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Abstract. Nitrogen dioxide vertical column density (NO2

VCD) measurements via satellite are compared with a fine-

scale regional chemistry transport model, using a new ap-

proach that considers varying satellite footprint sizes. Space-

borne NO2 VCD measurement has been used as a proxy

for surface nitrogen oxide (NOx) emission, especially for

anthropogenic urban emission, so accurate comparison of

satellite and modeled NO2 VCD is important in determin-

ing the future direction of NOx emission policy. The NASA

Ozone Monitoring Instrument (OMI) NO2 VCD measure-

ments, retrieved by the Royal Netherlands Meteorological

Institute (KNMI), are compared with a 12 km Community

Multi-scale Air Quality (CMAQ) simulation from the Na-

tional Oceanic and Atmospheric Administration. We found

that the OMI footprint-pixel sizes are too coarse to resolve

urban NO2 plumes, resulting in a possible underestimation

in the urban core and overestimation outside. In order to

quantify this effect of resolution geometry, we have made

two estimates. First, we constructed pseudo-OMI data us-

ing fine-scale outputs of the model simulation. Assuming the

fine-scale model output is a true measurement, we then col-

lected real OMI footprint coverages and performed conserva-

tive spatial regridding to generate a set of fake OMI pixels out

of fine-scale model outputs. When compared to the original

data, the pseudo-OMI data clearly showed smoothed signals

over urban locations, resulting in roughly 20–30 % under-

estimation over major cities. Second, we further conducted

conservative downscaling of OMI NO2 VCDs using spatial

information from the fine-scale model to adjust the spatial

distribution, and also applied averaging kernel (AK) infor-

mation to adjust the vertical structure. Four-way comparisons

were conducted between OMI with and without downscal-

ing and CMAQ with and without AK information. Results

show that OMI and CMAQ NO2 VCDs show the best agree-

ment when both downscaling and AK methods are applied,

with the correlation coefficient R= 0.89. This study suggests

that satellite footprint sizes might have a considerable effect

on the measurement of fine-scale urban NO2 plumes. The

impact of satellite footprint resolution should be considered

when using satellite observations in emission policy making,

and the new downscaling approach can provide a reference

uncertainty for the use of satellite NO2 measurements over

most cities.

1 Introduction

Tropospheric nitrogen dioxide (NO2) is an important com-

ponent of urban atmospheric chemistry. It is one of the ma-

jor pollutants affecting humans and the biosphere (Chauhan

et al., 2003; Kampa and Castanas, 2008), and works as an

important precursor in tropospheric ozone chemistry and

aerosol formation. Continuous monitoring of tropospheric

NO2 is important for understanding urban air quality and

changes in anthropogenic emissions. NO2 is also used as an

important indicator for traffic and urbanization (Rijnders et

al., 2001; Ross et al., 2006; Studinicka et al., 1997).

Tropospheric NO2 has been measured from space since

the mid-1990s; the Global Ozone Monitoring Experi-

ment (GOME; 1996–2003, onboard the European Remote

Sensing-2), Scanning Imaging Absorption SpectroMeter for

Atmospheric CHartographY (SCIAMACHY; 2002–2012,
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onboard ENVISAT), Ozone Monitoring Instrument (OMI;

2004–present, onboard Aura), and GOME-2 (2007–present,

onboard MetOp-A and 2013–present on MetOp-B) have all

been used for the detection of NOx emission from natural

and anthropogenic sources (Beirle et al., 2004; Boersma et

al., 2007; Kim et al., 2006, 2009; Konovalov et al., 2006;

Lamsal et al., 2008; Martin et al., 2003; Napelenok et al.,

2008; Richter et al., 2005; van der A et al., 2006, 2008).

NO2 plumes from urban anthropogenic sources, especially

from point and mobile sources, usually have a fine struc-

ture, as small as a few hundred meters and as large as 10–

20 km, as reported in comparisons of column NO2 based

on in situ observations and modeled calculations (Heue et

al., 2008; Valin et al., 2011; Ryerson et al., 2013). Heue et

al. (2008) used an airborne instrument based on imaging Dif-

ferential Optical Absorption Spectroscopy (iDOAS) to build

a two-dimensional (2-D) distribution model of urban plumes.

By comparing NO2 column densities over the industrialized

South African Highveld with OMI and SCIAMACHY mea-

surements, they demonstrated that iDOAS shows strong en-

hancements close to industrial areas, 4–9 times higher than

measurements from OMI and SCIAMACHY. Previous stud-

ies have demonstrated that modeled ozone production de-

pends strongly on the spatial scale of the modeling grid due

to the nonlinear dependence of ozone production on NOx

concentration (e.g., Cohan et al., 2006; Gillani and Pleim,

1996; Liang and Jacobson, 2000; Sillman et al., 1990); there-

fore, an accurate comparison of urban NO2 plumes in fine

scale is crucial for understanding surface ozone chemistry

and air pollution over urban cities. Using 1-D and 2-D mod-

els, Valin et al. (2011) computed the resolution-dependent

bias in the predicted NO2 column, demonstrating large neg-

ative biases over large sources and positive biases over small

sources at coarse model resolution.

The inhomogeneity of urban NO2 plumes within the scale

of satellite footprint pixels is of rising interest as satellite-

based measurements are being compared with fine-scale

modeling (Beirle et al., 2004, 2011; Hilboll et al., 2013).

Richter et al. (2005) showed that there are considerable dif-

ferences between GOME and SCIAMACHY observations

for locations with steep gradients in the tropospheric NO2

columns; on the other hand, these observations agree very

well over large areas of relatively homogeneous NO2 sig-

nals. Hilboll et al. (2013) argued that these effects result

from spatial smoothing that differs depending on the ground

resolution of the instruments; therefore, the inherent spa-

tial heterogeneity of the NOx fields must be considered

when studying them over small, localized areas. Hilboll et

al. (2013) also presented approaches to account for instru-

mental differences while preserving individual instruments’

spatial resolutions. In comparing GOME and SCIAMACHY,

they used an explicit climatological correction factor to con-

volve GOME pixels (40 km× 320 km) with better-resolution

SCIAMACHY (30 km× 60 km) data, producing a combined

data set for studying long-term trends.

Figure 1. Size distribution of OMI pixel footprint (blue) and its

cumulative percentile (red) during September 2013.

In this study, we try to investigate and to quantify the

uncertainty resulting from the geometry of OMI satellite-

based Nitrogen dioxide vertical column density (NO2 VCD)

measurements by comparing these data to a fine-scale re-

gional quality model. First, a pseudo-OMI data set is built

from the outputs of fine-scale model simulations, and then

these results are compared to model data in order to quan-

tify the impact from pure differences in geometry. Second,

we extend the basic concept of Hilboll et al. (2013) to apply

spatial-distribution information from the fine-scale model to

the OMI measurements, and demonstrate how the new ap-

proach adjusts the original OMI measurements. Satellite and

model data are described in Sect. 2. Construction of pseudo-

OMI data and the quantification of the impact of pixel geom-

etry are discussed in Sect. 3. In Sect. 4, the downscaling ap-

proach is discussed; Sect. 5 concludes and discusses the im-

plications of findings for emission policy decision-making.

2 Data

2.1 OMI

We utilized OMI tropospheric NO2 VCD data, retrieved by

the Royal Netherlands Meteorological Institute (KNMI). The

OMI instrument, onboard NASA’s Earth Observing System

Aura satellite, is a nadir-viewing imaging spectrograph mea-

suring backscattered solar radiation with a measuring wave-

length ranging from 270 to 500 nm and with a spectral resolu-

tion of about 0.5 nm. Its telescope has a 114◦ viewing angle,

which corresponds to a 2600 km wide swath on the surface.

In its normal global operation mode, its pixel size is 13 km

(along)× 24 km (across) at nadir, which can be reduced to

13 km× 12 km in zoom mode (Levelt et al., 2006). Data were

downloaded from the Tropospheric Emission Monitoring

Internet Service (TEMIS; http://www.temis.nl/airpollution/

no2.html) of the European Space Agency (ESA). DOMINO

version 2.0 retrieval based on the Differential Optical Ab-

sorption Spectroscopy (DOAS) technique was used for the
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Figure 2. Comparison of OMI footprint-pixel size and actual coverage using (a) 25 %, (b) 50 %, (c) 75 %, and (d) 100 % of available pixels

on 1 July 2011.

study. We disregarded data pixels with cloud fractions over

40 % or other contaminated pixels using quality flags. Details

on the NO2 column retrieval algorithms and error analysis

are described in Boersma et al. (2004, 2007).

2.2 NAQFC

The US National Air Quality Forecast Capability (NAQFC)

provides daily, ground-level ozone predictions using

the Weather Forecasting and Research non-hydrostatic

mesoscale model (WRF-NMM) and Community Multi-scale

Air Quality (CMAQ) framework across the Contiguous

United States (CONUS) with a 12 km resolution domain

(Chai et al., 2013; Eder et al., 2009). In our analysis, we

used the experimental version of NAQFC, which uses WRF-

NMM with B-grid (NMMB) as a meteorological driver and

the Carbon Bond (CB05) chemical mechanism. Meteoro-

logical data are processed using the PREMAQ, which is

a special version of the Meteorology–Chemistry Interface

Processor (MCIP) designed for the NAQFC system. Emis-

sions are projected to 2012 level using Department of Energy

Annual Energy Outlook and EPA Cross-State Air Pollution

Rule (CSAPR) from the 2005 National Emission Inventory.

Detailed information on the emission is available from Pan

et al. (2014) and references within.

Figure 3. Calculation of pseudo-OMI (pOMI) data. Blue boxes are

actual OMI pixel footprints and the gray cells are 12 km grid cells.

Fraction of cells overlapped by an OMI pixel are shown, and pOMI

(sky blue) data are estimated by a weighted average of the corre-

sponding grid cells (pink).

3 Construction of pseudo-OMI data

OMI footprint-pixel size increases as the viewing angle de-

viates from the nadir direction to the edge of swaths. Fig-

ure 1 shows the actual size distributions of OMI pixels col-
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Figure 4. Monthly mean distribution of (a) CMAQ, (b) pOMI NO2, (c) difference (pOMI−CMAQ), and (d) percentage difference

(pOMI−CMAQ)/CMAQ× 100 during September 2013.

lected during September 2013. The blue line indicates size

distribution counts for each 50 km2 bin, while the red line in-

dicates the cumulative distribution of the OMI pixel sizes.

The size distribution has high occurrences near 300 km2,

as expected from the OMI’s resolution at the nadir (that is,

13× 24= 312). However, many pixels still have larger sizes;

around half of total pixels are larger than 500 km2, and 20 %

of total pixels are larger even than 1000 km2. Geographi-

cal coverage rapidly increases with pixel size, so deciding

a threshold for footprint-pixel sizes and available coverage

may present a serious dilemma.

Figure 2 shows the relationship between OMI footprint-

pixel size and actual geographical coverage over the

CONUS. With 1 July 2011 data, 25 % of OMI pixel sizes

are less than 342 km2, and they cover 1.4 % of the CONUS

domain. CONUS coverage changes to 11.5, 24.0, and 58.8 %

when 50, 75, and 100 % of OMI pixels are used, respectively.

Using only finer data may provide detailed information, but

they represent only a small part of all the data. If we also use

coarser-resolution data, they provide more coverage but tend

to be biased over areas with spatial gradient, as discussed

in the previously mentioned studies (Hilboll et al., 2013).

We therefore estimated the theoretical range of biases de-

riving from this geometric effect by constructing a pseudo-

OMI data set out of a fine-scale model. Using the fine-scale

regional CMAQ simulations and assuming this model repre-

sents a true world, we constructed a data set to mimic OMI

instrument measurement of this modeled world.

In order to construct the pseudo-OMI data, we utilized a

conservative spatial regridding technique to perform a loss-

less conversion of gridded modeling outputs into actual OMI

footprint pixels. Figure 3 demonstrates the concepts of con-

servative regridding. The gray grid cells are 12 km grid cells

for modeling – zoomed on the Houston region as an example

– and the blue lines are actual OMI pixel coverage. The blue,

shaped pixel is an example of an actual OMI pixel, while

the pink boxes are model grid cells overlaid by the example

OMI pixel. The numbers in the grid cells are calculations of

the fractional area overlaid by the OMI pixel for each cell

using the Sutherland–Hodman polygon-clipping algorithms

available from the Interactive Data Language (IDL)-based

Geospatial Data Processor (Kim et al., 2013); 0.74 means
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Figure 5. Example of downscaling method. (a) Original OMI NO2 VCD, (b) 12 km CMAQ NO2 VCD, (c) spatial-weighting kernel, and

(d) adjusted OMI NO2 VCD using spatial-weighting kernel.

the OMI pixel covers 74 % of the corresponding grid cell.

The pseudo-OMI value for the blue OMI pixel area in Fig. 3

can be estimated as

Pj =

∑(
pi · fi,j

)∑
fi,j

, (1)

where i and j are indices for the model grid cell and OMI

pixel, respectively, and fi,j indicates the fractional area of

cell i overlaid by OMI pixel j .

Figure 4 compares the spatial distributions of CMAQ NO2

VCDs (assumed to be a true world) and pseudo-OMI (pOMI)

NO2 VCDs, along with the difference and percentage dif-

ference, (pOMI-CMAQ)/CMAQ× 100, over the northeast-

ern US. It is evident that there are prominent differences be-

tween the original fine-scale modeled NO2 VCDs and recon-

structed pseudo-OMI distribution, especially over and near

urban locations. As expected from the smoothing effects of

larger pixel sizes, pOMI shows a slightly smoothed transi-

tion from urban cores to suburban, and most of the sharp

peaks near small cities are gone in the pOMI distribution.

As already mentioned, this is purely a result of geometry.

We can see that, for all the major cities, pOMI underesti-

mates the actual NO2 VCD values while overestimating at

the boundaries of major cities, as clearly seen in the New

York, Pittsburgh, Philadelphia, Baltimore, and Washington

D.C. areas. This effect is also prominent in locations with

small but strong NOx emission sources, such as power plants,

or small cities such as Norfolk, VA. It should be noted that

these discrepancies result from purely geometric effects de-

riving from the OMI’s designed pixel sizes and are around

±5–10× 1015 molec cm2, with 20–30 % under- or overesti-

mation biases for major cities and more than 100 % under- or

overestimation for local cities like Norfolk and Richmond,

VA. In the next section, we introduce a new approach – the

conservative downscaling method – to reduce this effect of

resolution due to varying OMI footprint-pixel sizes.

4 OMI NO2 VCD downscaling

As described in the previous section, urban NO2 plumes usu-

ally have too fine of a spatial structure compared to OMI’s

measuring footprints. In this section, we introduce a new ap-

www.geosci-model-dev.net/9/1111/2016/ Geosci. Model Dev., 9, 1111–1123, 2016
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Figure 6. Scatter plots of P3 and OMI NO2 VCD for (a) OMI standard products, (b) OMI KNMI, and (c) OMI KNMI with downscaling

for 4, 7, and 16 May 2010.

proach for adjusting those geometric effects. Downscaling is

a common concept in meteorological simulations, used es-

pecially in global circulation models to provide initial and

boundary conditions for regional models. We use a similar

concept, describing a downscaling method in data process-

ing as a special case of spatial regridding that provides fur-

ther details through the incorporation of additional informa-

tion into a set of coarse-resolution data. This approach dif-

fers from simply increasing the resolution, as the raw, coarse

data are restructured using a set of logics, analogous to a re-

gional meteorological model that downscales global meteo-

rology using its own set of physical and thermal field bal-

ances. Conceptually, we use a calculation process reversed

from that used to construct the pseudo-OMI data set.

Figure 5 graphically depicts the steps of conservative

downscaling from OMI pixels. Figure 5a shows actual OMI

NO2 VCD measurements over Los Angeles on 4 May 2010,

and Fig. 5b shows the corresponding CMAQ NO2 VCDs

calculated from NAQFC modeling outputs at the same time

and location. As readers can easily see, OMI footprint pix-

els are much bigger (∼ 650 km2) than the CMAQ grid cells

(12× 12= 144 km2). As a result, an OMI pixel can overlay

more than 10 CMAQ grid cells, as demonstrated in Fig. 5b

(black box representing the OMI pixel). We collected those

CMAQ pixel values and then normalized them so that the to-

tal value of each grid cell sums to one. We call this a spatial-

weighting kernel (Fig. 5c), and we apply this weighting ker-

nel to the original OMI measurement. As a result, we gener-

ate a reconstructed OMI pixel with a finer structure but with-

out any loss of original quantity. Summing the reconstructed

pixels gives the original OMI pixel measurement. It should

be noted that we strictly apply this method conservatively;

theoretically, if there are no missing or duplicated pixels, the

quantity of the original data is numerically preserved. This

method can be summarized as fusing a satellite-measured

“quantity” with modeled “spatial information”; the strength

of the modeled NO2 field does not at all affect the result.

As expected, the accuracy of this method indeed depends

on the model’s performance, especially regarding its wind-

field simulation and inputs of emission source locations, so

this method clearly has its own limitation. Considering the

uncertainties resulting from emission source locations, the

air-quality community has had an excellent archive of ge-

ographical information about the geophysical locations of

emission sources thanks to the efforts of US EPA, although

the strengths of these sources are somewhat highly uncer-

tain. As just described, however, the downscaling method is

not affected by emission strength, so we do not think that the

uncertainty associated with known emission sources is very

high. On the other hand, the use of a downscaling method can

be limited when there are uncertainties in emission inventory

information such as unknown emission sources or removal of

known sources. Wind field is important for simulating NO2

plume transport. With the short lifetime of NO2, especially

during summer, the spatial distribution of NO2 plumes is

strongly determined by the location of emission sources. Im-

proving information about emission-source locations would

somewhat improve the model, but it is more important to note

that the downscaling method tends to convert the error char-

acteristics. Near urban cores, OMI’s coarse footprint reso-

lution always causes unidirectional, systematic biases, with

underestimation near urban cores and overestimation at the

urban boundary. Using the downscaling method, these sys-

tematic biases from resolution are converted to random bias

from wind-field error. Since these biases are random, they

may be corrected by averaging over a certain time period,

unlike the systematic bias resulting from resolution.

4.1 2010 CalNex campaign case

We applied the downscaling technique to compare the OMI

and downscaled OMI with aircraft-borne measurements from

the California Research at the Nexus of Air Quality and Cli-

mate (CalNex) campaign. The CalNex field study was con-

ducted in California from May to July 2010 and focused on

atmospheric-pollution and climate-change issues, including

an emission inventory, atmospheric transport and dispersion,

atmospheric chemical processing, cloud–aerosol interaction,

Geosci. Model Dev., 9, 1111–1123, 2016 www.geosci-model-dev.net/9/1111/2016/
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Figure 7. Spatial distribution of P3 NO2 VCDs (circles) and OMI NO2 VCDs for original KNMI product (a), and downscaled OMI (b) for

4 May 2010.

and aerosol radiative effects (Ryerson et al., 2013). Here,

we compared NO2 VCD observations from the campaign’s

P3 flight with corresponding OMI measurements using both

the standard and downscaling methods. More detailed de-

scriptions regarding data preparation and a discussion of the

influence of environmental inhomogeneity and urban NO2

plumes are provided by Judd et al. (2016)

Figure 6 shows scatter-plot comparisons between the

P3 measurements and OMI NASA standard product

(Fig. 6a), OMI KNMI product (Fig. 6b), and OMI KNMI

downscaled (Fig. 6c) for 3 days: 4, 7, and 16 May 2010. As

reported, the OMI NO2 VCD tends to underestimate near

the Los Angeles urban area. The KNMI retrieval showed a

slightly better comparison with slope= 0.73 and R= 0.85,

while the downscaled product clearly showed the best agree-

ment with the P3 measurements, R= 0.88 and slope= 1.0.

Deviations still remain from a true one-to-one line even with

the downscaling method; these are possibly caused by er-

rors in wind-field simulation. We expect these random er-

rors to average out as the amount of available data increases.

The downscaling method seems to work even with daily

timescale data sets.

Figure 7 compares OMI NO2 VCD spatial distributions for

the original KNMI products with downscaled products for

4 May 2010, the day when the downscaling method gave the

most dramatic changes in the spatial distribution. In the orig-

inal retrieval, OMI pixels were coarse and mostly smoothed

out over Los Angeles. However, by applying the downscal-

ing technique, the adjusted OMI data show a shape much

closer to the urban boundary and enhanced NO2 VCD values

at the center of Los Angeles, agreeing very well with the P3

aircraft measurements. On 7 May, the downscaling method

reproduced several peak values very well but failed to gener-

ate a clean spot at the edge of Los Angeles. On 16 May, the

changes from downscaling are not dramatic due to generally

low NO2 concentrations due to less urban traffic on Sunday

(e.g., the weekend effect), but the downscaling method still

showed slight enhancement (shown in supplementary plots).

4.2 Comparison with NAQFC

Comparing modeled NO2 VCDs to satellite-observed NO2

VCDs has been a popular way to evaluate the NOx emis-

sion inventory. Since modeled NO2 VCDs and satellite NO2

VCDs have different optical and vertical properties, some re-

searchers have used additional processing to fairly compare

satellite and modeled column densities. In this section, we

performed vertical and spatial adjustments by applying aver-

aging kernel (AK) information in conjunction with the down-

scaling technique. First, we compared NAQFC NO2 VCDs

with and without AK to OMI NO2 VCDs with and without

downscaling processing.

The sensitivity of the instrument to tropospheric tracer

density is highly height dependent. Since the measured tracer

profile may have large systematic errors as a result, the re-

trieved tracer columns should be interpreted with proper ad-

ditional information (Eskes and Boersma, 2003). An AK

stores an instrument’s relative sensitivity to the abundance

www.geosci-model-dev.net/9/1111/2016/ Geosci. Model Dev., 9, 1111–1123, 2016
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Figure 8. Spatial distributions of (a) CMAQ NO2 VCDs without AK and (b) with AK; (c) OMI NO2 VCDs without downscaling and

(d) with downscaling during September 2013.

of the target species for each layer throughout the atmo-

spheric column (Bucsela et al., 2008) and can be applied to

a modeled atmospheric column for a fair comparison with

satellite retrievals. For each OMI DOMINO product pixel,

34 layers of AKs are provided. We first converted total AKs

to tropospheric AKs, AKtrop, by applying the total air mass

factor (AMF) and tropospheric AMF, and we then applied

AKtrop to model layers before vertically integrating, as de-

scribed by Herron-Thorpe et al. (2010). When multiple OMI

pixels overlaid a model grid cell, we conducted the conser-

vative spatial remapping method explained above.

Figure 8 compares the monthly averaged NO2 VCD distri-

butions for CMAQ without and with AK (Fig. 8a and b, re-

spectively) and for OMI NO2 VCDs without and with down-

scaling (Fig. 8c and d, respectively). In general, AK-applied

CMAQ NO2 VCDs tend to be slightly lower than CMAQ

NO2 VCDs without AK information. On the other hand,

while OMI NO2 VCDs without downscaling (DS) shows a

much smoother pattern, the DS-applied OMI reconstructs the

sharp spatial structures near urban areas. DS-applied OMI

NO2 VCDs are evidently able to construct sharp gradients

near cities, and especially near mid-size cities.

Figure 9 compares CMAQ and OMI NO2 VCDs using

AK and DS methods together. Figure 9a shows a scatter-plot

comparison between CMAQ and OMI NO2 VCDs at US En-

vironmental Protection Agency Air Quality System (AQS)

surface-monitoring site locations during September 2013. In

this comparison, CMAQ NO2 VCDs are much higher com-

pared to OMI NO2 VCDs, implying that the CMAQ simula-

tion possibly overestimates NOx emissions. Figure 9c com-

pares OMI and CMAQ NO2 VCD with AK information ap-

plied; estimated CMAQ NO2 VCD is reduced, showing bet-

ter agreement with OMI NO2 VCD. Readers may notice that

high CMAQ pixels are shifted to the left. On the other hand,

applying the DS method to OMI shifts OMI pixels vertically

(Fig. 9b). Finally, in Fig. 9d, both AK and DS methods are

applied; this comparison shows the best agreement between

OMI and CMAQ NO2 VCD pixels. Its correlation coeffi-

cient R= 0.89 and the slope of line fit is 0.59. Clearly, the

application of the AK and DS methods not only improved

the satellite-model comparison in the high NO2 concentra-

tion range but also significantly improved the comparison in

the low NO2 range (i.e., 0–10× 1015 molecules cm−2), im-

plying that this method can help interpret NOx emission in

major and mid-size cities. We have conducted the same anal-

yses for all summer months in 2013 and 2014, and the results

are consistent.

Geosci. Model Dev., 9, 1111–1123, 2016 www.geosci-model-dev.net/9/1111/2016/
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Table 1. Comparison of OMI and CMAQ NO2 VCD monthly averages (September 2013) at AQS sites.

OMI/xDS (mean= 3.61) OMI/DS (mean= 5.00)

CMAQ/xAK (mean= 6.43) S= 0.28 S= 0.45

R= 0.79 R= 0.87

(6.43− 3.61)/3.61× 100= 78.1 % (6.43− 5)/5× 100= 28.6 %

CMAQ/AK (mean= 4.65) S= 0.39 S= 0.59

R= 0.87 R= 0.89

(4.65− 3.61)/3.61× 100= 28.8 % (4.65− 5)/5× 100=−7.0 %

Figure 9. Comparison of OMI and CMAQ NO2 VCDs for (a) OMI

and CMAQ with AK, (b) downscaled OMI and CMAQ with AK,

(c) OMI and CMAQ with AK, and (d) downscaled OMI and CMAQ

with AK during September 2013.

The differences in spatial distributions between monthly

averaged OMI and CMAQ NO2 VCDs during Septem-

ber 2013 are shown in Fig. 10. Positive values indicate

that CMAQ NO2 VCDs are higher than OMI VCDs, which

should likely be interpreted as an overestimation of the NOx

emission inventory used in the CMAQ modeling. The differ-

ence between the original OMI and CMAQ NO2 VCDs show

strong positive values over most urban locations (Fig. 10a).

Applying AK (Fig. 10b) and DS (Fig. 10c) reduce posi-

tive biases for major and middle-to-small cities, showing the

best agreement when both AK and DS are included. NO2

VCDs are still overestimated over major cities – New York,

Philadelphia, Detroit, and Chicago – as is expected from the

continuous trend of NOx emission reduction, but they are

much weaker than in the original comparison. Slight overes-

timations over Baltimore, Washington D.C., Richmond, and

Norfolk have almost disappeared. We also notice broad un-

derestimation of NO2 VCDs over Pennsylvania and West

Virginia, which might be related to recent changes in this re-

gion, but detailed analysis is beyond the scope of this study.

Another interesting feature is that there are spots of underes-

timation over small cities or local power plants; we therefore

suspect the DS method slightly overweighted urban emis-

sions due to the lack of soil NOx emissions in the current

modeling system.

5 Conclusions

This study reports that satellite footprint sizes might cause

a considerable effect on the measurement of fine-scale urban

NO2 plumes. Comparing OMI NO2 VCDs over North Amer-

ican urban cities to a 12 km CMAQ simulation from NOAA

NAQFC, we found that OMI footprint-pixel sizes are too

coarse to resolve urban plumes, resulting in possible underes-

timation (and overestimation of model NO2 VCDs) over the

urban core and overestimation outside. In order to quantify

this effect of resolution, we first conducted a perfect-model

experiment. Pseudo-OMI data were constructed using fine-

scale outputs of a model simulation, assuming that the fine-

scale model output is a true measurement. To match the foot-

print coverage from real OMI pathways, we conducted con-

servative spatial regridding with the corresponding fine-scale

model outputs to generate a set of pseudo OMI pixels.

When compared to the original data, the pseudo-OMI data

clearly showed smoothed signals over urban locations, with

20–30 % underestimation over major cities and up to 100 %

bias over smaller urban areas. We then introduced conser-

vative downscaling of OMI NO2 VCDs using spatial infor-

mation from the fine-scale model to adjust the spatial dis-

tribution, also applying averaging kernel (AK) information

to adjust the vertical structure. Four-way comparisons were

conducted between OMI with and without downscaling and

CMAQ with and without AK information. Results show that

OMI and CMAQ NO2 VCDs show the best agreement when

both downscaling and AK methods are applied, with correla-

tion coefficient R= 0.89.

These results should be considered when using satellite

data in the evaluation of emission inventories and translating

these data into decision-making around emission policy. Ta-

ble 1 shows a summary of the comparisons between OMI and

CMAQ NO2 VCDs described in Figs. 8 and 9. When CMAQ

without AK and OMI with DS are compared, the percent-

age difference is (6.43− 3.61)/3.61× 100= 78 %, implying

www.geosci-model-dev.net/9/1111/2016/ Geosci. Model Dev., 9, 1111–1123, 2016
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Figure 10. Comparisons of OMI and CMAQ NO2 VCD spatial distributions in the northeast US region during September 2013.

that the current emission inventory likely overestimates NO2

VCDs. Comparing between OMI with DS and CMAQ with-

out AK or between OMI without DS and CMAQ with AK

still implies that the current emission inventory is possibly

overestimating. However, when both vertical and spatial pro-

files are adjusted using the AK and DS methods, a slight un-

derestimation is found, −7 %, in modeled NO2 VCDs over

AQS monitoring locations, implying that the current inven-

tory possibly underestimates emissions. This may represent

an important implication for how spatial information should

be considered when investigating fine-scale phenomena such

as urban NO2 plumes.

Without question, satellite observations are very useful

with their large coverage supplementing sparse surface-

monitoring sites. Interpretation of satellite-based measure-

ment, however, should be performed cautiously with consid-

eration of the instrument’s characteristics, especially when

translating results into policy-making. We expect our cur-

rent study to provide a reference for the uncertainty of

satellite-based information regarding local or regional pol-

lutants, especially until we have the measurement data at

a more enhanced resolution that will be provided by fu-

ture satellites, such as Tropospheric Emissions: Monitor-

ing of Pollution (TEMPO), Tropospheric Monitoring Instru-

ment (TROPOMI), and Geostationary Environmental Moni-

toring Spectrometer (GEMS).
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Appendix A: Conservative spatial regridding method

For the spatial regridding of satellite data, the IDL-based

Geospatial Data Processor (IGDP) performs “conservative

spatial regridding” based on the exact calculation of over-

lapped areas using the polygon-clipping algorithm. This

method differs from traditional interpolation methods since

it handles the geospatial data (e.g., satellite data) as “polygon

with area” instead of “(dimensionless) pixels”. This method

reconstructs raw data pixels (e.g., satellite data) into target

domain grid cells, by calculating fractional weighting of each

overlapping portions between data pixels and domain grid

cells. If the raw pixel data are in density units (e.g., con-

centration), the grid cell concentration can be calculated as

a weighted average of data pixels and fractions (Fig. A1).

fi,j =
Area

(
Pi ∩Cj

)
Area

(
Cj

)
Cj =

∑
Pi · fi,j∑

fi,j

,

where i and j are indices of data pixel, P , and grid cells, C.

fi,j is the overlapping fractions, and
∑

fi,j = 1 if no missing

pixels are involved in grid cell Cj .

If the satellite pixel data are in mass units, equations for

the conservative remapping are slightly different. We need to

calculate fractions of overlapped area to raw data pixel size,

instead of grid cell size.

gi,j =
Area

(
Pi ∩Cj

)
Area

(
Pj

)
Cj =

∑
Pi · gi,j ,

where gi,j is the fraction of overlapped area to the data pixel

size.

Detailed information on the polygon-clipping algorithms

is described in Kim et al. (2013).

Figure A1. Example of “conservative spatial regridding” method using a variable-pixel linear reconstruction algorithm.

Appendix B: IDL routines for downscaling method

Per request of the anonymous reviewer, we provide sample

IDL routines of conservative spatial regridding and down-

scaling of OMI and CMAQ NO2 VCDs in the supplementary

materials with brief descriptions. Users will be able to down-

load and test sample codes, and further modify the codes for

their own interests.
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The Supplement related to this article is available online

at doi:10.5194/gmd-9-1111-2016-supplement.
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