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Abstract. This article discusses the problem of identifying

extreme climate events such as intense storms within large

climate data sets. The basic storm detection algorithm is

reviewed, which splits the problem into two parts: a spa-

tial search followed by a temporal correlation problem. Two

specific implementations of the spatial search algorithm are

compared: the commonly used grid point search algorithm

is reviewed, and a new algorithm called Stride Search is in-

troduced. The Stride Search algorithm is defined indepen-

dently of the spatial discretization associated with a partic-

ular data set. Results from the two algorithms are compared

for the application of tropical cyclone detection, and shown

to produce similar results for the same set of storm identifi-

cation criteria. Differences between the two algorithms arise

for some storms due to their different definition of search re-

gions in physical space. The physical space associated with

each Stride Search region is constant, regardless of data res-

olution or latitude, and Stride Search is therefore capable of

searching all regions of the globe in the same manner. Stride

Search’s ability to search high latitudes is demonstrated for

the case of polar low detection. Wall clock time required for

Stride Search is shown to be smaller than a grid point search

of the same data, and the relative speed up associated with

Stride Search increases as resolution increases.

1 Introduction

The identification of extreme events in climate data sets is a

fundamental objective of many climate scientists. Data sets

may be a reanalysis product or a particular model’s output,

and an extreme event may be any event classified as an im-

portant deviation from a subjective normal state – loosely,

a “storm”. End users of climate data and model developers

alike frequently investigate prevalent storm tracks, intensity,

or formation areas within a given data set, e.g., Williamson

(1981), Hodges (1994), and Vitart et al. (1997). Annual

means and statistical averages regarding the frequency of a

particular type of storm in a particular region are another fre-

quent subject of study, e.g., Sinclair (1994), Blender et al.

(1997), Raible and Blender (2004), Bracegirdle and Gray

(2008), and Kleppek et al. (2008). Individual storms’ struc-

tures are often investigated to evaluate how well a model

captures realistic physical features, e.g., Nordeng and Ras-

mussen (1992), Walsh et al. (2007), Reed and Jablonowski

(2011), and Føre et al. (2012). Common to all such efforts is

the need to search data sets for quantifiable, objective storm

identification criteria.

Identification criteria are defined as a small set of variables

that together give a basic characterization of storms’ loca-

tion, intensity, and size (Williamson, 1981; Hodges, 1994).

Each variable is paired with a threshold value used to filter

the data into a small number of categories. The particular

variables and their appropriate threshold values vary greatly

by application, and many studies have proposed and com-

pared different sets of criteria; see Raible et al. (2008) and

Neu et al. (2013) for a discussion of extratropical cyclone

criteria. Walsh et al. (2007) and Horn et al. (2014) provide

similar analyses for tropical cyclones.

The basic storm detection algorithm consists of two stages

(Hodges, 1994). First, a spatial search loops over all time

steps in a data set and collects detection points where the spa-
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Algorithm 1 Spatial search algorithm

Input: search domain R, storm identification criteria (spatial), data

Output: List of potential storms, L, organized by increasing time step

1: set L = empty list

2: for all files in data set do

3: nT = number of time steps per file

4: Divide search domain into search sectors

5: for i= 1 to nT do

6: for all search sectors at time step i do

7: if sector meets or exceeds identification criteria then

8: set li = storm data at time step i

9: add li to L

10: end if

11: end for

12: end for

13: end for

issues. The temporal correlation algorithm’s task is to identify the same storm across adjacent time

steps. It does so by building storm tracks and is outlined by Algorithm 2. Users define a maximum

travel speed Umax appropriate to the type of storm under investigation. The algorithm uses that

speed to define Dmax = Umax ·∆t, the maximum possible distance a storm may travel per time step.95

Beginning with a storm entry in the spatial search output list L at time step i, the algorithm searches

all storms detected at time step i+ 1. Any storms at time step i+ 1 separated by a distance less than

Dmax from the storm at time step i are marked as candidate successors. If zero candidates are found,

the track is ended at time step i. If one candidate is found, that candidate is linked to its predecessor

at time step i and the algorithm continues to build the track by looking for candidates at time step100

i+2. If several candidates are found at time step i+1, the algorithm chooses the closest candidate to

the entry at time step i and disregards the others. Track building proceeds until either zero candidates

are found at the next time step or the data are exhausted.

The tracking algorithm (Algorithm 2) is sensitive to its two input parameters Umax and tmin.

Choosing a value of tmin too low may not eliminate enough false positives, but choosing a value of105

tmin too high may eliminate weak cyclones that did exist but did not intensify enough to last long.

The effects of choosing a too high or too low value for Umax are more subtle. A value of Umax that

is too low can cause storm tracks to fragment into several disjoint pieces. By contrast, choosing an

unrealistically high value for Umax could cause the tracking algorithm to merge two storms that are

in reality separate entities.110

Storm tracks provide a natural mechanism to count storms and to dismiss false positives. Tracks

that consist of only one point, indicating a storm whose duration was only 1 time step may be dis-

4

tially defined identification criteria are met or exceeded. Sec-

ond, a temporal correlation procedure correlates detection

points across adjacent time steps to construct storm tracks

and apply temporally defined identification criteria.

In comparison to the number of studies concerned with

identification criteria, literature regarding the analysis of spa-

tial search algorithms is relatively sparse in the climate com-

munity. Such a discussion is of heightened importance due

the growth of climate data sets in both size and number. As

models and reanalysis products increase spatial and temporal

resolution, and as ensembles are more commonly used fore-

casting tools, the need to efficiently and accurately search cli-

mate data sets is also increasing. Of equal concern to an algo-

rithm’s performance is its ability to produce repeatable, ob-

jective analysis of data (Hodges, 1994), regardless of the data

layout and resolution. Contemporary models can incorporate

advanced features such as variable resolution using unstruc-

tured grids (e.g., Zarzycki and Jablonowski, 2014) and fre-

quently employ different representations of the sphere than

a traditional latitude–longitude grid (e.g., Putnam and Lin,

2007; Neale et al., 2012; Skamarock et al., 2012). An ideal

search algorithm would be agnostic to such details.

In such an ideal world, the choice of search algorithm

would not affect the statistics associated with a particular

data set. In practice, however, we find that just as a change

to the identification criteria of a particular storm type can

change the statistics found in a particular data set (Raible

et al., 2008; Horn et al., 2014), the way that data set is divided

and searched – independently of the identification criteria –

can also affect the statistics.

One contributing factor is that some of the variables used

to identify storms, such as vorticity, have a dependence on

the scale of the data (Sinclair, 1997; Walsh et al., 2007). This

dependence may also vary with location depending on the

layout of the data set. On a uniform latitude–longitude grid,

for example, the spatial scale of adjacent grid points varies

with latitude. A search algorithm that does not account for

this variation may inadvertently allow nonphysical artifacts

related to data resolution and grid type to influence its out-

put. Researchers may interpolate a data set to a different type

of grid (Sinclair, 1994; Bracegirdle and Gray, 2008), em-

ploy a spatial smoothing procedure (Sinclair, 1997), or ad-

just threshold values as data resolution changes (Walsh et al.,

2007) to alleviate some of these problems. We propose an al-

ternative approach that separates the definition of an extreme

event from its discrete representation in a data set.

The goal of this work is to provide an algorithm that allows

identification criteria to be defined independently of the spa-

tial resolution and layout of the data. The Stride Search algo-

rithm facilitates searching data given on general unstructured

grids as well as uniform latitude–longitude grids without al-

teration, and provides improved performance over the com-

monly used grid point search algorithm. Additionally, Stride

Search treats all regions of the globe in the same manner,

which allows users to search all latitudes, including the poles,

efficiently. By decoupling the choice of identification criteria

from the resolution and layout of the data, we aim to provide

a robust objective search algorithm.

2 Storm detection algorithms

Basic descriptions of the two-stage storm detection algorithm

are given as Algorithm 1, the spatial search, and Algorithm 2,

the temporal correlation procedure. The majority of this work

focuses on the spatial search strategy used to define Algo-

rithm 1, which requires the most computational effort (Prab-

hat et al., 2012). Its input is a search domain and a set of per

time step storm identification criteria, as well as the data. A

key step in the algorithm is the division of the search domain
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Algorithm 2 Temporal correlation algorithm

Input: List L of potential storms from spatial search output, max storm travel speed Umax, minimum duration

tmin, other storm identification criteria (temporal)

Output: List T of storm tracks

1: set T = empty list

2: NT = total number of time steps in data set

3: for i= 1 to NT do

4: for all elements li ∈ L at time step i do

5: start new track t at li

6: continue = True

7: j = i

8: while continue do

9: examine all lj+1 ∈ L at time step j+ 1 for possible successors to storm lj

10: if successor found then

11: add lj+1 to track t

12: j = j+ 1

13: else

14: continue = False

15: end if

16: end while

17: if track t meets or exceeds identification criteria then

18: add t to T

19: end if

20: end for

21: end for

missed as noise. Tracks that persist for many time steps but do not move may possibly be regarded as

topographic effects, particularly if the identification criteria use data that are sensitive to topography,

such as geopotential height surfaces.115

Storm tracks also provide a straightforward method of applying additional identification criteria.

A study concerned with identifying regions of cyclogenesis may reject any storms that do not in-

tensify along their track. Temporal criteria may also be used to perform more detailed classification

of candidate storms. For example, a vorticity criterion or a vertical wind speed criterion may detect

strong convection due to thunderstorms. To make a distinction between typical summertime after-120

noon thunderstorms and more persistent mesoscale convective complexes, a temporal criterion may

be used to neglect storms that do not persist for longer than 12 hours.

5

into a set of search sectors (line 4); we will discuss this pro-

cess in more detail in the following sections. For each file

and each time step, the algorithm compares the data within

each sector to the storm identification criteria. If the criteria

are met, a storm is recorded to the list L at the current time

step.

Identification criteria, particularly those used with a spa-

tial search, are highly application dependent. Ideally storm

detection software should be flexible enough to allow users

to easily define identification criteria relevant to their area of

study and should not be limited to any specific geographic

region. In other words, users should be able to easily modify

the implementation of Algorithm 1, line 7, in code.

The output of the spatial search (Algorithm 1) is a list of

candidate storms. This list may contain false positives due

to noisy data, topographic effects, or ambiguity within the

identification criteria. The second step of storm detection and

tracking, the temporal correlation problem, handles these is-

sues. The temporal correlation algorithm’s task is to iden-

tify the same storm across adjacent time steps. It does so by

building storm tracks and is outlined by Algorithm 2. Users

define a maximum travel speed Umax appropriate to the type

of storm under investigation. The algorithm uses that speed

to define Dmax = Umax ·1t , the maximum possible distance

a storm may travel per time step. Beginning with a storm

entry in the spatial search output list L at time step i, the al-

gorithm searches all storms detected at time step i+ 1. Any

storms at time step i+ 1 separated by a distance less than

Dmax from the storm at time step i are marked as candidate

successors. If zero candidates are found, the track is ended at

time step i. If one candidate is found, that candidate is linked

to its predecessor at time step i and the algorithm continues

to build the track by looking for candidates at time step i+2.

If several candidates are found at time step i+ 1, the algo-

rithm chooses the closest candidate to the entry at time step

i and disregards the others. Track building proceeds until ei-

ther zero candidates are found at the next time step or the

data are exhausted.

The tracking algorithm (Algorithm 2) is sensitive to its two

input parameters Umax and tmin. Choosing a value of tmin too

low may not eliminate enough false positives, but choosing a

value of tmin too high may eliminate weak cyclones that did

exist but did not intensify enough to last long. The effects of

choosing a too high or too low value for Umax are more sub-

tle. A value of Umax that is too low can cause storm tracks to

fragment into several disjoint pieces. By contrast, choosing

an unrealistically high value for Umax could cause the track-

ing algorithm to merge two storms that are in reality separate

entities.
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Storm tracks provide a natural mechanism to count storms

and to dismiss false positives. Tracks that consist of only one

point, indicating a storm whose duration was only 1 time step

may be dismissed as noise. Tracks that persist for many time

steps but do not move may possibly be regarded as topo-

graphic effects, particularly if the identification criteria use

data that are sensitive to topography, such as geopotential

height surfaces.

Storm tracks also provide a straightforward method of ap-

plying additional identification criteria. A study concerned

with identifying regions of cyclogenesis may reject any

storms that do not intensify along their track. Temporal crite-

ria may also be used to perform more detailed classification

of candidate storms. For example, a vorticity criterion or a

vertical wind speed criterion may detect strong convection

due to thunderstorms. To make a distinction between typi-

cal summertime afternoon thunderstorms and more persis-

tent mesoscale convective complexes, a temporal criterion

may be used to neglect storms that do not persist for longer

than 12 h.

2.1 Grid point search

Most storm detection studies of climate data use software

that implements Algorithm 1 as a grid point search. The Geo-

physical Fluid Dynamics Laboratory’s TSTORMS (1997)

software, for example, has become the prevalent tool for trop-

ical cyclone detection in high-resolution climate data (Vi-

tart et al., 1997; Vitart and Stockdale, 2001; Knutson et al.,

2008; Zhao et al., 2009; Prabhat et al., 2012; Zarzycki and

Jablonowski, 2014). Grid point searches have also been em-

ployed by other studies of midlatitude extratropical cyclones

(Blender et al., 1997; Geng and Sugi, 2001; Wernli and

Schwierz, 2006; Kleppek et al., 2008; Raible et al., 2008).

Grid point searches are designed for the common case

where data are given on a uniform latitude–longitude grid

with resolution 1λ (in radians) so that grid points (λj ,θi)

are located at

λj = j1λ, j = 0, . . .,nlon− 1, (1a)

θi =−
π

2
+ i1λ, i = 0, . . .,nlat− 1, (1b)

where λ is longitude, θ is latitude, nlon = 2π/1λ is the num-

ber of longitudinal grid points, and nlat = nlon/2+ 1 is the

number of latitude grid points.

In a grid point search algorithm, each grid point (λj ,θi)

in the search domain is a search sector center. Sector Kij
centered at grid point (λj ,θi) is defined as

Kij = {(λj±k,θi±l)} k, l = 0, . . .,n− 1, (2)

where n is a user-specified parameter that corresponds to the

scale of a storm in latitude–longitude space. Thus, each sec-

tor is a (2n+ 1)× (2n+ 1) square in grid point space.

To set up a grid point search, users define the search do-

main by defining a minimum and maximum latitude, θmin

and θmax, and a maximum and minimum longitude, λmin and

λmax. In this work we assume λmin = 0 and λmax = 2π , while

θmin and θmax can vary by application. Users must also se-

lect a value for n that relates the spatial scale of the storms

they wish to detect to the resolution of the data 1λ. Fig-

ure 1a shows grid point search sectors along the equator

with n= 2 for data with resolution 1λ= 10◦. The sectors

are 5× 5 boxes in grid point space and span approximately

5600 km× 5600 km on the Earth.

For each sector, the software collects data from the (2n+

1)×(2n+1) points centered at (λj ,θi). The collected data are

compared against the storm identification criteria. If the cri-

teria are met or exceeded in the sector, the algorithm checks

if (λj ,θi) is the location of the storm within that sector. If so,

the algorithm records the storm to its output list. If not, the

algorithm cycles to the next grid point, say (λj+1,θi), and

begins again. In Fig. 1a the blue, horizontally striped sector

is centered at (λj ,θi)= (150◦ E, 0◦ N) and the next two con-

secutive sectors are shown by the red, vertically striped sector

centered at (λj+1,θi)= (160◦ E, 0◦ N) and black, diagonally

striped sector whose center is (λj+2,θi)= (170◦ E, 0◦ N).

Centering a sector at each grid point in the search domain

yields a robust algorithm. It ensures that the entire search do-

main will be covered and that the same storm will not be

recorded twice. Even though a single storm may trigger the

identification criteria in several sectors, only the sector whose

center corresponds to the storm location will be recorded to

output. While the robustness of the grid point search algo-

rithm is an advantage, it comes at the cost of redundant work.

The same data points are accessed multiple times because

the algorithm only advances one grid point at a time and the

overlap of adjacent sectors is considerable.

The data access required by a grid point search and the

overlap of adjacent sectors is also illustrated by Fig. 1a.

All three sectors read the data from grid points in the re-

gion {(λ,θ): 150◦ E≤ λ≤ 170◦ E, 20◦ S≤ θ ≤ 20◦ N}. For

visual clarity we have not plotted the sectors at (λj−1,θi) or

(λj ,θi±1), which would also overlap a majority of the same

grid points.

2.2 Stride Search

Instead of squares in grid point space, Stride Search sectors

are circles on the surface of an Earth-sized sphere. The sec-

tors are defined using the geodesic distance function

distG
(
(λ1,θ1), (λ2,θ2)

)
=

a arccos
(

cosθ1 cosθ2 cos(λ2− λ1)+ sinθ1 sinθ2

)
, (3)

where a is the radius of the Earth. Users select an application-

dependent spatial scale s in units of distance such that a max-

imum of one storm can be located within any spherical circle

of radius s. The search domain is divided into a collection of

circles on the sphere, each with the same geodesic radius s.

Stride Search sectors, illustrated in Fig. 1b for s = 2220 km,

are defined by the following procedure.
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Figure 1. Adjacent search sectors along the equator. Black dots represent data points with resolution 1λ= 10◦. Blue sector (horizontal

striping) center is λ= 150◦ E, θ = 0◦ N. Red (vertical striping) and black (diagonal striping) sectors are the next two consecutive searches;

(a) grid point search, n= 2; (b) Stride Search, s = 2220 km.

The number Slat = s/a defines the arc length correspond-

ing to the user-specified scale s. We refer to Slat as the latitude

stride and use it to define lines of constant latitude

θI = θmin+ SlatI, I = 0, . . .,Nθ , (4)

where Nθ = b(θmax− θmin)/Slatc+ 1. The set θI divides the

search domain into latitudinal strips of width ≈ s. We also

define a longitude stride for each θI ,

S
(I )
lon =min

(
s

a cosθI
,2π

)
, I = 0, . . .,Nθ , (5)

so that S
(I )
lon are the arc lengths along each latitude circle θI

that approximately span a geodesic distance s in the longi-

tudinal (zonal) direction. The minimum function in Eq. (5)

accounts for the case where θI is either pole. The longi-

tude stride defines points λIJ along each latitude line θI ,

where J = (j − 1)S
(I )
lon for j = 1, . . .,N

(I )
λ , creating N

(I )
λ =

b2π/S
(I )
lonc longitude points along each θI .

Each point (λIJ ,θI ) defines the center of search sector

KIJ , where KIJ is the set of all points on the sphere lying

within a distance s of (λIJ ,θI ),

KIJ =
{
(λ,θ) : distG

(
(λ,θ), (λIJ ,θI )

)
≤ s

}
. (6)

We note that the definition of the Stride Search sectors is

determined entirely by the application-related spatial scale s

and is therefore independent of resolution of the data, 1λ.

By construction, sector KIJ overlaps its neighbors KI±1,J

and KI,J±1 by approximately one radius s in physical space.

This is a sufficient condition to ensure that the entire search

domain will be covered by the circular search sectors.

Figure 1b shows three consecutive circular sectors with

s = 2220 km. This value of s corresponds to an arc length

of ≈ 20◦, and was chosen to match the scale of the sec-

tors in Fig. 1a. The blue, horizontally striped circle is cen-

tered at (λIJ ,θI )= (150◦ E, 0◦ N). The red, vertically striped

sector is centered at (λI,J+1,θI )= (170◦ E, 0◦ N) and the

center of the black, diagonally striped sector is located at

(λI,J+2,θI )= (170◦W, 0◦ N). Since each Stride Search sec-

tor is separated from its immediate neighbors by either a lati-

tude stride or a longitude stride, the overlap between adjacent

sectors is much reduced compared to a grid point search. The

www.geosci-model-dev.net/9/1383/2016/ Geosci. Model Dev., 9, 1383–1398, 2016
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982 hPa

988 hPa 984 hPa

s

Figure 2. Duplicate detections of the same storm using the

Stride Search algorithm. Each sector (blue/left, red/middle, and

black/right) locates its minimum sea-level pressure (corresponding

squares). Duplicate entries are removed prior to the output stage;

only the red 982 hPa entry will remain.

Stride Search algorithm therefore covers a much larger geo-

graphic area with the same number of search sectors.

Stride Search setup is completed by defining the sectors

KIJ in terms the available data. Computationally, this in-

volves creating a class and/or methods that identify and link

each sector to the data points enclosed by its geographic

boundary. Sectors used with high-resolution data sets auto-

matically link to more grid points than the same-sized sec-

tors used with lower-resolution data. For uniform longitude–

latitude grids, Eq. (1) applies and the process is straightfor-

ward. For unstructured grids, the mesh’s connectivity infor-

mation may include a node adjacency list or topological data

structures such as edges and faces. Any of these may be used

to determine a sector’s enclosed data points. In the absence

of such connectivity information, a kd-tree algorithm (e.g.,

Samet, 2006) may be used.

Reduced overlap between adjacent sectors leads to im-

proved performance by decreasing the number of redun-

dant data accesses and by reducing the total number of sec-

tors. However, it also creates a new issue. Since each sec-

tor is searched independently, several sectors may detect and

record the same storm to the linked list, as illustrated by

Fig. 2. Before the storms detected by Stride Search can be

saved to output, duplicate entries must be removed.

Duplicates are removed by again referencing the user-

specified scale s. Each pair of entries in the linked list is

compared; if a pair is separated by a distance less than s, the

entries are considered duplicates and the less intense entry is

deleted. In Fig. 2, this is demonstrated with pressure data.

Each of the three search sectors have exceeded the storm

identification criteria and independently locate their mini-

mum pressure. The blue (left) sector finds a minimum of

988 hPa, the red (middle) finds 982 hPa, and the black (right)

finds 984 hPa. These three entries are clearly separated by a

distance less than s, as they are all contained within the red

(middle) circle. The duplicate removal procedure will delete

the blue (left) and black (right) entries because, compared to

the red (middle) entry, they have higher pressures and are less

intense. Only the red 982 hPa entry will be saved to output.

In general, the list of detected storms at a particular time step,

duplicates included, is much smaller than the spatial size of

the data and the time required by the duplicate removal pro-

cedure is negligible.

3 Data description

To demonstrate and test Stride Search we use data produced

by the spectral element dynamical core of the Community

Atmosphere Model, CAM-SE (Neale et al., 2012; Dennis

et al., 2012). The model uses a cubed sphere grid and high-

resolution experiments set 240 elements per face of the cube

for a total of 3 110 402 horizontal grid points. This results

in a horizontal resolution of 1λ≈ 0.125◦ (Worley et al.,

2011; Dennis et al., 2012). Due to well-known issues regard-

ing the tuning of physical parameterizations within climate

models, this high-resolution simulation may produce high-

intensity storms with unrealistically high frequencies (Reed

and Jablonowski, 2011; Dennis et al., 2012).

The original goals of the high-resolution experiments of

Worley et al. (2011) and Dennis et al. (2012) were to

demonstrate the parallel scaling of CAM-SE, to document

its required run time and related statistics in various high-

performance computing environments, and to demonstrate

the model’s capability to produce well-resolved features like

tropical cyclones that cannot be represented well in low-

resolution experiments. Here, we choose these data because

their high resolution ensures that small-scale storms will ex-

ist, which provides a good testing environment for storm de-

tection algorithms. The fact that there may be an unrealisti-

cally high number of storms in the data is a benefit in this

case.

The data set contains 5 years of simulated data that used

CAM5 physics and preindustrial (year 1850) initial condi-

tions. Instead of additional model components, the CAM-

SE atmospheric dynamical core is coupled to a set of land,

ocean, and sea ice data that also correspond to the year 1850

to provide its boundary conditions (Dennis et al., 2012). The

land, ocean, and sea ice boundary conditions are periodic,

with a period of 1 year, and simply repeat throughout the 5-

year atmospheric simulation.

The model’s native cubed sphere data were interpolated

to a uniform latitude–longitude grid with nlon = 1024 for

a resolution of 1λ= 0.35◦ using the regridding software

provided by the Earth System Modeling Framework (Bal-

aji et al., 2014). To facilitate a timing experiment (presented

in the next section), we also interpolate 3 months of data to

resolutions of 1λ= 2, 1, 0.5, and 0.25◦.

4 Tropical cyclones

In this section, we apply both Stride Search and TSTORMS

to the problem of tropical cyclone detection. Our aim is

to validate Stride Search by comparison with TSTORMS,

Geosci. Model Dev., 9, 1383–1398, 2016 www.geosci-model-dev.net/9/1383/2016/
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which has a proven record. We also discuss the subtle dif-

ferences between the two algorithms that lead to differences

in their final results that may be of importance to climate re-

searchers.

While there are many different combinations of variables

available to define a tropical cyclone (Walsh et al., 2007;

Horn et al., 2014), to provide both codes with a common set

of identification criteria we choose the TSTORMS default. A

tropical cyclone is identified within search sector Kij if the

following four criteria are met (Vitart et al., 1997):

1. There is a cyclonic vorticity maximum greater than a

threshold value, τζ :

max
i,j∈Kij

[
sgn(θi) · ζ850(λj ,θi)

]
> τζ , (7)

where ζ850 is the relative vorticity at the 850 hPa level.

2. The distance between the cyclonic vorticity maximum

and the sector’s sea-level pressure minimum is less than

a threshold value τD1
:

dist
(
(λζ ,θζ ), (λP ,θP )

)
< τD1

, (8)

where (λζ ,θζ ) and (λP ,θP ) are the locations of sector

Kij ’s vorticity maximum and sea-level pressure mini-

mum, respectively.

3. The difference between the vertically averaged temper-

ature’s maximum value and its sector average exceeds a

threshold τT :

max
i,j∈Kij

T (λj ,θi)−AvgKij (T ) > τT , (9)

where T is defined as

T (λ,θ)=
1

2

(
T500(λ,θ)+ T200(λ,θ)

)
, (10)

and T500 and T200 are the temperatures at the 500

and 200 hPa pressure levels, respectively. To maintain

consistency between both codes, the sector average

AvgKij (T ) is approximated as a simple arithmetic av-

erage,

AvgKij (T )=

1

NKij

∑
{T (λj ,θi) : (λj ,θi) ∈Kij }, (11)

where NKij is the number of data points in sector Kij .

4. The distance between the maximum vertically averaged

temperature and the sea-level pressure minimum is less

than a threshold value τD2
:

dist
(
(λT ,θT ), (λP ,θP )

)
< τD2

, (12)

where (λT ,θT ) is the location of the sector maximum of

T .

Table 1. Threshold values used for tropical cyclone detection.

τζ τD1
τT τD2

TSTORMS 8.5× 10−4 s−1 4◦ 2 K 2◦

Stride Search 8.5× 10−4 s−1 450 km 2 K 225 km

Differences between the two algorithms’ detections arise

due to the differences in the algorithms themselves. For com-

puting the collocation criteria, Eqs. (8) and (12), TSTORMS

uses the angular distance function

distA
(
(λ1,θ1), (λ2,θ2)

)
=

√
(λ2− λ1)2+ (θ2− θ1)2. (13)

For TSTORMS, whose intended application is in tropical re-

gions, this is a simple and effective strategy because angu-

lar distance is a reasonable proxy for geodesic distance near

the equator. Stride Search uses the geodesic distance func-

tion Eq. (3). Users of TSTORMS must specify τD1
and τD2

in angular units, while users of Stride Search must use units

of length. The arithmetic averages of the vertically averaged

temperature Eq. (11) will be different from one algorithm to

the other, because their sectors will contain a different num-

ber of data points. As a result criteria 2, 3, and 4 may behave

differently for each algorithm.

4.1 Spatial search results

We apply both algorithms to the data described in Sect. 3.

We set TSTORMS n= 12, Stride Search s = 450 km, and

use the threshold values shown in Table 1 for Eqs. (7), (8),

(9), and (12).

Results from an arbitrarily chosen 3 months of data,

18 July to 18 October of simulation year 4, are plotted in

Fig. 3. Each dot represents a storm detected at one time step.

All 6-hourly time steps over the entire 3 months are shown,

colored by the windspeed-dependent hurricane categories de-

fined by the Saffir–Simpson intensity scale.

Both algorithms produce qualitatively similar results. Vi-

sually they appear to agree nearly perfectly on the identifi-

able storm tracks and intensities. They both have false pos-

itives over land and in the Southern Ocean. Stride Search

produces more false positives, particularly in the Southern

Ocean, than TSTORMS. This is due to the fact that Stride

Search sectors – especially at higher latitudes – typically con-

tain more data points than TSTORMS sectors. The larger

number of points per sector reduces the sector average of

the vertically averaged temperature, Eq. (11), compared to a

TSTORMS sector at the same location. Thus, the warm core

temperature excess criterion Eq. (9) is more easily achieved

using Stride Search than TSTORMS for the same value of

τT . For both codes, false positives are eliminated by the

temporal correlation algorithm discussed in the next sec-

tion. However, the consequences of this different behavior
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Figure 3. Spatial search results, Northern Hemisphere summer simulation year 4. Each dot is a storm detected at one time step; colors

correspond to the categories of the Saffir–Simpson hurricane scale.

of Eq. (9) between the codes will propagate into the storm

tracks and final output.

4.2 Temporal correlation results

In this section we apply the temporal correlation algorithm,

Algorithm 2, to the spatial search results. Since tropical cy-

clones are inherently maritime events (Cotton and Anthes,

1989), at this stage we also apply a land mask to remove any

tracks whose origins are not over water.

In Fig. 4 we show the storm tracks that correspond to

the spatial search output of Fig. 3 with parameters Umax =

15 ms−1 and tmin = 2 days. These results show that the tem-

poral correlation algorithm succeeds in eliminating false pos-

itives and gives a better representation of the storms within

the data set than the raw output from the spatial search algo-

rithm. Table 2 presents the final storm counts for each algo-

rithm for the 3-month data set separated by hurricane cate-

gory. Again, both algorithms produce nearly identical results

which validate the present work.

Table 2 shows that Stride Search detects two fewer cat-

egory 1 storms and one additional category 2 storm than

TSTORMS. Looking for differences between the panels of

Fig. 4, we see that the category 1 storms correspond to a

storm in the western Pacific off the east coast of Japan near

(150◦ E, 30◦W) and a storm in the north central Atlantic near

(050◦W, 20◦ N).

Comparing the panels, we see that Stride Search classi-

fied the western Pacific storm as category 2, which accounts

for two of the three differences between rows in Table 2.

Viewing the data, we note that the Stride Search track for

this particular storm is 4 time steps longer than the corre-

sponding TSTORMS track. During its final data points in

the Stride Search output, the storm’s temperature excess was

decreasing and very close to the detection threshold. Since

the TSTORMS sector average of T is higher than the Stride

Search sector average of T , the storm did not pass crite-

rion 3 (Eq. 9) at the end of its life cycle in TSTORMS. We

also find that this storm only achieved a category 2 wind

speed at the very end of its life cycle, after the point in

time where TSTORMS had stopped detecting it, which ex-

plains why Stride Search counts the storm as a category 2

and TSTORMS does not.

A similar explanation holds for the Atlantic storm. We

see that TSTORMS counts the same storm twice, once as

a category 1 and once as a category 2, while Stride Search

shows only one longer category 2 track. This is again due

to the difference in the computation of the temperature ex-

cess between the two codes. This particular storm weakened

in its early days to the point where its temperature excess

was not sufficient for TSTORMS to detect it before finally

intensifying into a category 2 storm. This creates a hole in

the TSTORMS track that does not show up in the Stride

Search results because the temperature excess criterion is not

as strict in Stride Search as it is in TSTORMS.

We point out that this is not a weakness of the TSTORMS

software – our choice of τT = 2 K was somewhat arbitrary

and choosing a lower threshold value τT for TSTORMS

would remedy this problem for this particular cyclone.

Rather, we stress that these differences arise simply due to

the differences in the definition of both algorithms’ search

sectors. To investigate these differences further we tested

Stride Search using a midpoint rule quadrature approxima-

tion of the sector average of the average vertical temperature,

Eq. (11), and found similar results. We therefore chose to use

the arithmetic average to keep the tropical cyclone identifica-

tion criteria the same between the two codes.

Unfortunately, differences in specific storm tracks between

each algorithm become more difficult to sort by cause as the
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Table 2. Storm count by hurricane category for Northern Hemisphere summer simulation year 4; this table corresponds to the storm tracks

shown in Fig. 4.

Cat 0 Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Total

Max. wind (ms−1) |u|< 33 33≤ |u|< 43 43≤ |u|< 50 50≤ |u|< 58 58≤ |u|< 70 |u| ≥ 70

TSTORMS 1 7 4 5 8 3 28

Stride Search 1 5 5 5 8 3 27

Figure 4. Storm tracks, Northern Hemisphere summer, simulation year 4. Each track is colored by the hurricane category corresponding to

the maximum wind speed achieved during its lifetime.

size of the data set grows. Figure 5 shows the storm tracks

produced by each algorithm for the entire data set, using

the same identification criteria and threshold values as our

previous discussion. Since the temperature excess criterion

is more easily achieved by Stride Search, we would expect

Stride Search to identify more storms than TSTORMS, par-

ticularly in the lower-intensity storm categories. We might

also expect TSTORMS to count too many storms because,

for these threshold values, some storms may be split into

multiple tracks. Both of these predictions may be born out in

the data, which are tabulated in Table 3. Stride Search does

indeed detect more category 0, 1, and 2 storms. TSTORMS

also finds a higher number of high-intensity (category ≥ 3)

storms than Stride Search, possibly due to track splitting.

Without investigating differences in individual tracks, which

is impractical for large data sets, one can only state that since

the identification criteria used by both codes were identical,

the different results can only be due to differences at the level

of the algorithms’ design.

4.3 Performance and timing

As discussed previously, climate data sets are large and ex-

pected to increase in size as climate models run at high reso-

lutions with 1λ < 0.5◦. Storm detection algorithms must be

both accurate and efficient. In this section we document the

dependence of each search algorithm’s run time on the reso-

lution of its input data set.

Differences in the structure of the two algorithms result in

notable differences in the number of search sectors and the

number of times each grid point is accessed in memory per

time step. In the top row of Table 4 we present the total num-

ber of search sectors required by each algorithm to search

the tropical domain, θmin = 40◦ S, θmax = 40◦ N for each data

resolution. For TSTORMS this is equivalent to the number

of grid points in the domain, hence the number of search sec-

tors increases by a factor of 4 as the data resolution is halved.

The number of Stride Search sectors remains constant across

all data resolutions. For data on a uniform latitude–longitude

grid, the number of points in a Stride Search sector grows

as a function of latitude. The maximum points per sector

listed for Stride Search are an upper bound that depends on

the search domain, specifically θmin and θmax and the spatial

scale s. For TSTORMS, the maximum points per sector are

a function of the user-specified parameter n and are equal to

(2n+ 1)× (2n+ 1).

In the last row of the table, the total number of per time

step data accesses required by each algorithm are given; these

numbers are the product of the number of sectors and the

number of points per sector. This number provides an indica-

tion of the cost of each algorithm. The smaller number of sec-
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Table 3. Storm counts by hurricane category for the entire 5-year data set; this table corresponds to the storm tracks shown in Fig. 5.

Cat 0 Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Total

Max. wind (ms−1) |u|< 33 33≤ |u|< 43 43≤ |u|< 50 50≤ |u|< 58 58≤ |u|< 70 |u| ≥ 70

TSTORMS 4 59 78 87 87 41 356

Stride Search 7 75 82 86 83 43 376

Figure 5. Storm tracks. The ultimate output of each algorithm for the entire 5-year data set. Coloring as in Fig. 4.

tors and reduced overlap between sectors in the Stride Search

algorithm result in many fewer data accesses (by orders of

magnitude) than the grid point search used by TSTORMS.

Both TSTORMS and the current implementation of Stride

Search are written in Fortran and run in serial on a sin-

gle thread. As a timing experiment, we run both codes on

3 months of data that were interpolated to resolutions of

1λ= 2, 1, 0.5, and 0.25◦, as described in Sect. 3. Each

data set contains 360 time steps evenly spread across three

NetCDF files. We choose s = 450 km for Stride Search and

set the TSTORMS parameter n= 2, 3, 6, 12 for the corre-

sponding 1λ. The total wall clock time required for each

algorithm to search each data set, including I/O, is recorded

and the average time per time step is computed by dividing

the total by 360. We repeat each experiment three times for

each resolution and average the results to produce Fig. 6.

Figure 6a shows the average wall clock time required

by each algorithm to search one time step of data as a

function of the data resolution 1λ. The plot shows results

from experiments run on a standard desktop workstation us-

ing GNU’s Fortran compiler. The same tests were run on

one node of Sandia’s Red Sky High Performance Comput-

ing cluster using the Intel Fortran compiler and produced

similar results. Both algorithms appear to scale at the ex-

pected rate of O(1λ−2) as 1λ→ 0, but for each resolution

Stride Search is faster. The speed advantage of Stride Search

over TSTORMS improves as resolution increases. Figure 6b

Figure 6. Timing results. (a) Average wall clock time required to

search one time step of data. (b) Speedup due to Stride Search.

shows the speedup due to Stride Search, defined as the ra-

tio of the TSTORMS average wall clock time per data time

step to the Stride Search average wall clock time per data

time step. Stride Search is approximately 15 % faster for

the 1λ= 2◦ data and this ratio increases as 1λ→ 0. Stride

Search is 2.5 times faster for the 1λ= 0.25◦ data.

Geosci. Model Dev., 9, 1383–1398, 2016 www.geosci-model-dev.net/9/1383/2016/



P. A. Bosler et al.: Stride Search 1393

Table 4. Numbers of sectors, maximum data points per sector, and total number of data accesses per time step to search tropical domain

θ ∈ [40◦ S, 40◦ N] vs. data resolution. TSTORMS used n= {2,3,6,12} for the corresponding 1λ, and Stride Search used s = 450 km.

TSTORMS Stride Search

1λ 2◦ 1◦ 0.5◦ 0.25◦ 2◦ 1◦ 0.5◦ 0.25◦

Number of sectors 7.29× 103 2.92× 104 1.17× 105 4.66× 105 1616 1616 1616 1616

Max. points per sector 25 49 169 625 49 143 437 1575

Max. data accesses 1.82× 105 1.43× 106 1.97× 107 2.92× 108 7.91× 104 2.31× 105 7.06× 105 2.55× 106

Figure 7. Search sectors along 60◦ N. Black dots represent data points with resolution1λ= 10◦. Blue sector center is λ= 150◦ E, θ = 60◦ N.

Red and black sectors are the next two consecutive searches; (a) TSTORMS, n= 2; (b) Stride Search, s = 2500 km.

5 Polar search

A key motivation for developing Stride Search was to pro-

vide a detection algorithm capable of searching all latitudes,

including polar regions. The Arctic and Antarctic climates

become increasingly frequent subjects of study due to re-

cent significant changes in these environments (Stocker et al.,

2013), and a detection algorithm capable of searching data

near the poles is necessary. Grid point searches have been

used at midlatitudes up to ≈ 60◦ N and 60◦ S (König et al.,

1993; Raible and Blender, 2004), but users must exercise

care when choosing the sector size parameter n at high lat-

itudes. A grid point search near the poles may have to use

sectors whose physical size is no longer representative of the

physical features of the storms it is meant to locate.

Figure 7a shows three consecutive grid point search sec-

tors along θ = 60◦ N. As in Fig. 1, the grid of data points

has resolution 1λ= 10◦ and we have used the same n= 2

to set up 5×5 grid point search sectors. The blue (horizontal

stripes) sector is centered at (λj ,θi)= (150◦ E, 60◦ N) and

the red (vertical stripes) and black (diagonal stripes) sectors

are at (λj+1,θi)= (160◦ E, 60◦ N) and (λj+2,θi)= (170◦E,

60◦ N), respectively. Each grid point search sector spans

a distance of 5 grid points in latitude, or approximately

5600 km south to north.

The square grid point search sectors may appear correct in

the left plot of Fig. 7a, a Mercator projection, but the problem

with them is clear in the polar stereographic projection to the

right. The southern boundary of each sector lies along the

40◦ N latitude circle, where 5 grid points in longitude span

4000 km east to west. However, the northern boundary of
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Figure 8. Northern Hemisphere polar low storm tracks by season; (a) DJF, (b) MAM, (c) JJA, (d) SON. Tracks are colored by the NOAA

warning category corresponding to their lifetime maximum wind speed.

each sector, along 80◦ N, spans only about 1000 km east to

west. Users can choose higher values of n at higher latitudes

to ensure the sectors will have sufficient zonal extent to cap-

ture the desired feature, but the square sectors will still have

different spatial scales in the longitude direction compared

to the latitude direction. As we have seen already in Sect. 4,

the definition of search sector size can impact the final out-

put of a search algorithm, independently of the identification

criteria.

The constant geodesic radius of Stride Search sec-

tors removes this dependence on the data. Figure 7b

shows three Stride Search sectors along θ = 60◦ N, with

s = 2500 km. The blue (horizontally striped) sector is

centered at (λJ ,θI )= (150◦ E, 60◦ N). The red (verti-

cally striped) and black (diagonally striped) sectors are

at (λj+1,θi)= (170◦W, 60◦ N) and (λj+2,θi)= (130◦W,

60◦ N), respectively. The longitude stride along θ = 60◦ N is

twice as large as the longitude stride along the equator, so the

three consecutive sectors in Fig. 7b cover twice as many lon-

gitude lines than the three sectors in Fig. 1b. The shapes of

each sector in the left plot are due to the effects of the Mer-

cator projection. All sectors are still circles on the sphere,

as shown in the polar stereographic projection (right). Stride

Search sectors – even one centered at the pole – have the

same geographic size regardless of latitude, and are therefore

capable of searching polar regions as effectively as midlati-

tude and tropical regions.

As an example application, we consider polar lows. Polar

lows are distinct from midlatitude low-pressure systems due

to their different developmental forcing and a typical lack

of associated fronts (Montgomery and Farrell, 1992; Ras-

mussen and Turner, 2003). They contribute to the break up

of sea ice which has significant implications for the polar cli-

mate.

Individual polar lows may develop a barotropic structure

more similar to tropical cyclones than to baroclinic midlat-

itude storms (Nordeng and Rasmussen, 1992; Føre et al.,

2012). These particularly interesting polar lows are typically

smaller in diameter and duration than tropical cyclones, and

therefore require a high-resolution model such as the one de-

scribed in Sect. 3 to resolve. A companion study will inves-

tigate the Arctic climatology of variable resolution climate

models and their ability to simulate “hurricane-like” polar

lows (Roesler et al., 2016). Here, our goal is to test Stride

Search’s ability to locate such a small-scale, high-latitude

storm.
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A set of objective identification criteria for polar lows are

given by Bracegirdle and Gray (2008), which we adapt to the

Stride Search algorithm. Storm intensity is measured with

vorticity and pressure and, as was the case with the tropi-

cal cyclone identification criteria, a collocation requirement

is applied. New to this application is a criterion that identi-

fies regions of increased instability associated with cold air

outbreaks over relatively warm ocean water.

Stride Search records a polar low in sector Kij if the fol-

lowing criteria are met:

1. A sea-level pressure minimum of sufficient intensity ex-

ists,

min
i,j∈Kij

Psl(λj ,θi) < τP , (14)

where Psl is sea-level pressure and τP is the pressure

threshold.

2. A cold air outbreak exists,

min
i,j∈Kij

[
θ700(λj ,θi)−SST(λj ,θi)

]
≤ τT , (15)

where θ700 is the potential temperature at the 700 hPa

level, SST is the sea surface temperature, and τT is the

cold air outbreak threshold.

3. A cyclonic vorticity maximum of sufficient strength ex-

ists,

max
i,j∈Kij

[
sgn(θi)ζ(λj ,θi)

]
> τζ . (16)

4. The vorticity maximum must be collocated with the

pressure minimum,

dist
(
(λP ,θP ), (λζ ,θζ )

)
< τD. (17)

Stride Search setup uses a sector radius s = 500 km, and

search region boundaries θmin = 45◦ N, and θmax = 90◦ N.

Threshold values are set at τP = 980 hPa, τT = 7 K, τζ =

2.0× 10−4 s−1 and τD = 200 km. To the temporal correla-

tion algorithm we add a minimum duration tmin = 12 h and

set Umax = 20 ms−1.

The data include only temperature (not potential tempera-

ture) and do not include the 700 hPa pressure level. The re-

quired θ700 data are approximated as

θ700 =
1

2
(θ850+ θ500) , (18)

where θ850 = T850

(
1000
850

)0.286

and θ500 = T500

(
1000
500

)0.286

.

Results from the entire 5-year data set are presented in

Fig. 8, separated by season. Storm tracks are colored by

their maximum strength on the US National Weather Ser-

vice’s maritime warning scale (Bowditch, 2002); gale force

Figure 9. An example polar low on 25 December, simulation year 3,

located at (017.0◦ E, 86.5◦ N) with structural similarities to a tropi-

cal cyclone. The center of the plot is the North Pole and the perime-

ter is the 80◦ N latitude circle.

storms (black) have maximum wind speeds 17.5≤ umax <

24.5 ms−1, storm force (blue) has 24.5≤ umax < 33 ms−1,

and hurricane force storms (red) have maximum wind speeds

greater than 33 ms−1. The results show the expected seasonal

variation of storm frequencies, with the maximum number of

storms and the maximum intensity of storms occurring in the

winter (DJF) months. Spring (MAM) months show more ac-

tivity over the pole than the fall (SON) months, and there are

few storms in the summer (JJA).

Once storm tracks are built, users may investigate indi-

vidual storms more easily. To fulfill our goal of finding a

“hurricane-like” polar low near the pole we search the storm

tracks for storms that get within 5◦ of the pole, then plot the

vorticity associated with each storm. Since the size of the

storm track list is much smaller than the size of the data

set, we quickly find the polar low shown in Fig. 9, from

12:00 UTC 25 December, simulation year 3. At the plotted

time step the storm is located at (017.0◦ E, 86.5◦ N). Spa-

tial scale is illustrated by the 1000 km line segment. The plot

shows the 850 hPa relative vorticity of the storm and we note

how similar its structure is to the typical tropical cyclone. The

diameter of the storm’s core is approximately 200 km and the

diameter of the whole storm, including its vorticity bands,

is approximately 500 km. Due to its small spatial scale this

storm would not be resolved in low-resolution data. Addi-

tionally, it is located very close to the pole. This storm there-

fore demonstrates the capability of Stride Search to find spe-

cific features in high-resolution data, even in polar regions.
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6 Conclusions

We have introduced the Stride Search algorithm for detection

of extreme events within climate data sets. The algorithm is

defined independently of a data set’s layout and resolution,

and depends only on the spatial scale associated with a user’s

intended application. Stride Search was designed to be a flex-

ible algorithm, capable of searching data sets for a variety of

extreme events while treating physical space the same for

different data sets. Extreme events must be described by a

set of quantifiable identification criteria and a representative

spatial scale. As examples we have shown detections of two

different varieties of cyclonic storms: tropical cyclones and

polar lows. The capability to search polar latitudes in exactly

the same manner as tropical and midlatitudes is a new feature

introduced by Stride Search, and was the primary motivation

for its development.

To validate Stride Search we compare its output to the

output of TSTORMS, the current standard tool for tropi-

cal cyclone detection. We show that Stride Search performs

faster than TSTORMS and its relative speed up increases as

the data resolution increases. The final outputs of both algo-

rithms and tropical cyclone tracks, generally agree. However,

due to their different definitions of spatial search sectors, re-

sults between the two codes can differ in some cases even

when both use the same identification criteria and threshold

values.

Our results show that the storm track statistics associated

with a particular climate data set can depend not only on the

storm identification criteria, as is widely reported in the liter-

ature (e.g., Bracegirdle and Gray, 2008; Raible et al., 2008;

Horn et al., 2014), but also on the spatial search algorithm

used to produce the storm tracks. Since the Stride Search al-

gorithm is defined independently of data layout and resolu-

tion, we posit that it may provide a more objective analysis

tool and be less sensitive to differences in spatial discretiza-

tions between data sets. Further experiments are necessary to

investigate this claim; they should include variable resolution

data, data defined on different types of spherical meshes, and

sensitivity analyses covering a range of identification criteria

and threshold values.

We anticipate that extending Stride Search to other, more

specialized applications such as locating multicentered cy-

clones (Hanley and Caballero, 2012) and atmospheric rivers

(Ralph et al., 2004; Prabhat et al., 2012) will be straightfor-

ward. The software uses the object-oriented design capabili-

ties provided by modern Fortran (Adams et al., 2009) and is

intended to allow users to extend its data types to new appli-

cations.

Finally, we note that the performance of both Stride Search

and TSTORMS software may be improved via paralleliza-

tion. It is already common to take advantage of temporal par-

allelism by applying the spatial search algorithm to multi-

ple time steps and multiple files concurrently using several

compute nodes. This may be implemented with customized

run scripts or dedicated software such as NASA’s Portable

Distributed Script (PoDS) software (Kouatchou and Oloso,

2014), GNU Parallel (Tange, 2011), and the Toolkit for Ex-

treme Climate Analysis (Prabhat et al., 2012). However,

there also remains a significant amount of unexploited par-

allelism in the storm detection problem, as individual search

sectors at the same time step may be distributed across intra-

node threads. We mark the parallel development of the Stride

Search software as an additional item for future work.

Code availability

A basic implementation of Stride Search written in Fortran

for data on uniform latitude–longitude grids is available at

https://github.com/pbosler/StrideSearch. The code is avail-

able as open source and distributed under the GPL-2.0 li-

cense. Development of a C++ implementation and support

for unstructured grids are ongoing projects.
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