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Abstract. Climate models are extremely complex pieces of

software. They reflect the best knowledge on the physical

components of the climate; nevertheless, they contain sev-

eral parameters, which are too weakly constrained by obser-

vations, and can potentially lead to a simulation crashing. Re-

cently a study by Lucas et al. (2013) has shown that machine

learning methods can be used for predicting which combina-

tions of parameters can lead to the simulation crashing and

hence which processes described by these parameters need

refined analyses. In the current study we reanalyse the data

set used in this research using different methodology. We

confirm the main conclusion of the original study concern-

ing the suitability of machine learning for the prediction of

crashes. We show that only three of the eight parameters in-

dicated in the original study as relevant for prediction of the

crash are indeed strongly relevant, three others are relevant

but redundant and two are not relevant at all. We also show

that the variance due to the split of data between training and

validation sets has a large influence both on the accuracy of

predictions and on the relative importance of variables; hence

only a cross-validated approach can deliver a robust predic-

tion of performance and relevance of variables.

1 Introduction

The development of realistic models of climate is one of the

most important areas of research due to the dangers posed

by global warming. It is by no means a trivial task since

it involves the parameterisation of many processes that are

not directly solved within the model. It has been shown by

Lucas et al. (2013) that certain combinations of these pa-

rameters lead to failure of a model, despite each individual

parameter having a reasonable value. Authors of this study

performed 540 simulations with randomly varied combina-

tions of 18 parameters of the Parallel Ocean Program (POP2)

(Smith et al., 2010) module in the Community Climate Sys-

tem Model Version 4 (CCSM4) (UCAR, 2010). About 10 %

of these simulations crashed due to numerical instabilities.

Then they applied machine learning methods to attribute fail-

ures to the parameters of the model. To this end they used the

support vector machine (SVM) (Vapnik, 1995) classification

to quantify and predict the probability of failure as a function

of the values of 18 POP2 parameters. The causes of the sim-

ulation failures were determined through a global sensitivity

analysis. Combinations of eight parameters related to ocean

mixing and viscosity from three different POP2 parameter-

isations were then determined as the major sources of the

failures. These eight parameters were indicated as targets for

more detailed research.

These results are somewhat disappointing, since the num-

ber of parameters is still rather high. Hence we decided to

check whether a more elaborate method for analysis could

decrease this number further. We have observed potential

weak points of the analysis performed by Lucas et al. (2013);

namely, they had not fully take into account that the ap-

parent importance of a variable for classification may be in

fact the result of a spurious fluctuation. The problem is most
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acute when a sample used for a machine-learning algorithm

is small. In such a case random fluctuation may introduce

spurious correlations within data, which can be utilised by

the classification algorithm for model building. The appro-

priate procedure should be applied to minimise the influence

of such random correlations on the final results.

Lucas et al. (2013) have also analysed the impact of the de-

cision variable that is used for the classification on the qual-

ity of results. While the models were built as an ensemble of

learners built on the bootstrap samples of the training set, the

evaluation of the classification performance was based on a

single split of data between training set and test set. This set-

up was due to the construction of the study – simulations for

the validation set were performed after the predictions had

been made. While this is a very honest method for the veri-

fication of the predictions, it precludes the estimation of the

statistical uncertainty of the result. In particular, it is impos-

sible to say whether the observed differences between clas-

sification accuracy observed for different decision functions

are significant or whether they arise due to statistical fluctu-

ations.

The current study is devoted to the reanalysis of the data.

It aims at minimising the influence of random fluctuations

on the final results. Our aim was to establish all variables

that truly contribute to the final result of the simulations, i.e.

whether the simulation was finished successfully or whether

it crashed. To this end we use contrast variables that carry no

information on the decision variable and apply the Boruta

algorithm for all-relevant feature selection and extensive

Monte Carlo sampling. We also compare the quality of clas-

sification for several subsets of variables used for prediction

of simulation result, to perform a parallel check of relevance

of variables.

2 Methods

Similarly to the original work, we rely on machine learning

algorithms to identify parameters that critically influence the

fate of the simulation. The fundamental idea is that, if the

classification algorithm can predict result of the simulation,

i.e. the successful completion of simulation or the crash, us-

ing only the information on the values of certain combina-

tions of selected parameters, then these parameters are in-

deed responsible for the result. In the original paper the au-

thors performed true prediction and achieved a high degree of

accuracy, therefore showing the true predictive power of this

approach. On the other hand, this set-up precludes estimation

of statistical uncertainty for some of their findings. In partic-

ular, the discussion of the prediction accuracy in Sects. 4.4

and 4.5 is based on a single split of data between training and

test sets and ignores the possibility that effects may depend

on the particular split.

In the current study we know all results beforehand; thus

we are limited to virtual predictions only. In this approach we

split the entire data set into training and validation sets. We

then build a model using the training set and check its qual-

ity by performing virtual prediction on the validation set and

comparing the predicted results with the true ones. One can

take advantage of virtualisation to obtain information about

the probability distribution of results. To this end one can per-

form multiple virtual experiments, with different splits be-

tween training and validation sets, and perform classification

experiment on each of these splits. The results of individual

trials will differ in most cases, allowing one to draw con-

clusions not only about mean values but also about variance

and even shape of probability distribution. Lucas et al. (2013)

have used this approach for the sensitivity analysis, utilising

ensembles of SVM (Vapnik, 1995) learners for classification.

Each member of the ensemble was obtained using a different

subsample of the training set. The classifier was then used

for prediction of the simulation result for the validation set.

We used a different classification algorithm, namely the

Random Forest (Breiman, 2001), and instead of the sensitiv-

ity analysis we applied the all-relevant feature selection algo-

rithm Boruta (Kursa et al., 2010). All computations were per-

formed in the R environment for statistical modelling (R De-

velopment Core Team, 2008), using the randomForest pack-

age for classification (Liaw and Wiener, 2002) and the Boruta

package for feature selection (Kursa and Rudnicki, 2010). In-

terestingly, some of the authors of Lucas et al. (2013) have

recently used Random Forest in their analysis of the results of

the CAM5 model applied for study of Madden–Julian oscil-

lation. It was applied to analyse the influence of the model

parameters on selected diagnostic variables (Boyle et al.,

2015).

Random Forest is an ensemble algorithm based on deci-

sion trees. To ensure the low correlation between elementary

learners, each tree is grown using a different random sub-

sample of the original data set. Moreover, each split in the

tree is built using only a random subset of the predictor vari-

ables. The number of variables in this subset influences the

balance between bias and variance for the training set. The

default value for classification tasks is the square root of the

total number of variables, and it is usually a very robust se-

lection. Random Forest is a robust “off-the-shelf” algorithm

that is easily applicable to various classification and regres-

sion tasks. It has only few control parameters, and usually

it does not need fine tuning for the particular problem under

scrutiny. In many cases it has a performance comparable to or

even better than state-of-the-art classifiers, and it rarely fails.

A big advantage of the algorithm is that it estimates both the

classification error and the importance of variables by inter-

nal cross validation. To estimate the latter, it measures how

much the accuracy of base learners is decreased when infor-

mation about the variable in question is removed from the

system.

The Boruta algorithm infers features’ relevance using the

estimate of their importance from Random Forest. To this

end it extends the information system by variables that are
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Figure 1. Protocol of the first test. The example list of important

variables from a single Boruta run is shown. Core variables are high-

lighted in boldface; the contrast variable is shown in red.

non-informative by design – the so-called contrast variables.

It then compares the apparent importance of the original

variables with that of the non-informative ones. It performs

this multiple times using different realisations of the non-

informative variables and performs a statistical test. The al-

gorithm finds both strongly and weakly relevant variables.

The notions of strong and weak relevance were introduced

by Kohavi and John (1997) in the context of the ideal classi-

fication algorithm. The features are strongly relevant when

removing them from the description always results in de-

creased classification accuracy. Features are weakly relevant

when their removal in some cases may decrease classification

accuracy. For a more detailed discussion of relevance and the

Boruta algorithm see Kohavi and John (1997) and Rudnicki

et al. (2015). This algorithm has been used in different fields,

including bioinformatics, remote sensing, bacteriology and

medicine (Aagaard et al., 2012; Ackerman et al., 2013; Bu-

day et al., 2013; Duro et al., 2012; Herrera and Bazaga, 2013;

Leutner et al., 2012; Ma et al., 2014; Menikarachchi et al.,

2012; Saulnier et al., 2011; Strempel et al., 2013).

The climate simulation data set is highly biased towards

successful completion of simulation. Only 46 cases out of

540 are failures. Such unbalanced data sets are often diffi-

cult for classification, because the automatic selection of the

majority class results in good, but useless, classification ac-

curacy. In such a case no information is gained, and hence

30 repeats

329 S31F
360 objects

Training set

494 S (success)
540 objects

46 F (failure)

165 S15 F
180 objects
Test setRandom 

Forest !
model

AUC

Core+VTest	
or	

Core-VTest
Variables

Figure 2. Protocol of the second test.

one cannot perform feature selection. In the first test of the

current study this problem was avoided by application of the

following protocol (see Fig. 1). Firstly 11 balanced subsam-

ples of the training set were constructed; each subsample

consisted of all objects from the minority class (failed sim-

ulations) and 1 / 11 of the majority class (successful simula-

tions). In order to check specificity of the feature selection,

each data set was extended by contrast variables. To this end

each original variable was duplicated, and its values were

randomly permuted between all objects. In this way a set of

shadow variables that were non-informative by design was

added to the original variables. Then the feature selection

procedure was performed on each subsample with the help

of the all-relevant feature selection algorithm, implemented

in the Boruta function of the Boruta package. The procedure

was repeated 60 times. Altogether all-relevant feature selec-

tion was performed 660 times. The number of times when

the artificially constructed shadow variables were selected as

important gives an estimate of the expected level of false dis-

covery. The variables that were selected as important signifi-

cantly more often than random were examined further, using

a different test.

The second test probing the importance of variables was

performed by analysing the influence of variables used for

model building on the prediction quality. The first experi-

ment revealed four variables that were classified as impor-

tant by Boruta in all, or nearly all, of the 660 trials. These

variables were considered to form a core variable set, and

the model built using these variables was used as a reference.

We examined whether removing one of the core variables or

whether adding another variable respectively decreases or in-

creases the classification quality measured by the area under

the curve (AUC). The extension of the core test was exam-

ined for three variables that were classified in the first test as

important significantly more often than the randomised vari-

ables.

The test was performed similarly to the one reported in

the original study (see Fig. 2). The data set was randomly

split into a training set containing 360 objects and a vali-

dation set containing 180 objects. The split was performed
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Figure 3. Summary of results of the Boruta run. Importance of the variables is shown. The variables are sorted by increasing importance.

The variables coloured in green are those which were classified as relevant. Variables coloured in red are those which are irrelevant. The

blue boxes correspond to minimal (sMin), median (sMed) and maximal (sMax) importance achieved in each run by contrast variables. One

can observe a wide range of maximal-importance values that can be achieved by random variables. In particular in many iterations it can be

higher than importance of truly relevant variables.

separately for the minority and majority class, so the number

of minority class objects in each training set was 32 and in

the validation set it was 14. The randomForest function from

the identically named R package was used to perform clas-

sification and error estimate. The procedure was repeated 30

times, and results of 30 repetitions were analysed.

The number of trees in the forest (parameter ntree both in

randomForest and in Boruta functions) was set to 5000 both

for feature selection with Boruta and classification with ran-

domForest. In both cases the number of variables examined

for each split was equal to the square root of the total number

of variables. In our experience these settings are fairly robust;

we have examined them internally over multiple data sets

(Rudnicki et al., 2015). Moreover, we have checked whether

they influence results in the initial trials. The number of trees

used was 10 times higher than default, to assure that impor-

tance estimate in Random Forest converge to their asymp-

totic values; the number of trees for classification was the

same for consistency.

3 Results and discussion

The summary of the results of the study is presented in Ta-

ble 1. Variables V1 and V2 were deemed important in all

660 cases. Variables V13 and V14 were deemed important in

nearly all cases – 593 and 623 cases, respectively. All these

variables were also indicated as most important by Lucas

et al. (2013). However, the results do not agree so well for

other variables. Lucas et al. (2013) indicated variables V4,

V5, V16 and V17 as important, but their influence on the fi-

nal result was much weaker than that of the first group. In the

current study variables V4 and V16 were deemed important

by Boruta for 44 and 66 subsamples, respectively. In both

cases the number is significantly higher than the average for

the random variables, which was obtained as 25± 9. On the

other hand variables V5 and V17 were deemed important for

19 and 17 subsamples, respectively, and these numbers are

lower than the average for random variables. Moreover, vari-

able V9, which was not indicated as important by Lucas et

al. (2013), was deemed important for 62 subsamples.

Hence the first experiment, which confirmed the impor-

tance of variables V1 and V2, showed that importance of

V13 and V14 is nearly universal; it also confirmed the weak

importance of variables V4 and V16. On the other hand the

importance of variables V5 and V17 was not confirmed with

our method; instead variable V9 was found to be weakly im-

portant. The example result of the Boruta run for an inter-

esting sample is presented in Fig. 3. In this sample the im-

portance was confirmed for variables V9 and V16, whereas

variable V13 was deemed irrelevant. The importance of V4

was higher than that of the highest random variable, but only

barely so, and hence the final decision of Boruta was “ten-

tative”. One should note that the importance returned by

Boruta is the averaged importance obtained from the un-

derlying Random Forest algorithm. It is not directly inter-

pretable in terms of the fraction of variance explained by a

given variable.

One should note that Boruta is an all-relevant fea-

ture selection algorithm that aims at finding both strongly

and weakly relevant variables, as defined by Kohavi and

John (1997). The second test aimed at discerning between
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Table 1. Summary of results. The variables indicated as important by Lucas et al. (2013) are marked with ∗; the variables that were indicated

as important in the first test are highlighted in bold face.1(AUC) is given in 0.0001 units. Three values are reported; the number of times the

variable was deemed relevant, mean difference in AUC due to adding variable to set of variables and number of times AUC was improved

by adding variable to set of variables. The first value is reported for all variables; the two others are reported only for the variables that were

deemed relevant significantly more often than randomised variables. The unit for 1(AUC) is 0.0001.

Variable V1∗ V2∗ V3 V4∗ V5∗ V6 Reference

No. relevant 660 660 0 44 19 33 25± 9

Mean 1(AUC) 905± 80 749± 90 – 20± 70 – –

No. improved 30 30 – 16 – –

Variable V7 V8 V9 V10 V11 V12 Reference

No. relevant 2 17 62 11 3 5 25± 9

Mean 1(AUC) – – 60± 70 – – –

No. improved – – 22 – – –

Variable V13∗ V14∗ V15 V16∗ V17∗ V18 Reference

No. relevant 593 623 26 67 19 2 25± 9

Mean 1(AUC) 11± 60 180± 80 – 6± 60 – –

No. improved 16 26 – 14 – –

strongly and weakly relevant variables. In the case of V1 and

V2, removal of the variable from the core data set resulted in

a dramatic drop of AUC, confirming that these variables are

truly informative (see Table 1 and Fig. 2). In the case of V14

the difference in AUC – referenced further as1(AUC) – was

smaller, but still statistically significant, whereas for V13 the

1(AUC) was much smaller than the standard deviation. Sim-

ilarly, adding either of the three remaining variables – namely

V4, V9 and V16 – to the core set leads to an increase of the

AUC by an insignificant amount (see Table 1 and Fig. 4).

Another auxiliary metric that can be used to evaluate the rel-

evance of variables is the number of samples in which the

AUC for the model containing the variable is higher than that

for the model built without that variable. The results of this

metric are consistent with results for the 1(AUC) – it is 30

for both V1 and V2 and 26 for V14, and these are the only re-

sults that are significantly different from random ones. There-

fore one can conclude that only three variables – namely V1,

V2 and V14 – are strongly relevant, whereas the remaining

variables are weakly relevant.

One should note that the results of the second test were

highly variable and largely dependent on the split of data be-

tween test and validation sets. This is illustrated in Fig. 5, and

examples of the results from several samples are given in Ta-

ble 2. The highest AUC obtained in the experiment was 0.990

for the model built using core variables and V16 in sample

no. 12. In the same sample the AUC for the model built from

core-V2 was 0.888. On the other hand for sample no. 1 the

highest AUC was obtained for the model built on core+V9,

and it was 0.879. The relative importance of variables also

depends strongly on the test sample. For example adding

variable V4 to the core set can improve AUC by as much as

0.032 (sample no. 22) or decrease it by 0.006 (sample no. 6).
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Figure 4. AUC obtained in simulation study grouped by subset of

variables used for model building. The labels are coded in the fol-

lowing way: C – core set of variables {V1, V2, V13, V14 }; C+X

– the core set was extended by adding variable VX, where X is one

of {4, 9, 16 }; C−X – the variable VX was removed from the core

set, with X={1, 2, 13, 14 }.

Similarly for V16 AUC can decrease by 0.016 (sample no. 6)

or increase by 0.016 (sample no. 22). Most interestingly, re-

moving variable V13, which was deemed relevant by Boruta

in nearly 90% of samples, can either decrease the AUC by

0.011 (sample no. 6) or increase it by 0.030 (sample no. 22).

These results show that one cannot rely on a single split be-

tween the training set and test set for the estimate of influence

of parameters, and that only the average over a sufficiently

large number of alternative splits can give robust estimates.

The average of the cross-validated AUC obtained for three

strongly important variables – namely V1, V2 and V13 – was

0.924. The highest average AUC was obtained for the model

built using five variables, namely {V1, V2, V9, V13, V14 };
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1070 W. Paja et al.: Feature selection in failure analysis of climate simulation crashes

●

●

●

●

●

●

●

●

●

●
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.75

0.80

0.85

0.90

0.95

1.00

Repeat

A
U

R
O

C

Figure 5. AUC obtained in simulation study grouped by split between training and validation set.

Table 2. Results of experiment 2. Average AUC obtained for all tested models, as well as examples for five interesting cases. No. 1 – the

sample with the lowest AUC from core model; no. 12 the sample with the highest AUC obtained in the study; samples nos. 6, 22 and 30 –

samples with core model close to the mean that show variance of AUC for other models. The highest AUC value obtained in the experiment

is highlighted in boldface.

Sample

Variable set No. 1 No. 6 No. 22 No. 30 No. 12 Average

Core 0.865 0.921 0.922 0.928 0.983 0.925± 0.006

Core+V4 0.879 0.915 0.954 0.930 0.982 0.927± 0.007

Core+V9 0.866 0.923 0.945 0.919 0.989 0.931± 0.006

Core+V16 0.848 0.906 0.938 0.927 0.990 0.926± 0.007

Core-V14 0.823 0.907 0.926 0.919 0.967 0.907± 0.007

Core-V13 0.877 0.910 0.952 0.921 0.968 0.924± 0.006

Core-V1 0.745 0.821 0.806 0.823 0.910 0.835± 0.007

Core-V2 0.808 0.808 0.825 0.840 0.888 0.850± 0.009

nevertheless the value AUC= 0.931 was not significantly

higher than the value obtained for the simpler model built us-

ing only three variables. The small differences in AUC arise

due to small improvements for assigning the probability of

failure of the simulation. Such improvement results in a small

shift in the ranking from least probable to most probable to

fail, without actually improving the error rate at the cost of

including two more variables in the model.

A single run of the Boruta algorithm in the first test took

2 min on a server equipped with an Intel Xeon E5620 @

2.4GHz CPU. The entire protocol took less than 24 h of sin-

gle CPU core. The second test is far less computationally

demanding. A single run of the randomForest function takes

less than 20 s on the same CPU; therefore, computations for

the entire protocol take less than 10 min. This effort is negli-

gible in comparison with the time required to run 540 simu-

lations of the climate model itself.

The results of the study are mostly in good agreement with

the results of Lucas et al. (2013); however, importance of the

variables is not identical. The most important difference is

the importance of the variable V13 in both studies. This vari-

able is more important than V14 in the SVM-based model

by Lucas et al. (2013), whereas our analysis deems it rele-

vant but redundant. However, one should note that in the first

test V13 was deemed relevant in nearly 90 % of cases, only

slightly less than in the case of V14. Only the second test re-

vealed that V13 contains mostly redundant information, and

on average it does not improve quality of Random Forest pre-

dictions. The difference is most likely due to the underlying

classifier used in each approach. The SVM is essentially a

linear classifier, which can be applied to non-linear problems

using some non-linear, continuous kernel transformation. On

the other hand, Random Forest is based on non-linear and

discrete decision trees. Figure 2 in Lucas et al. (2013) sug-

gests that the decision space of the system under scrutiny

is non-continuous. Random Forest can treat such systems

more efficiently using fewer variables, whereas SVM needs

higher dimensional spaces to build a hyperplane separating

two classes. We have observed such effects in other systems,

for example in our earlier study of the recognition of mu-

Geosci. Model Dev., 9, 1065–1072, 2016 www.geosci-model-dev.net/9/1065/2016/
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sical instruments (Kursa et al., 2009). The other differences

are less important, since they involve variables with marginal

relevance.

4 Conclusions

Our reanalysis of the results of 540 simulations is in general

qualitative agreement with the results of Lucas et al. (2013).

The results of the simulation can be predicted with fairly

good accuracy using the machine learning approach, and the

two different methods give very close results. The cross-

validated AUC reported by Lucas et al. (2013) by ensemble

of SVM classifiers was 0.93. In the current study the aver-

age of the cross-validated AUC obtained for three strongly

important variables was 0.924.

We have shown by cross validation that the AUC re-

ported for the prediction experiment performed by Lucas et

al. (2013) falls within the range of values that can be ex-

pected in such a prediction; however, one should not assign

any weight to the particular value obtained. If the split be-

tween the training set and test set were set differently, the

resulting AUC for prediction could be any number between

0.88 and 0.99.

The three most important conclusions for the climate mod-

elling community are the following. Firstly, the efforts on im-

proving the numerical stability of simulations should be con-

centrated on three parameters of the CCSM4 parallel ocean

model, namely vconst_corr, vconst_2 and bckgrnd_vdc1,

which were earlier reported as most important by Lucas et

al. (2013). The remaining parameters indicated as important

in that study are either redundant or not relevant. Secondly,

the machine learning methods in general and all-relevant fea-

ture selection in particular are useful tools for analysis of in-

fluence of simulation parameters on the final outcome. Fi-

nally, application of machine learning should involve cross

validation, and all important modelling steps should be in-

cluded in the cross-validation loop.
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