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Abstract. We present results from and evaluate the perfor-

mance of a 12-month, 12 km horizontal resolution year 2005

air pollution simulation for the contiguous United States

using the WRF-Chem (Weather Research and Forecasting

with Chemistry) meteorology and chemical transport model

(CTM). We employ the 2005 US National Emissions In-

ventory, the Regional Atmospheric Chemistry Mechanism

(RACM), and the Modal Aerosol Dynamics Model for Eu-

rope (MADE) with a volatility basis set (VBS) secondary

aerosol module. Overall, model performance is compara-

ble to contemporary modeling efforts used for regulatory

and health-effects analysis, with an annual average day-

time ozone (O3) mean fractional bias (MFB) of 12 % and

an annual average fine particulate matter (PM2.5) MFB of

−1 %. WRF-Chem, as configured here, tends to overpredict

total PM2.5 at some high concentration locations and gen-

erally overpredicts average 24 h O3 concentrations. Perfor-

mance is better at predicting daytime-average and daily peak

O3 concentrations, which are more relevant for regulatory

and health effects analyses relative to annual average val-

ues. Predictive performance for PM2.5 subspecies is mixed:

the model overpredicts particulate sulfate (MFB= 36 %), un-

derpredicts particulate nitrate (MFB=−110 %) and organic

carbon (MFB=−29 %), and relatively accurately predicts

particulate ammonium (MFB= 3 %) and elemental carbon

(MFB= 3 %), so that the accuracy in total PM2.5 predictions

is to some extent a function of offsetting over- and underpre-

dictions of PM2.5 subspecies. Model predictive performance

for PM2.5 and its subspecies is in general worse in winter and

in the western US than in other seasons and regions, suggest-

ing spatial and temporal opportunities for future WRF-Chem

model development and evaluation.

1 Introduction

Epidemiological studies have established the importance of

health effects from acute and chronic exposure to fine par-

ticulate matter (PM2.5) and ground-level ozone (O3) (Jerrett

et al., 2009; Krewski et al., 2009; Pope III and Dockery,

2006). The accuracy of health-impact predictions for future

air pollutant emissions (e.g., Tessum et al., 2012, 2014) de-

pends in part on the performance of air quality models over

long timescales and in all seasons. Accurate health-impact

predictions often depend on model simulations that cover

large geographic areas such as the contiguous US, so as to

capture the full impacts of the long-range transport of pollu-

tants (Levy et al., 2003). Whereas chemical transport model

(CTM) simulations for a full year for the contiguous US often

use 36 km horizontal grids (e.g., Tesche et al., 2006; Yahya

et al., 2014), increasing horizontal grid resolution to 12 km

can result in the more accurate prediction of pollutant con-

centrations (Fountoukis et al., 2013) and population expo-

sure. However, increasing horizontal resolution from 36 to

12 km in a CTM typically results in a ∼ 27 times increase in

computational intensity (number of grid cells increases nine-

fold; number of time steps increases threefold).

Although recent CTM evaluation efforts have focused on

12-month and contiguous US model evaluations (Galmarini

et al., 2012), CTM model performance for 12 km or finer hor-

izontal grid size for an entire year for the contiguous US is

largely unexplored in the peer-reviewed literature. We know

of only one such study: Appel et al. (2012) evaluated the per-

formance of the Community Multiscale Air Quality (CMAQ)

model (Foley et al., 2010) in reproducing year 2006 concen-

trations of PM2.5 and O3 for the contiguous US. In a sec-
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ond study (not peer reviewed), the US EPA (2012) describes

model evaluation for PM2.5 concentrations for year 2007,

also for the contiguous US and using CMAQ. Our study con-

tributes to this literature by evaluating a different model with

different parameterizations over a different time period. We

also provide greater investigation regarding how model per-

formance varies in space, in time, and by chemical species.

We employ and evaluate the performance of WRF-Chem

(the Weather Research and Forecasting model with Chem-

istry) (Grell et al., 2005) for year 2005 for a North Ameri-

can domain. WRF-Chem is functionally similar to CMAQ,

but differs from the version used by Appel et al. (2012) in

that WRF-Chem predicts meteorological quantities and air

pollution concentrations simultaneously, allowing meteorol-

ogy quantities to be updated more frequently as the model is

running and allowing representation of interactions between

meteorology and air pollution. WRF-Chem users can follow

a simplified modeling workflow that does not require run-

ning a separate meteorological model. Combined meteorol-

ogy/chemical transport models can be more computationally

demanding than standalone CTMs; however, for the domain

and settings used here, meteorological modeling accounts for

only ∼ 10 % of the total computational expense.

Table A1 summarizes spatial and temporal aspects of re-

cent chemical transport model evaluation efforts, with a fo-

cus on WRF-Chem evaluations in the US. WRF-Chem per-

formance in predicting air quality observations has been ex-

tensively quantified for simulations of individual regions of

the US, with simulation periods of several weeks or months

(Ahmadov et al., 2012; Chuang et al., 2011; Fast et al.,

2006; Grell et al., 2005; McKeen et al., 2007; Misenis and

Zhang, 2010; Zhang et al., 2010, 2012). One study evalu-

ated WRF-Chem performance for a full year for the contigu-

ous US with a 36 km grid (Yahya et al., 2014). We present

here WRF-Chem results from a full year, 12 km resolution

simulation for the contiguous US, evaluate the performance

of the model compared to ambient measurements, and com-

pare WRF-Chem performance to published goals and criteria

(Boylan and Russell, 2006) and to recent CMAQ results for

a similar simulation (Appel et al., 2012).

2 Methods

2.1 Model setup

We run the WRF-Chem model version 3.4 using a 12 km res-

olution grid with 444 rows, 336 columns, and 28 vertical lay-

ers. The modeling domain (see Fig. 1) covers the contiguous

US, southern Canada, and northern Mexico. Previous studies

(e.g., Appel et al., 2012; Yahya et al., 2014) have used 34

vertical layers; our choice of 28 vertical layers represents a

tradeoff between vertical grid resolution and computational

expense.

0 2 3.9 5.9 7.9 9.8 12 14 16

46μg m−3

0 6.9 14 21 28 34 41 48 55

57ppbv

(a) Total PM2.5 (b) Average O3

Figure 1. Modeled annual average ground level (a) PM2.5 and

(b) O3 concentrations. For ease of viewing, the color scales con-

tain a break at the 99th percentile of concentrations.

Within WRF-Chem, we use the Regional Atmospheric

Chemistry Mechanism (RACM) (Stockwell et al., 1997) for

gas-phase reactions and the Modal Aerosol Dynamics for Eu-

rope (MADE) (Ackermann et al., 1998) module for aerosol

chemistry and physics. RACM and MADE were selected be-

cause of their relatively modest computational expense; at

the time of this study, alternatives to RACM/MADE are im-

practical for large-scale simulations such as ours. We use the

volatility basis set (VBS) (Ahmadov et al., 2012) to simu-

late formation and evaporation of secondary organic aerosol

(SOA). The VBS approach differs from other SOA param-

eterizations in that it assumes that primary organic aerosol

(POA) is semi-volatile. Meteorology options are set as rec-

ommended by the WRF user manual (Wang et al., 2012) and

the WRF-Chem user manual (Peckham et al., 2012) for situ-

ations similar to those studied here. Table 1 summarizes the

model options and inputs used. See supporting information

for additional details.

We use results from the MOZART global chemical trans-

port model (Emmons et al., 2010) as processed by the

MOZBC file format converter (available at: http://web3.acd.

ucar.edu/wrf-chem) to provide initial and boundary condi-

tions for chemical species. Because the MOZBC bound-

ary conditions for unclassified PM2.5 are unrealistic for the

southeastern edges of the modeling domain – their use re-

sults in substantial PM2.5 overpredictions in the southeast-

ern US – we set all initial and boundary concentrations to

zero for unclassified PM2.5. As in Ahmadov et al. (2012),

owing to uncertainty in secondary organic aerosol (SOA)

concentrations over the open ocean, we assume that initial

and boundary concentrations of SOA are zero. Data from the

National Centers for Environmental Prediction (NCEP) Eta

model (UCAR, 2005) provide meteorological inputs, bound-

ary conditions, and, for the four-dimensional data assimila-

tion (FDDA) employed here, observational “nudging” val-

ues.

We use the 2005 National Emissions Inventory (NEI) (US

EPA, 2009) to estimate pollutant emissions. The NEI in-

cludes emissions from area, point, and mobile sources for

year 2005 in the US, year 2006 in Canada, and year 1999

Geosci. Model Dev., 8, 957–973, 2015 www.geosci-model-dev.net/8/957/2015/
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Table 1. Selected WRF-Chem v3.4 settings and parameters em-

ployed in this study.

Category Option used

Microphysics WSM 3-class simple ice scheme

Shortwave and longwave radiation CAM scheme

Land surface Unified Noah land surface model

Boundary layer physics YSU scheme

Cumulus physics New Grell scheme (G3)

FDDA meteorology nudging Yes (grid-based)

Gas-phase chemistry NOAA/ESRL RACM

Aerosol chemistry/physics MADE/VBS

Aerosol feedback No

Photolysis Fast-J

Anthropogenic emissions 2005 NEI

Biogenic emissions BEIS v3.14

Horizontal grid resolution 12 km

Number of vertical layers 28

in Mexico. We use the model evaluation version of the NEI,

which also includes hourly Continuous Emission Monitor-

ing System (CEMS) data for electricity-generating units,

hourly wildfire data, and biogenic emissions from the BEIS

model (Biogenic Emission Inventory System; Schwede et al.,

2005), version 3.14.

We prepare pollutant emissions at 12 km spatial resolu-

tion using the Sparse Matrix Operating Kernel Emissions

(SMOKE) program (Houyoux and Vukovich, 1999), ver-

sion 2.6, as bundled with the NEI data (available at: http:

//www.epa.gov/ttn/chief/emch/index.html), then we convert

the emission files output by SMOKE to WRF-Chem format

and apply a plume-rise algorithm (ASME, 1973, as cited in

Seinfeld and Pandis, 2006) to estimate the mixing height of

elevated emission sources and wildfires. Source code for the

file format conversion and plume-rise program is available at

https://bitbucket.org/ctessum/emcnv.

We simulate atmospheric pollutant concentrations for the

period from 1 January through to 31 December 2005. We

choose the year 2005 because at the time this study was per-

formed it was the most recent year for which emissions data

were available. For logistical expediency, we separate the

year into eight independent model runs, each approximately

1.5 months in length plus a discarded 5-day model spin-up

period. We run the simulations on a high-performance com-

puting system consisting of 2.8 GHz Intel Xeon X5560 “Ne-

halem EP” processors with a 40 Gbit QDR InfiniBand (IB)

interconnect and a Lustre parallel file system. Using 768 pro-

cessors, each 1.5-month model run takes ∼ 19 h to complete

(∼ 13 processor years for each annual model run).

2.2 Comparison with observations

We compare WRF-Chem wind speed, air temperature, rel-

ative humidity, and precipitation predictions to data from

the US Environmental Protection Agency (EPA) Clean Air

Status and Trends Network (CASTNET) observations. We

compare modeled ground-level concentrations of total PM2.5

to EPA Air Quality System (AQS) observations (US EPA,

2005) using 24 h average data (EPA parameter code 88101)

and using the less extensive hourly measurement network

(EPA parameter code 88502), which allows us to compare

modeled vs. measured diurnal profiles. We compare WRF-

Chem predictions of O3 to measurements from the AQS

(EPA parameter code 44201) and CASTNET networks. We

compare the predictions of PM2.5 subspecies to observation

data from the EPA’s Chemical Speciation Network (CSN)

(US EPA, 2005) (formally called Speciation Trends Network

(STN)) for organic carbon (OC, parameter code 88305), el-

emental carbon (EC, code 88307), particulate sulfate (SO4,

code 88403), particulate nitrate (NO3, code 88306), and

particulate ammonium (NH4, code 88301). We additionally

compare predictions to data from the Interagency Monitor-

ing of Protected Visual Environments (IMPROVE) network

(University of California Davis, 1995) for particulate OC

(code 88320), EC (code 88321), sulfur (code 88169), and

NO3 (code 88306); and to CASTNET observations for par-

ticulate SO4, NH4, and NO3. WRF-Chem outputs organic

aerosol (OA) concentrations, but methods for measuring or-

ganic aerosol only quantify OC. OC comprises a variable

fraction of OA, but it is common to assume an OA : OC ra-

tio of 1.4 (Aiken et al., 2008). Therefore, we divide WRF-

Chem OA predictions by a factor of 1.4 for comparison with

OC measurements. Finally, we compare WRF-Chem predic-

tions of gas-phase sulfur dioxide (SO2) and nitrogen dioxide

(NO2) to AQS observations. We remove from consideration

those stations with ≥ 25 % missing data relative to the num-

ber of scheduled measurements during the simulation period.

The fractions of excluded data for each type of comparison

are in the Supplement.

WRF-Chem, as configured here, outputs instantaneous

concentrations at the start of each hour, whereas the obser-

vation data are reported as hourly or daily averages. WRF-

Chem calculates grid-cell-average concentrations, whereas

observations generally represent concentrations at specific

locations.

We compare measured and modeled values pair-wise at

each time of measurement in the grid cell containing each

measurement station. The 24 h average measurements are

compared to the average of the modeled (hourly instanta-

neous) values within the same period. Comparisons are only

made with observations that occur within the first (nearest to

ground) model layer (height: ∼ 50–60 m). The source code

for the program used to extract and pair model and mea-

surement data is available at https://bitbucket.org/ctessum/

aqmcompare.

2.3 Aggregation of results

In addition to reporting annual average model performance

for the entire model domain, we also disaggregate results

spatially and temporally. We evaluate performance using two

www.geosci-model-dev.net/8/957/2015/ Geosci. Model Dev., 8, 957–973, 2015
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spatial approaches. First, we use four regional subdomains:

Midwest, Northeast, South, and West (basis: US Census re-

gions (US Census Bureau, 2013); see Fig. 2). Second, we

evaluate urban vs. rural (i.e., not urban) locations, also as de-

fined by the US Census (US Census Bureau, 2014). CSN

monitors tend to be placed in urban areas (85 % of 186

monitors are urban), whereas IMPROVE monitors tend to

be placed in protected rural areas (10 % of 122 monitors

are urban). All 67 monitors in the CASTNET network are

in rural locations. We also split the analysis into four sea-

sons: winter (January–March), spring (April–June), summer

(July–September), and fall (October–December). Employing

these time periods allows us to compare against previously

published results (Appel et al., 2012).

2.4 Performance metrics

After matching all measured values with their corresponding

modeled values, and averaging modeled and measured val-

ues across the appropriate time period, we calculate metrics

shown in Eqs. (1)–(8):

MB=
1

n

n∑
i=1

(Mi −Oi), (1)

ME=
1

n

n∑
i=1

|Mi −Oi |, (2)

NMB=

n∑
i=1

(Mi −Oi)

n∑
i=1

Oi

× 100%, (3)

NME=

n∑
i=1

|Mi −Oi |

n∑
i=1

Oi

× 100%, (4)

MFB=
1

n

n∑
i=1

2(Mi −Oi)

Mi +Oi

× 100%, (5)

MFE=
1

n

n∑
i=1

2|Mi −Oi |

Mi +Oi

× 100%, (6)

MR=
1

n

n∑
i=1

Mi

Oi

, (7)

RMSE=

√√√√√ n∑
i=1

(Mi −Oi)
2

n
, (8)

where i corresponds to one of n measurement locations, M

and O are time-averaged modeled and observed values, re-

spectively, MB is mean bias, ME is mean error, NMB is nor-

malized mean bias, NME is normalized mean error, MFB is

mean fractional bias, MFE is mean fractional error, MR is

model ratio, and RMSE is root-mean-square error. We ad-

(a) Total PM2.5 (b) Daytime O3
AQS AQS Hourly PM2.5 CASTNET

Figure 2. AQS, AQS hourly, and CASTNET monitor locations and

annual average fractional bias for (a) total PM2.5 and (b) daytime

average O3 concentrations. Corresponding information for other

pollutants and variables is in Fig. A1.

ditionally calculate the slope (S), intercept (I ), and squared

Pearson correlation coefficient (R2) of a linear regression be-

tween modeled and measured values.

Each metric provides a useful and distinct evaluation of

model performance. In general, metrics with “bias” in the

name evaluate the accuracy of the model, whereas metrics

with “error” in the name incorporate both precision and ac-

curacy. Metrics that are in normalized or fractional form tend

to emphasize errors where measured and observed values are

relatively small, whereas non-normalized metrics tend to em-

phasize errors where measured and observed values are rela-

tively large. We mainly focus here on MFB and R2 to evalu-

ate performance as they facilitate direct comparisons among

pollutants. Results for all combinations of time periods, mea-

surement networks, spatial subdomains, and metrics are in

the Supplement.

For O3, we calculate model performance via three

model–measurement comparisons: (1) annual averages;

(2) daytime-only (08:00–20:00 LT) annual averages, as in

Appel et al. (2012); and (3) annual averages of daily peak

concentrations, to match the epidemiological findings in Jer-

rett et al. (2009).

Model performance goals and criteria have been published

for PM2.5 (Boylan and Russell, 2006). Goals reflect perfor-

mance that models should strive to achieve; criteria reflect

performance that models should achieve to be used for regu-

latory purposes. The goals and criteria suggested by Boylan

and Russell (2006) vary with concentration: they are MFB

less than ±30 and ±60 % and MFE less than 50 and 75 %,

respectively, for most concentrations, but increase exponen-

tially as concentration decreases below∼ 3 µgm−3. To incor-

porate this aspect of performance evaluation, we calculate the

fraction of observation stations for which our PM2.5 model

results meet both the MFB and MFE performance goals (fG)

and criteria (fC).

Geosci. Model Dev., 8, 957–973, 2015 www.geosci-model-dev.net/8/957/2015/
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Figure 3. Annual average modeled and measured ground-level (a–

d) meteorological variables and (e–o) pollutant concentrations. Col-

ored lines show linear least-squares fits of the data for the measure-

ment networks with corresponding colors. Grey lines show model

to measurement ratios of 2 : 1, 1 : 1, and 1 : 2. Annual average per-

formance statistics are listed to the right of each plot; acronyms are

defined in the methods section.

3 Results

Figure 1 shows modeled annual average concentrations of

PM2.5 and O3, where the edges of the maps represent the

edges of the modeling domain. An animated version of Fig. 1

showing pollutant concentration as a function of time is

available in the Supplement. Maps of additional pollutants,

as well as monthly, weekly, and diurnal maps and profiles of

population-weighted average concentrations, are also avail-

able in the Supplement. Modeled O3 concentrations over wa-

ter in the Gulf of Mexico and along the Atlantic coast tend

to be higher than concentrations over the adjacent land areas.

As only areas over water appear to be affected (as Fig. 2a

shows, O3 overpredictions along the Gulf of Mexico and At-

lantic coasts are not greater than overpredictions further in-

land), this over-water anomaly in the Gulf of Mexico should

0 4 8 12 16 20 23
0

4

8

12

0%

25%

50%

75%

0 4 8 12 16 20 23
0

15

30

45

0%

25%

50%

75%

(a
) P

M
2.

5 (
ho

ur
ly)

 (μ
g/

m
³)

Hour of day

(b
) O

zo
ne

 (p
pb

)

Modeled value
Measured value

Fractional error (right axis)

Figure 4. Median values (lines) and interquartile ranges (shaded

areas) of annual average modeled values, observed values, and frac-

tional error by hour of day for (a) PM2.5 and (b) O3.

not adversely impact estimates of population-weighted con-

centrations.

Figure 2 shows monitor locations for total PM2.5 and for

O3, as well as annual average fractional bias (MFB) values at

each monitor. Results in Fig. 2a (PM2.5) display high spatial

variability, with no obvious spatial patterns in model perfor-

mance; large overpredictions are sometimes adjacent to large

underpredictions (e.g., in southern Louisiana and Florida).

WRF-Chem generally overpredicts daytime O3 concentra-

tions relative to observations (Fig. 2b). Monitor locations for

meteorological variables, PM2.5 subspecies, and other gas

phase species are in Fig. A1.

3.1 Meteorological performance

Figure 3 contains scatterplots comparing annual average ob-

served and predicted values for meteorological variables and

pollutant concentrations. The model tends to overpredict

near-ground wind speed (Fig. 3a) and precipitation (Fig. 3d)

relative to observations, whereas temperature (Fig. 3b) and

relative humidity (Fig. 3c) predictions agree well with obser-

vations. Figures A2–A5 in Appendix A disaggregate model

performance for meteorological variables by region (region

boundaries are shown in Fig. 2) and by season; meteoro-

logical performance is relatively consistent among seasons

and regions. Model–measurement comparisons provide im-

portant evidence on model performance but might overes-

timate model robustness for meteorological parameters be-

cause FDDA “nudges” model meteorological estimates to-

ward observed values.

3.2 PM2.5 and O3 performance

The annual average model–measurement agreement is good

for total PM2.5 concentration (Fig. 3e, 94 % of measurements

meet performance criteria), although the model tends to over-

predict PM2.5 concentration at relatively high-concentration

monitors (Fig. 3e). The model tends to generally overpredict

O3 concentrations, with worse overpredictions for 24 h aver-

www.geosci-model-dev.net/8/957/2015/ Geosci. Model Dev., 8, 957–973, 2015
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Figure 5. Comparison of measured and modeled PM2.5 concentra-

tions disaggregated by season and region. Region boundaries are

shown in Fig. 2.

age concentrations (Fig. 3f) than for daily peak (Fig. 3g) and

daytime average (Fig. 3f) concentrations.

Figure 4 shows the median and interquartile range for

modeled and measured PM2.5 and O3 concentrations by hour

of day (measurements of PM2.5 subspecies are only available

as 24 h averages). For PM2.5, the model generally agrees with

measurements, although on average it underpredicts concen-

trations at night and overpredicts during the day (Fig. 4a). For

O3, on average the model overpredicts for all times of day

but with a much lower fractional error during the day than

during the night. For both pollutants, the model accurately

captures the timing of diurnal trends, including the afternoon

peak for O3 and the morning and evening peaks for PM2.5.

As a result, when comparing the three averaging-time met-

rics for O3, we observe better model performance for the an-

nual average of daily peak concentration (MFB= 11 %) and

of average daytime concentration (MFB= 12 %) than for the

overall annual average (MFB= 23 %). For O3, the first two

metrics may offer greater relevance than the third. For exam-

ple, the annual average of daily peak concentrations is more

strongly correlated with health effects than are annual aver-

Figure 6. Comparison of measured and modeled annual average

of daytime O3 concentrations disaggregated by season and region.

Region boundaries are shown in Fig. 2.

age concentrations (Jerrett et al., 2009); and, for comparisons

to the 8 h peak concentration National Ambient Air Quality

Standard (NAAQS), model performance is more important

during daytime than at night.

Figures 5 and 6 disaggregate results by season and by loca-

tion for total PM2.5 and daytime O3, respectively; analogous

results are in Figs. 7–11 for PM2.5 subspecies, in Figs. A2–

A5 in Appendix A for meteorological properties, in Figs. A6

and A7 for other O3 temporal summaries, in Fig. A8 for SO2,

and in Fig. A9 for NO2. Daytime and peak O3 predictive per-

formance does not exhibit obvious patterns among seasons

or regions; MFB values range from −7 to 48 % (daytime;

Fig. 6) and −12 to 29 % (peak; Fig. A7). The overpredic-

tion of PM2.5 concentrations at high-concentration monitors

is more prevalent in the South and in urban areas, and is less

prevalent in summer than in other seasons (Fig. 5). Model–

measurement correlation for total PM2.5 is higher in sum-

mer (AQS R2
= 0.64) than in fall and winter (AQS R2

= 0.20

and 0.24, respectively), but overall PM2.5 concentrations are

not higher in summer. Previous research has suggested that

poor PM predictive performance in winter is common among

Geosci. Model Dev., 8, 957–973, 2015 www.geosci-model-dev.net/8/957/2015/
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Figure 7. Comparison of modeled and measured particulate SO4

concentrations, disaggregated by region and season.

CTMs and may be attributable to difficulty in reproducing the

strongly stable meteorological conditions that are responsi-

ble for high winter PM concentrations (Solazzo et al., 2012).

Annual average PM2.5 predictive performance in the West

(AQS R2: 0.45 (summer), 0.13 (winter)) is worse than perfor-

mance in the Northeast (AQS R2: 0.70 (summer), 0.37 (win-

ter)). In the Northeast, performance is better in the summer

(R2
= 0.69) than in other seasons (R2

= 0.30–0.40). Taken

together, these findings suggest that there is an opportunity

for future model development for PM2.5 to focus on win-

ter or full-year simulations rather than summer-only simula-

tions, and on the western US or the full contiguous US rather

than just the Northeast.

3.3 PM2.5 subspecies performance

Figure 3i–m illustrates model performance for annual aver-

age concentrations of PM2.5 component species. In all cases,

> 65 % of locations meet performance criteria for at least one

of the three observation networks.

The model overpredicts particulate SO4 (CSN

MFB= 34 %, IMPROVE MFB= 40 %, CASTNET

Figure 8. Comparison of modeled and measured particulate NH4

concentrations, disaggregated by region and season.

MFB= 36 %) (Fig. 3i) and SO2 (MFB= 51 %) (Fig. 3n).

This finding (overprediction of total sulfur) agrees with prior

research for multiple CTMs (McKeen et al., 2007). Partic-

ulate SO4 prediction performance does not vary much by

region; as with total PM2.5, performance is worse in winter

(CSN MFB= 59 %) than in summer (CSN MFB= 10. %)

(Fig. 7).

WRF-Chem as configured here performs well in predict-

ing observed particulate NH4 concentrations, with 99 % of

locations meeting performance criteria (Fig. 3j). Similar to

total PM2.5, performance for particulate NH4 is worst in the

urban areas in the West region (Fig. 8), where a number of

monitors report relatively high measured concentrations but

modeled concentrations are relatively low.

Particulate NO3 concentrations are consistently underpre-

dicted (annual average MFB=−110 %) (Fig. 3k). Figure 9

shows that these underpredictions are more severe in some

seasons and regions than in others. The best predictive per-

formance is for the Midwest in summer (MFB=−39 %) fol-

lowed by the Northeast in summer (MFB=−47 %). NO3

predictions in the West region are poor for all seasons

(MFB=−148 %). As with other PM2.5 species, there is an

www.geosci-model-dev.net/8/957/2015/ Geosci. Model Dev., 8, 957–973, 2015
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Figure 9. Comparison of modeled and measured particulate NO3

concentrations, disaggregated by region and season.

opportunity for future development and evaluation of mod-

els for particulate NO3 prediction to focus on seasons and

regions other than summer in the Northeast. Predictions of

gas-phase NO2 (Fig. 3o) agree relatively well with obser-

vations (MFB= 4 %) but, as with other species, the model

tends to overpredict NO2 concentrations in areas where mea-

sured concentrations are relatively high. This effect is espe-

cially prominent in the West and in urban areas (Fig. A9).

Model–measurement agreement for EC concentrations is

relatively good (Fig. 3l), with 96 % of monitor locations

meeting performance criteria. As with other comparisons, for

EC the model tends to overpredict concentrations for moni-

tors with relatively high concentrations, especially in urban

areas (Fig. 10).

Model predictions of OC concentrations (Fig. 3m) are bi-

ased low compared to CSN (MFB=−55 %) but agree rela-

tively well with IMPROVE (MFB= 15 %). Mean bias val-

ues given here are within the range of values reported by

a previous publication using the VBS SOA formation mech-

anism (Ahmadov et al., 2012). As shown in Fig. 11, the dif-

ferences in model–measurement agreement between the two

networks do not appear to be dependent on urban vs. rural

Figure 10. Comparison of modeled and measured particulate EC

concentrations, disaggregated by region and season.

monitor location. Instead, they may reflect between-network

differences in sampling or analysis; different analysis tech-

niques are known to produce widely varying OC concentra-

tions (Cavalli et al., 2010).

3.4 Comparison with other studies

Table 2 compares performance of WRF-Chem as configured

here to that of the CMAQ model in a similar modeling effort

by Appel et al. (2012). In this table, CMAQ as configured

by Appel et al. (2012) in most cases predicts O3 observa-

tions with greater accuracy and precision than does WRF-

Chem as configured here, while WRF-Chem in most cases

does a better job predicting PM2.5. However, given the many

differences in physical and chemical parameterizations and

input data (including a difference in simulation year), the ob-

served differences may or may not be generalizable. Instead,

our conclusion from Table 2 is that the models are generally

comparable in performance.

Table A2 compares WRF-Chem results from this study to

results from Yahya et al. (2014) for a 12-month, contiguous

US WRF-Chem simulation with a 36 km horizontal resolu-

Geosci. Model Dev., 8, 957–973, 2015 www.geosci-model-dev.net/8/957/2015/
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Table 2. WRF-Chem and CMAQ seasonal O3 and PM2.5 prediction

performance.

Daytimea PM2.5

average O3 (ppb) (µgm−3)

WRF-Chem CMAQb WRF-Chem CMAQb

Winter MB 3.5 −3.5 0.8 3.4

Spring MB 1.5 −1.8 2.0 2.0

Summer MB 9.2 4.4 0.0 −0.6

Fall MB 5.2 2.6 −0.9 4.0

Winter ME 5.5 9.0 3.1 6.0

Spring ME 4.6 9.3 3.3 4.5

Summer ME 10.1 11.0 2.6 4.4

Fall ME 6.2 8.8 2.7 5.6

Winter NMB 12 % −13 % 6 % 30 %

Spring NMB 3 % −4 % 17 % 19 %

Summer NMB 21 % 10. % 0 % −5 %

Fall NMB 19 % 8 % −7 % 36 %

Winter NME 19 % 35 % 25 % 53 %

Spring NME 10 % 29 % 28 % 42 %

Summer NME 23 % 24 % 18 % 31 %

Fall NME 23 % 28 % 23 % 52 %

a Daytime is defined as 08:00–20:00 LT. b Adapted from Appel et al. (2012) Tables 1 and 2.

tion spatial grid. NME results from the simulation performed

here are lower (i.e., better) than those reported by Yahya

et al. (2014) for most pollutants and measurement networks,

but NMB results are more mixed. As horizontal grid resolu-

tion, input data, and model parameters all differ between the

two studies, we are not able to determine the cause of the

differences in results.

4 Discussion

We simulated and evaluated PM2.5 and O3 based on 12-

month (year 2005) WRF-Chem modeling for the United

States. The spatial and temporal extent investigated, and the

horizontal spatial resolution (12 km) employed, are nearly

unprecedented; to our knowledge, only one prior peer-

reviewed CTM evaluation has used a comparable extent and

resolution (Appel et al., 2012). We find that WRF-Chem per-

formance as configured here is generally comparable to other

models used in regulatory and health impact assessment sit-

uations in that model performance is similar to that reported

by Appel et al. (2012) and, in most cases, meets the criteria

for air quality model performance suggested by Boylan and

Russel (2006).

There is potential for further improvement in model accu-

racy, especially for these cases: PM2.5 concentrations in win-

ter and in the western US, ground-level O3 at night and in the

summer, and particulate nitrate. The good agreement in to-

tal PM2.5 predictions and observations in some cases reflects

offsetting over- and underpredictions, including by species

(Fig. 3) and time of day (Fig. 4a). Performance in predicting

concentrations of PM2.5 and its subspecies tends to be the

Figure 11. Comparison of modeled and measured particulate OC

concentrations, disaggregated by region and season.

worst in winter and in the western US. Overall, WRF-Chem

as configured here meets the performance criteria described

above for total PM2.5 concentrations at 94 % of monitor lo-

cations.

The WRF-Chem meteorological and chemical settings

employed here are reasonable and justified but different set-

tings may also be reasonable. Improved understanding of

how alternative parameterizations might impact model per-

formance in large-scale applications such as ours is an area

for continued research. Another area for future research is

identifying opportunities to evaluate model performance in

terms of how changes in emissions cause changes in outdoor

concentrations.
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Appendix A

Figure A1. AQS, CSN, IMPROVE AQS and CASTNET monitor locations and annual average fractional bias for (a–d) meteorological

variables and (e–m) pollutant concentrations.
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Figure A2. Comparison of modeled and measured wind speed, dis-

aggregated by region and season.

Figure A3. Comparison of modeled and measured temperature, dis-

aggregated by region and season.
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Figure A4. Comparison of modeled and measured relative humid-

ity, disaggregated by region and season.

Figure A5. Comparison of modeled and measured precipitation,

disaggregated by region and season.

Geosci. Model Dev., 8, 957–973, 2015 www.geosci-model-dev.net/8/957/2015/
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Figure A6. Comparison of modeled and measured annual average

O3 concentrations, disaggregated by region and season.

Figure A7. Comparison of modeled and measured average daily

peak O3 concentrations, disaggregated by region and season.
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Figure A8. Comparison of modeled and measured SO2 concentra-

tions, disaggregated by region and season.
Figure A9. Comparison of modeled and measured NO2 concentra-

tions, disaggregated by region and season.

Geosci. Model Dev., 8, 957–973, 2015 www.geosci-model-dev.net/8/957/2015/



C. W. Tessum et al.: Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation 971

Table A1. Temporal and spatial aspects of recent model evaluations, focusing on WRF-Chem and North America.

Author and year Model used Time period Spatial extent Horizontal spatial

resolution

Ahmadov et al. (2012) WRF-Chem Aug–Sep 2006 Contiguous US

(evaluation performed

for eastern US)

60 and 20 km

Appel et al. (2012) CMAQ Full year, 2006 Contiguous US

and Europe

12 km

Chuang et al. (2011) WRF-Chem May–Sep 2009 Southeastern US 12 km

Fast et al. (2006) WRF-Chem Late Aug 2000 City of Houston 1.3 km

Grell et al. (2005) WRF-Chem Jul–Aug 2002 Eastern US 27 km

McKeen et al. (2007) WRF-Chem,

CHRONOS,

AURAMS, STEM,

CMAQ/ETA

Jul–Aug 2004 Northeastern US 12, 21, 27, and 42 km

Misenis and Zhang (2010) WRF-Chem Late Aug 2000 Eastern Texas 4 and 12 km

Tesche et al. (2006) CMAQ,

CAMx

Full year, 2002 Contiguous US 12 km eastern US,

36 km contiguous US

Yahya et al. (2014) WRF-Chem Full year, 2006 Contiguous US 36 km

Zhang et al. (2010) WRF-Chem Late Aug 2010 Eastern Texas 12 km

Zhang et al. (2012) WRF-Chem Jul 2001 Contiguous US 36 km

Table A2. WRF-Chem annual average predictive performance by pollutant in Yahya et al. (2014) and in the current study.

Variable Network MB NMB NME

Yahya et Current Yahya et Current Yahya et Current

al. (2014) study al. (2014) study al. (2014) study

Daily peak O3 (ppb) CASTNET −8.6 3.9 −18 % 9 % 24 % 12 %

AQS −0.3 5.5 −5 % 13 % 9 % 15 %

Daytime average O3 (ppb) CASTNET −5.6 3.5 −13 % 9 % 22 % 11 %

AQS −1.7 4.9 −4 % 13 % 24 % 16 %

SO2 (ppb) AQS −0.6 5.1 −18 % 130 % 87 % 150 %

NO2 (ppb) AQS 1.7 1.6 17 % 12 % 73 % 34 %

Total PM2.5 (µgm−3) CSN 0.0 0.4 0 % 3 % 45 % 18 %

SO4 PM2.5 (µgm−3) IMPROVE 0.5 0.9 35 % 40 % 66 % 42 %

CSN 0.9 1.6 32 % 41 % 59 % 42 %

CASTNET 0.9 1.3 34 % 38 % 55 % 38 %

NH4 PM2.5 (µgm−3) CSN 0.1 0.0 10. % −2 % 53 % 16 %

CASTNET 0.3 0.1 30. % 7 % 50. % 16 %

NO3 PM2.5 (µgm−3) IMPROVE −0.1 −0.5 −14 % −69 % 85 % 69 %

CSN −0.6 −1.3 −38 % −72 % 75 % 72 %

CASTNET −0.1 −0.7 −15 % −65 % 83 % 65 %

EC PM2.5 (µgm−3) IMPROVE 0.0 0.0 15 % −9 % 67 % 31 %

CSN 0.4 0.2 54 % 25 % 90. % 43 %

OC PM2.5 (µgm−3) IMPROVE 0.0 0.2 1 % 17 % 59 % 33 %

www.geosci-model-dev.net/8/957/2015/ Geosci. Model Dev., 8, 957–973, 2015
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Supporting information

Supplement includes WRF-Chem configuration settings

(ASCII format); maps showing spatial patterns in pollutant

concentrations by annual average, month of year, day of

week, and hour of day (PDF format); model–measurement

comparison statistics (XLSX format); and monitor-specific

paired model and measurement data (JSON ASCII format).

A video showing spatially and temporally explicit O3 and

PM2.5 concentrations is at http://youtu.be/4bpQXBAUVwE.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-957-2015-supplement.
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