0 ; % DW1

s = 1.d0; sigma = 0.5d0; % DW1
%s = 2.d0 ; sigma = 1.0d0 ; % SW2
%s = 3.d0 ; sigma = 1.5d0 ; % TW3
N = 62; N2 = N/2; sf = s/sigma;
% define L( r ) and M( r )
L = zeros(N,1); M = zeros(N,1);
for r = s:N+s-1
i = r-s+1;
% define L( r )
L(i) = sqrt((r+s+1) * (r+s+2) * (r-s+1) * (r-s+2)) ...

/((2 * r+3) * sqrt((2 * r+1) * (2 * r+5)) ...

* (sf-(r+1) * (r+2)));
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% define M( r )
if (s == 2) && (r == 2)

M(i) = -(sigma^2 * (sf-r * (r+1))) ...
/((r * (r+1))^2) ...
+(r+2)^2 * (r+s+1) * (r-s+1) ...
/((r+1)^2 * (2 * r+3) * (2 * r+1) ...

* (sf-(r+1) * (r+2)));
else

M(i) = -(sigma^2 * (sf-r * (r+1))) ...
/((r * (r+1))^2) ...
+(r+2)^2 * (r+s+1) * (r-s+1) ...
/((r+1)^2 * (2 * r+3) * (2 * r+1) ...

* (sf-(r+1) * (r+2))) ...
+(r-1)^2 * (r^2-s^2) ...
/(r^2 * (4 * r^2-1) * (sf-r * (r-1)));

end % if
if (M(i) == inf), M(i) = realmax; end
end % for
% build F1 & F2 matix
f1 = zeros(N2,N2); f2 = zeros(N2,N2);
for i = 1:N2
f1(i,i) = M(2 * i-1);
f2(i,i) = M(2 * i);
if (i+1 <= N2)

f1(i,i+1) = L(2 * i-1);
f1(i+1,i) = L(2 * i-1);
f2(i,i+1) = L(2 * i);
f2(i+1,i) = L(2 * i);

end % if
end % for
% symmetric modes
[v1,d1] = eig(f1); lamb1 = diag(d1);
[ ~,ii] = sort(-lamb1);
lamb1 = lamb1(ii); v1 = v1(:,ii);
ht1 = 4.d0 * a^2 * omega^2/g. * lamb1/1000.d0;
% anti - symmetric modes
[v2,d2] = eig(f2); lamb2 = diag(d2);
[ ~,ii] = sort(-lamb2);
lamb2 = lamb2(ii); v2 = v2(:,ii);
ht2 = 4.d0 * a^2 * omega^2/g. * lamb2/1000.d0;
% Legendre - Gauss quadrature points
nlat = 94; [x,w] = lgwt(nlat,-1,1);
% normalized associated Legendre functions
prs = pmn_polynomial_value(nlat,N+s,s,x);
% compute Hough modes
h1 = zeros(nlat,N2); h2 = zeros(nlat,N2);
for i = 1:N2
for j = 1:N2
i1 = 2 * j+s-1; i2 = 2 * j+s;
for ii = 1:nlat
% symmetric modes
h1(ii,i) = h1(ii,i) + v1(j,i) * prs(ii,i1);
% anti - symmetric modes
h2(ii,i) = h2(ii,i) + v2(j,i) * prs(ii,i2);
end
end
end

% put them together
lamb = zeros(N,1); hough = zeros(nlat,N);
for i = 1:N2
for j = 1:nlat
i1 = 2 * i-1; i2 = 2 * i;
lamb(i1) = lamb1(i);
lamb(i2) = lamb2(i);
hough(j,i1) = h1(j,i);
hough(j,i2) = h2(j,i);
end
end
[ ~,ii] = sort(1./lamb);
lamb = lamb(ii); hough = hough(:,ii);
% equivalent depth ( km)
h = 4.d0 * a^2 * omega^2/g. * lamb/1000.d0;
% compute Hough functions for wind components
b1 = (sigma^2-x.^2). * sqrt(1.d0-x.^2);
b2 = sqrt(1.d0-x.^2)./(sigma^2-x.^2);
dhdx = central_diff(hough,x);
hough_u = diag(s./b1) * hough ...

- diag(b2. * x./sigma) * dhdx;
hough_v = diag((s/sigma). * x./b1) * hough ...

- diag(b2) * dhdx;
clf % plot Hough functions
for j = 1:60
u = hough(:,j); subplot(10,6,j)
plot(x, u, ' LineWidth ' ,2), grid on
end

B2 The Chebyshev collocation method

The second MATLAB code uses the Chebyshev collocation

method. It includes a parity factor for modes with odd zonal

wave numbers (s) (Orszag, 1974; Boyd, 1978).

% CHEB_HOUGH- Compute Hough functions
% using Chebyshev collocation methods
clear; format long e
a = 6.370d6; g = 9.81d0;
omega = 2.d0 * pi/(24.d0 * 3600.d0);
%s = 1.d0 ; sigma = 0.4986348375d0 ; % DW1

s = 1.d0; sigma = 0.5d0; % DW1
%s = 2.d0 ; sigma = 1.0d0 ; % SW2
%s = 3.d0 ; sigma = 1.5d0 ; % TW3
parity_factor = mod(s,2);
N = 62; [D1,D2,x] = cheb_boyd(N,parity_factor);
a2 = (1-x.^2)./(sigma^2-x.^2);
a1 = 2. * x. * (1-sigma^2)./(sigma^2-x.^2).^2;
a0 = -1./(sigma^2-x.^2). * ((s/sigma) ...

. * (sigma^2+x.^2)./(sigma^2-x.^2) ...
+s^2./(1-x.^2));

A = diag(a2) * D2 + diag(a1) * D1 + diag(a0);
[v,d] = eig(A); lamb = real(diag(d));
% sort eigenvalues and - vectors
[foo,ii] = sort(-lamb);
lamb = lamb(ii); hough = real(v(:,ii));
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% equivalent depth ( km)
h = -4.d0 * a^2 * omega^2/g./lamb/1000.d0;
% compute Hough functions for wind components
b1 = (sigma^2-x.^2). * sqrt(1.d0-x.^2);
b2 = sqrt(1.d0-x.^2)./(sigma^2-x.^2);
hough_u = diag(s./b1) * hough ...

- diag(b2. * x./sigma) * D1* hough;
hough_v = diag((s/sigma). * x./b1) * hough ...

- diag(b2) * D1* hough;
clf % plot Hough functions
for j = 1:60
u = hough(:,j); subplot(10,6,j)
plot(x, u, ' LineWidth ' ,2), grid on
end

www.geosci-model-dev.net/9/1/2016/ Geosci. Model Dev., 9, 1–13, 2016

And here is the list of the MATLAB codes for computing

Chebyshev differential matrices numerically with an option

for including the parity factor.

function [D1, D2, x] = cheb_boyd(N, pf)
% CHEB_BOYD- Compute differential matrix
% for Chebyshev collocation method ;
% It contains an optional parity factor ( pf )
t = (pi/(2 * N) * (1:2:(2 * N-1)))';
x = cos(t); n = 0:(N-1);
ss = sin(t); cc = cos(t);
sx = repmat(ss,1,N); cx = repmat(cc,1,N);
nx = repmat(n,N,1); tx = repmat(t,1,N);
tn = cos(nx. * tx);
if pf==0

phi2 = tn;
PT = -nx. * sin(nx. * tx);
phiD2 = -PT./sx;
PTT = -nx.^2. * tn;
phiDD2 = (sx. * PTT-cx. * PT)./sx.^3;

else
phi2 = tn. * sx;
PT = -nx. * sin(nx. * tx). * sx + tn. * cx;
phiD2 = -PT./sx;
PTT = -nx.^2. * tn. * sx ...

- 2 * nx. * sin(nx. * tx). * cx - tn. * sx;
phiDD2 = (sx. * PTT-cx. * PT)./sx.^3;

end
D1 = phiD2 /phi2; % the first derivatives
D2 = phiDD2/phi2; % the second derivatives

Appendix C: The parity factor for basis functions on

the sphere

Orszag (1974), Boyd (1978), Sects. 18.8 and 18.9 of Chap-

ter 18 in Boyd (2001), and Boyd and Yu (2011), all provide

a detailed analysis of the parity factor, sin(ϕ)mod(s,2), mul-

tiplying each latitudinal basis function. Therefore, we shall

content ourselves with a heuristic argument here. Note that

the analysis here is restricted to scalars; components of vec-

tors are discussed in Boyd (2001).

If f (λ,ϕ) is a smooth (infinitely differentiable) scalar

function, then it should be continuous when followed along

a meridian over the pole. However, λ jumps discontinuously

as the pole is crossed. Continuity requires that

lim
ϕ→0

f (λ,ϕ)= f (λ+π,ϕ) (C1)

for all λ. Let us expand in a longitudinal Fourier series

f (λ,ϕ)=

∞∑
s=0

as(ϕ) cos(sλ)+ bs(ϕ) sin(sλ). (C2)

Because the Fourier basis functions are linearly independent,

each term must individually satisfy the continuity condition.

All even wave numbers have the property of invariance with

respect to translation by π and therefore are unchanged when

followed along a meridian over a pole:

cos(2s[λ+π ])= cos(2sλ+ 2sπ)= cos(2sλ), (C3)

s = 0,1,2, . . .

However, all odd wave numbers are sign-reversed:

cos([2s− 1][λ+π ])= cos([2s− 1]λ+ [2s− 1]π) (C4)

=−cos([2s− 1]λ), s = 1,2, . . .

as illustrated in Fig. C1. The continuity condition cannot be

satisfied unless the limit as ϕ→ 0 of all Fourier coefficients

for all odd longitudinal wave numbers is the only value that

is equal to its own negative, zero, that is,

lim
ϕ→0

a2s−1(ϕ)= 0 (C5)

(and similarly for the sine coefficients), as shown schemati-

cally in Fig. C2. The parity factor sin(ϕ) enforces this zero

for all odd wave numbers. It is unnecessary for even longitu-

dinal wave numbers because trigonometric functions of even

zonal wave number are continuous across the poles automat-

ically.

Geosci. Model Dev., 9, 1477–1488, 2016 www.geosci-model-dev.net/9/1477/2016/



H. Wang et al.: Computation of Hough functions 1487

Figure C1. Schematic isolines for Fourier terms as(ϕ)cos(sλ) for various zonal wave numbers s, shown in a polar projection. Positive-

valued isolines are solid black, while negative-valued isolines are red dashed. The thick yellow line segments depict a part of a meridian. For

odd wave numbers (upper panels), the yellow lines connect solid black contours to red dashed isolines – the function changes sign along the

meridian.

Figure C2. Schematic of the behavior of as(ϕ)cos(sλ) along a meridian. If as(0) 6= 0, the Fourier term will have a jump discontinuity across

the pole (thick black curve) when longitude jumps by π .

www.geosci-model-dev.net/9/1477/2016/ Geosci. Model Dev., 9, 1477–1488, 2016



1488 H. Wang et al.: Computation of Hough functions

References

Andrews, D., Holton, J., and Leovy, C.: Middle Atmosphere Dy-

namics, Academic Press, Inc., New York, 1987.

Bailey, P., Everitt, W., and Zettl, A.: Computing eigenvalues of

singular Sturm-Liouville problems, Results Math., 20, 391–423,

doi:10.1007/BF03323182, 1991.

Boyd, J. P.: Planetary waves and the semiannual wind oscillation in

the tropical upper stratosphere, PhD thesis, Harvard University,

1976.

Boyd, J. P.: The choice of spectral functions on a sphere for

boundary and eigenvalue problems: A comparison of Chebyshev,

Fourier and Associated Legendre expansions, Mon. Weather

Rev., 106, 1184–1191, 1978.

Boyd, J. P.: Chebyshev and Fourier Spectral Methods, Dover Publi-

cations, Inc., 2nd Edn., 2001.

Boyd, J. P. and Yu, F.: Comparing seven spectral methods

for interpolation and for solving the Poisson equation in a

disk: Zernike polynomials, Logan-Shepp ridge polynomials,

Chebyshev-Fourier Series, cylindrical Robert functions, Bessel-

Fourier expansions, square-to-disk confor, J. Comput. Phys.,

230, 1408–1438, doi:10.1016/j.jcp.2010.11.011, 2011.

Burkardt, J.: JACOBI_EIGENVALUE: Eigenvalues and Eigenvec-

tors of a Symmetric Matrix, available at: http://people.sc.fsu.edu/

~jburkardt/f_src/jacobi_eigenvalue/jacobi_eigenvalue.html (last

access: 20 November 2015), 2013.

Chen, Z.-Y. and Lu, D.-R.: On the Calculation of Hough Functions

for Resolving Atmospheric Thermal Tidal Structure, Chinese J.

Geophys., 52, 547–554, 2009.
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