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Abstract. Modelling and classification difficulties are funda-

mental issues in natural hazard assessment. A geographic in-

formation system (GIS) is a domain that requires users to use

various tools to perform different types of spatial modelling.

Bivariate statistical analysis (BSA) assists in hazard mod-

elling. To perform this analysis, several calculations are re-

quired and the user has to transfer data from one format to an-

other. Most researchers perform these calculations manually

by using Microsoft Excel or other programs. This process

is time-consuming and carries a degree of uncertainty. The

lack of proper tools to implement BSA in a GIS environment

prompted this study. In this paper, a user-friendly tool, bi-

variate statistical modeler (BSM), for BSA technique is pro-

posed. Three popular BSA techniques, such as frequency ra-

tio, weight-of-evidence (WoE), and evidential belief function

(EBF) models, are applied in the newly proposed ArcMAP

tool. This tool is programmed in Python and created by a

simple graphical user interface (GUI), which facilitates the

improvement of model performance. The proposed tool im-

plements BSA automatically, thus allowing numerous vari-

ables to be examined. To validate the capability and accuracy

of this program, a pilot test area in Malaysia is selected and

all three models are tested by using the proposed program.

Area under curve (AUC) is used to measure the success rate

and prediction rate. Results demonstrate that the proposed

program executes BSA with reasonable accuracy. The pro-

posed BSA tool can be used in numerous applications, such

as natural hazard, mineral potential, hydrological, and other

engineering and environmental applications.

1 Introduction

Techniques to predict a response variable given a set of char-

acteristics are required in several scientific regularities. Nu-

merous applications have been implemented in various ar-

eas of geosciences. Bivariate analysis is one of the simplest

methods of statistical analysis and is popular in numerous

fields of study. Mathematicians, statisticians, biologists, and

hydrologists use this method to perform their analysis. Dif-

ferent types of bivariate statistical analysis (BSA) have been

established, for example, frequency ratio (FR), weight of

evidence (WoE), and evidential belief function (EBF) (Yal-

cin, 2008). Although each of these methods requires specific

mechanisms for calculation, all of these methods operate by

using the same concept. Environmental scientists model var-

ious natural conditions by using the BSA statistical method.

For instance, Ozdemir (2011) employed this technique for

the same purpose. The results of the analysis were plotted

in ArcGIS after computation in other programs. Mineral po-

tential mapping is also aided by BSA techniques. Carranza

(2004) used WoE modelling to map the mineral potential in

the administrative province of Abra in northwestern Philip-

pines. Their achievements indicate the plausibility of WoE

in the mineral potential mapping of large areas with a small

number of mineral prospects. Researchers have applied WoE

in mapping mineral potential (Bonham-Carter et al., 1989)

and it remains popular in this area of research (Carranza et

al., 2008).

BSA is in demand in hazard studies because its procedure

is simple and efficient. This technique has been used in nat-

ural hazard applications by researchers to predict the spatial

distribution of events. Extensive literature on different BSA

techniques and their proficiency assessment are also avail-
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able. BSA techniques can be used as a simple geospatial

analysis tool to determine the probabilistic correlation among

dependent variables (produced by using the inventory map of

a hazard incidence) and independent variables (conditioning

factors) containing multi-categorized maps (Oh et al., 2011).

In BSA, the overlay of conditioning factors and computa-

tion of hazard densities, the significance of each factor, or the

particular mixture of factors can be investigated individually.

Bivariate statistical analysis functions by using a dependent

variable and one conditioning factor. Hence, the significance

of each factor is investigated separately (Porwal et al., 2006).

In BSA, each conditioning factor is overlaid with the de-

pendent variable. On the basis of the event density, weights

are measured for each class of each factor. By using normal-

ized weights (the correlation between the event density in

each class of conditioning factor and the event density of the

entire region), each conditioning factor is reclassified and the

hazard map is produced. By using the acquired weights, de-

cision rules can be produced on the basis of the knowledge of

experts. Conditioning factors can also be combined to gener-

ate a map with uniform units, which is then overlaid with the

inventory map to provide the density per class. The BSA ap-

proach has been used in landslide mapping (Constantin et al.,

2011), earthquake studies (Xu et al., 2012b), flood suscepti-

bility mapping (Tehrany et al., 2013), land subsidence (Kim

et al., 2006; Lee and Park, 2013), and risk analysis (Hu et al.,

2009). Numerous studies have been conducted to exploit the

potential application of BSA in the hazard domain.

This research examined the efficiency of statistical analy-

sis, particularly bivariate analysis, in landslide studies in the

Cuyahoga River watershed (Nandi and Shakoor, 2010). In

another study, FR and WoE were applied in the Sultan Moun-

tains of southwestern Turkey to map areas that are suscepti-

ble to landslides (Ozdemir and Altural, 2013). According to

Nandi and Shakoor (2010) and Ozdemir and Altural (2013),

the BSA model is simple and its input, computation, and out-

come procedures are effortlessly understood. The application

of EBF in the area of landside studies has been investigated

(Lee et al., 2013). Four functions, namely degree of belief

(Bel), degree of disbelief (Dis), degree of uncertainty (Unc),

and degree of plausibility (Pls), are calculated separately to

determine EBF.

Each of these functions produces valuable information.

However, each function requires individual computations

with specific formulas. Tien Bui et al. (2012) used EBF and

fuzzy logic methods in their research and found that the

landslide susceptibility map derived from EBF has the high-

est prediction ability. They also established the efficiency of

BSA in landslide mapping.

BSA is also popular in hydrological research. Flood

susceptibility maps assist in mitigation strategies. Lee et

al. (2012) used the statistical method of FR to produce a map

of flood-prone regions in Busan, Korea, in a geographic in-

formation system (GIS). Tehrany et al. (2013) proposed an

ensemble method of FR and logistic regression (LR) to detect

regions with high flood probability in Kelantan, Malaysia.

The conditioning factors were reclassified on the basis of the

weights acquired from the FR technique. These factors were

entered in LR processing to obtain the multivariate statistical

analysis (MSA) result. If the calculation time for these statis-

tics can be reduced, the efficiency of the developed ensemble

method will be enhanced. Hence, producing a tool that is ca-

pable of performing BSA calculations will help reduce the

calculation time of ensemble methods.

The BSA model has been widely used in land subsidence

susceptibility mapping. In a study by Lee and Park (2013),

the FR model was applied and compared with the machine

learning of decision tree (DT). The BSA is a method that

is commonly used in natural hazard investigations. Although

this method is not novel, the use of BSA has increased in

recent years. Remote sensing (RS) and GIS have revolution-

ized the domain of natural hazards (Jebur et al., 2013a, b).

A spatial database consists of different data types that are re-

quired to be transferred from one format to another because

specific programs accept only specific data formats. Scien-

tists have started to develop new programs in hazard studies

because of the vital role of early warning systems in such

applications (Osna et al., 2014; Pradhan et al., 2014). GIS

is capable of storing, analyzing, and showing geographic in-

formation. It makes it possible to collect, organize, explore,

model and view the spatial data for solving complex prob-

lems (Barreca et al., 2013). Different types of spatial data

analysis range from the simple overlaying of various the-

matic layers to identify the region to the more complex use

of mathematical equations or combined statistical models for

the prediction of natural hazards. The importance of GIS in

catastrophic evaluation was proven by many studies related

to the usage of the GIS tools in exploration of various types

of data (Steiniger and Hunter, 2013).

For example the existing hydrological GIS-based tools,

such as Mike SHE and ArcSWAT, revealed considerable

power in enhancing the accuracy of soil and water evalua-

tions (Lei et al., 2011). These tools are capable of facilitating

the modelling and calibration procedure, and decreasing the

stages in implementing the models and increasing the preci-

sion of the outcomes (Hörmann et al., 2009). The creation

of tools that automatically implement susceptibility mapping

was applied by Akgun et al. (2012). Akgun et al. (2012) pro-

posed MamLand, a program in MATLAB, to create land-

slide susceptibility mapping by using a fuzzy inference sys-

tem. ArcGIS allows users to produce specific tools for spa-

tial analysis (Stevens et al., 2007). For instance, Pradhan et

al. (2014) developed a tool in ArcGIS to apply texture analy-

sis for high-resolution radar data. Recently, a GIS-based sys-

tem has been developed by Barreca et al. (2013) to evaluate

and process the hazard associated with active faults influenc-

ing the eastern and southern flanks of Mt. Etna. The proposed

tool was created in ArcGIS which contains various thematic

data sets. It includes spatially referenced arc features and as-

sociated databases. In another paper, Lei et al. (2011) inte-
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grated a hydrological code EasyDHM and proposed an open-

source MapWindow GIS tool called MWEasyDHM. Their

aim was to create the tool by combining modules for prepro-

cessing, modelling, viewing, and analysis. MWEasyDHM

tool is user-friendly, free, and proficient which produces se-

lectable multi-functional hydrological analysis. Similarly, a

number of GIS tools are programmed by Etherington (2011)

in the Python environment for landscape genetics researches.

Tools are capable of transforming files, viewing genetic relat-

edness, and calculating landscape associations through least-

cost path procedure. The tools are free and available in Arc-

Toolbox. In a separate paper, Roberts et al. (2010) imple-

mented the research to facilitate the advanced analytic meth-

ods. A Marine Geospatial Ecology Tool (MGET) was cre-

ated in GIS environment which is free, easy to use, and an

efficient tools for the ecologists. The tools were made by in-

tegrating different strong programming methods of Python,

R, MATLAB, and C++.

The current research aims to reduce the processing time

of BSA by introducing an easy-to-use ArcMap tool. On the

basis of the aforementioned problem statement regarding the

required processing time and difficulties for BSA, a program

that is capable of calculating BSA automatically should be

developed. Hence, a tool programmed in Python and based

on the BSA technique is proposed. This tool automatically

extracts the correlation among each class of conditioning

factor and event occurrence, reclassifies the factors on the

basis of the acquired weights in a GIS environment, and

saves each correlation in separate folders. A simple graphical

user interface (GUI) improves the model operation because

Python knowledge is not required. The entire process can be

performed in ArcGIS without any requirement for another

program. The proposed tool was tested to generate a land-

slide susceptibility map of Bukit Antarabangsa, Ulu Klang,

Malaysia.

2 Methodology

The procedural and theoretical perspectives of BSA applied

in this research include several steps (Fig. 1). In the method-

ology flowchart, the BSA tool was developed and integrated

into ArcGIS. To apply BSA, the conditioning factors should

be provided in raster format and classified with the proper

scheme by the user. The BSA recognizes the effects of each

class of conditioning factor on event occurrence. Hence, this

step cannot be eliminated in the BSA process. As a second

stage, a dependent variable (training layer) should be con-

structed by using the inventory map and other resources. This

layer should contain a pixel value of one to represent the ex-

istence of an event. Once the conditioning factors are classi-

fied and the training layers are prepared, FR, WoE, and EBF

can be applied automatically. The developed program reclas-

sifies each conditioning factor by using the attained weights

and saves them in a separate folder. The group of condition-

Figure 1. General design of the methodology and BSA tool.

ing factors that have been assessed by BSA are ready to be

entered in the raster calculator to derive the corresponding

hazard map. The following subsection represents the overall

information on the scheme and functionality of the developed

tool.

2.1 Overall information on scheme and functionality

The program is developed by using ArcGIS and Python for

BSA. The tool can be used in the ArcGIS 9 and 10 versions.

Figure 2 displays the interface of the tool in GIS toolbox.

The ArcToolbox provided in this research is used to enter

the proposed tool in ArcMap. The user defines the source of

the Python files of each model from the properties menu of

the script (Fig. 3).

The program is partitioned into three sections: FR, WoE,

and EBF. The theoretical concept and graphic interface of

each tool is discussed in the following sections.

2.1.1 Frequency ratio

The theoretical expression of FR, as well as its usage in land-

slide susceptibility and flood mapping, has been reported

in the studies conducted by Yilmaz (2009) and Tehrany et

al. (2013). The FR method has a simple and understandable

structure compared with other probabilistic methods. FR is

described as the proportion of the region where an event oc-

curred over the entire area; FR is also defined as the propor-

tion of likelihood of an event occurrence to a non-occurrence

for a particular attribute. FR can be calculated by using the
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Figure 2. BSA tool interface.

following equation

FR=

Npix(SXi )
m∑

i=1

SXi

Npix(Xj )
n∑

j=1

Npix(Xj )

, (1)

where Npix(SXi) is the number of pixels, which contain an

event in class i of the independent variable; X, Npix(Xj ) is

the number of pixels and exist in independent variables Xj ;

m is the number of categories of the independent variable Xi .

Furthermore, n is the total number of independent variables

in the whole area (Yilmaz, 2009). Most of the researchers

performed these calculations manually by using Microsoft

Excel or other programs. Once the weights were obtained,

these values were used to reclassify the independent vari-

ables by using the spatial analyst tool in ArcGIS. The raster

calculator in ArcGIS was used to obtain the final suscepti-

bility map. The proposed tool in ArcMap can apply the FR

automatically and reclassify the independent variables on the

basis of the gained weights.

The graphic interface of the FR tool consists of one win-

dow containing four fields (Fig. 4). Each field is user-defined

in ArcGIS. The first field is the input raster, which is re-

lated to the desired conditioning factor. The training layer

or dependent variable, which is predefined and saved prior

to analysis, is selected for the second field. The cell size of

the output and its location are specified by the user in the

third and fourth fields, respectively. The developed tool has

a simple structure, thus providing BSA for each condition-

ing factor within a few seconds. In manual calculations, this

procedure usually requires a considerable amount of time to

be implemented. The proposed tool reclassifies the analyzed

conditioning factor based on the attained weights and saves

it in the folder selected by the user.

2.1.2 Weight of evidence

The WoE method is a data-driven technique based on

the Bayesian probability framework (Beynon et al., 2000;

Neuhäuser and Terhorst, 2007; Porwal et al., 2006). This

characteristic provides additional advantages to the proposed

tool compared with other statistical methods. To implement

WoE, two important parameters of positive weight (W+) and

negative weight (W−) are computed (Bonham-Carter et al.,

1989). This technique calculates the weight for each inde-

pendent variable (B) on the basis of the existence or non-

existence of the event (A) within the study area (Xu et al.,

2012a) by using the following equations

W+i = ln
P {B|A}

P {B|Ā}
, (2)

W+i = ln
P {B̄|A}

P {B̄|Ā}
, (3)

where P represents the probability, ln is the natural log. B

and B̄ reveal the existence and non-existence of the indepen-

dent variable. A and Ā show the existence and non-existence

of the event. A positive weight (W+) determines the pres-

ence of the specific independent variable at the event, and

the amount of positive weight represents the positive cor-

relation between the presence of the independent variable

and event, respectively. A negative weight (W−) indicates

the non-existence of the independent variable and shows the

amount of negative correlation.

The weight contrast is the difference between the two

weights of W+ and W−:

C(C =W+−W−). (4)

The size of the weight contrast demonstrates the spatial rela-

tionship between the independent variable and the event. The

C value is positive in the case of a positive relationship and

is negative in the case of a negative relationship.

The standard deviation of W is calculated as follows:

S(C)=
√

S2W++ S2W−, (5)

where S(W+) and S(W−) are the variance of the positive

and negative weights, respectively. These variances can be

calculated by using the following equations

S2W+ =
1

N{B ∩A}
+

1

B ∩ Ā
, (6)
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Figure 3. Procedure to add the BSM tool in ArcGIS.

Figure 4. Graphic user interface of the FR tool.

S2W− =
1

N{B̄ ∩A}
+

1

{B̄ ∩ Ā}
. (7)

By using the proportion of the contrast divided by its stan-

dard deviation, the studentized contrast is calculated. The

studentized contrast is the final weight that assists the in-

formal test if C is considerably different from zero or if the

contrast is probable to be real. A complete explanation of the

Figure 5. Graphic interface of the WoE tool.

mathematical formulation of this method is accessible in Xu

et al. (2012b). Figure 5 illustrates the user interface of the

WoE tool. Each field should be defined similar to FR.

2.1.3 Evidential belief function

Dempster (1967) is an innovator who presented the

Dempster–Shafer theory of evidence, which is known as a

generalized Bayesian theory of subjective probability. This

www.geosci-model-dev.net/8/881/2015/ Geosci. Model Dev., 8, 881–891, 2015
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theory has been used in several fields of study, including

environmental and hazard studies (Awasthi and Chauhan,

2011). This theory also has relative flexibility, which is con-

sidered its advantage, accepts uncertainty, and is capable of

combining beliefs from different sources of evidence. EBF

estimates the probability that a hypothesis is true and evalu-

ates how close the evidence is to the truth of that hypothesis.

A complex procedure is required to calculate EBF compared

with FR. To compute the EBF, four functions (Bel, Dis, Unc,

and Pls) should be measured separately (Lee et al., 2013). In-

dividual computation by using specific formulas is required

to provide this information.

Assume that a set of independent variables of C = (Ci i =

1,2,3, . . .,n), which contains mutually exclusive and ex-

haustive factors of Ci , is used in current research. The func-

tion m : P(C)→ [0,1] is the basis of the probability assign-

ment.

Bel(Cij )=
WCij (event)

n∑
j=1

WCij (event)

, (8)

where C is the frame of discernment and P(C) is the set of all

subsets of C, counting the empty set (8) and C itself. Mass

function is another name for the mentioned function that sat-

isfies m(8)= 0 and
∑
AC

m(A)= 1, where A is any subset of

C. The degree in which the evidence supports A is calculated

by m(A), which is represented by a belief function (Bel(A)).

Suppose that N(L) and N(C) are the total number of pix-

els affected by the event and the total number of pixels in

the study area, respectively; Cij is the j th class of the inde-

pendent variable of Ci(i = 1,2,3, . . .,n); N(Cij ) is the total

number of pixels in class Cij ; and N = (L∩ Cij ) is the num-

ber of pixels affected by the event in Cij . Therefore, the data-

driven measurements of EBF can be calculated using Eq. (6)

and the following equations (Tien Bui et al., 2012)

WCij (event) =
N(L∩Cij )/N(L)

[N(Cij )−N(L∩Cij )]/[N(C)−N(L)]
, (9)

Dis(Cij )=
WCij (Non-even)

n∑
j=1

WCij (Non-even)

, (10)

where the Cij is shown by WCij (event) and supports the belief

that the presence of the event is more than its non-existence.

The detailed mathematical calculation of each function has

been discussed in several studies such as Lee et al. (2013).

Figure 6 represents the interface of the EBF tool, and con-

tains three more fields compared with the two other methods

because each EBF function should be applied and saved in a

separate folder. Hence, after the selection of the conditioning

factor, training layer, and output cell size, the location to save

each function should be defined.

Figure 6. Graphic interface of the EBF tool.

2.2 Code description

The code was designed in Python 27 (the default software in-

cluded with Windows 7). In the beginning, the arcPy library

is called to check the code for spatial extension in order to

continue the process. After that, when the user defines the

raster, the code calls the raster data as text using the com-

mand GetParameterAsText which is part of arcPy library. Us-

ing same as the previous command, the code will define the

output layer for the chosen model. The default path for all

the sub-processes is defined to be in C drive because it is the

default drive in all the systems. Therefore, the code creates

folders called FR_modeler, WOE_modeler, or EBF_modeler

depending on the selected process.

The next stage is to analyze the input layer (e.g. slope) and

the lookup command will be applied to prepare the layer for

the zonal geometry process. The zonal geometry is defined as

the table used to work on the statistics of the output. A file is

added to the attribute of the created table in the previous step,

i.e. zonal, to be used for calculating the percentage of each

class of the input layer. A statistics analysis was applied to

calculate the sum of all the pixels of the selected layer. Then,

a joining process is defined to link the created table with the

input layer. Subsequently, a tabulate area process was ran to

calculate the percentage of the occurrence of the independent

factor (i.e. landslide) in each input layer classes. The last step

for calculating FR is applied using Eq. (1). Then, the result-

ing value is defined as an integer and used to reclassify the

input layer. The code includes a delete command to delete all

the sub-process layers and tables.

The process of WoE and EBF contains the same process of

FR as its initial step. However, more statistical analysis and

more field are added to calculate the parameters of WoE and

EBF which are listed in Eqs. (2)–(8). In each selected model,

a different folder will be created. The user may overwrite and

redo the process as much as required because the command

overwriteOutput was defined for each code. The flow chart

regarding the three algorithms is shown in Figs. 7, 8, and 9.
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Figure 9. Code flowchart of the EBF model.

2.3 Test area and data

Although the developed program can be used in any appli-

cation that employs BSA, the proficiency of the tool was

tested in the hazard domain. To examine the capability and

efficiency of the developed program, landslide susceptibility

analyses were performed by using the developed ArcMAP

tool with three BSA models, namely FR, WoE, and EBF. The

program was tested for the landslide susceptibility mapping

of Bukit Antarabangsa, Ulu Klang, Malaysia (Fig. 10).

A spatial database was constructed and analyzed on the

basis of the altitude, aspect, curvature, slope, stream power

index, topographic wetness index, distance from the river,

distance from the road, and geological layers. Comprehen-

sive overview of the usage of BSA for landslide susceptibil-

ity mapping has been reported in numerous studies (Yalcin et

al., 2011). A study conducted by Mohammady et al. (2012)

provided additional knowledge on the capabilities of these

three BSA methods. This previous research compared the

three methods of FR, WoE, and EBF and determined the

pros and cons of each statistical approach. A total of 47 land-

slide locations were recorded and a landslide inventory map

was prepared. The allocation of the landslide inventory for

training and testing was 70 and 30 %, respectively (Fig. 10).

The training data set (31 landslide locations) was chosen ran-

domly and a dependent layer (landslide layer) was created.

Figure 10. Location of the pilot study area for testing the proposed

ArcMAP tool.
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Figure 11. Landslide susceptibility maps derived from (a) FR, (b) WoE, and (c) EBF.

3 Experimental results and discussion

To examine the efficiency of the developed bivariate statis-

tical modeler (BSM) tool, landslide susceptibilities were de-

rived by using all three methods. The correlation among the

conditioning factors and landslide occurrence was extracted.

The landslide probability index was measured and classi-

fied by using the proper scheme. To produce a susceptibility

map, the probability index should be partitioned into various

classes. The quantile method was applied in the current re-

search because of its reputation in classification. In the quan-

tile classification method, each class has the same number

of features. The method provided appropriate results on the

comparison between the created landslide susceptibility map

and the spatial distribution of landslide events. The acquired

landslide conditioning factors are shown in Fig. 11.

The derived landslide susceptibility map from WoE shows

a different appearance compared with the two other maps.

Validation should be performed to determine which map is

reliable. The area under curve (AUC) was applied to exam-

ine the precision of the derived susceptibility maps (Pérez-

Vega et al., 2012). The success rate values were 68, 63, and

76 % for FR, WoE, and EBF, respectively. Moreover, 71, 75,

and 80 % were the prediction rates for FR, WoE, and EBF,

respectively. The EBF represented the highest accuracy com-

pared with other methods in terms of success and prediction

rates. The prediction rate value for WoE was high but not as

high as EBF. This result is caused by the greater proficiency

and capability of EBF compared with WoE. Recognizing the

best method for modelling is possible because any compara-

tive study is restricted and the best method for a specific data

set is significantly related to the characteristics of that data

set. Figure 12 illustrates the computed accuracies.

The design and interface of the developed tool show that

the BSA is simple to execute by using the proposed program

compared with manual calculation. The derived susceptibil-

ity maps and their AUC values suggest that the tool is precise

and reliable. Previous research has established that because

of the nature of BSA, the obtained results are imprecise com-

pared with machine learning and rule-based methods. There-

fore, the measured accuracies are acceptable for these simple

statistical methods.

4 Conclusions

To perform hazard studies, several requirements, such as

constructing the precise spatial database, obtaining high-

resolution imagery, and providing a reliable inventory map,

should be fulfilled. Users can be confronted with the insuffi-

ciency of appropriate and free tools to perform various analy-

ses. This condition makes such studies complex and in some

cases, time-consuming. The BSA is one of the fundamen-

tal methods in hazard mapping. Hence, developing a tool

that manages a large number of factors with an automatic

statistical and classification performance is essential. Users

commonly have to apply the BSA calculation manually and
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Figure 12. Graphic representation of the cumulative frequency diagram presenting the cumulative landslide occurrence (%; y axis) in

landslide probability index rank (%; x axis): (a) success rate, and (b) prediction rate.

within a separate software. The results have to be entered in

a GIS environment and used to reclassify each conditioning

factor one after another. The proposed BSM tool can be used

to automate the BSA procedure and to facilitate the gener-

ation of the probability index. BSM is developed as a tool

in ArcGIS, which is capable of performing the three BSA

models of FR, WoE, and EBF. This tool can also manage

large amounts of conditioning factors with reduced calcula-

tion time, thus allowing the replication of various trials. As an

example, a significant characteristic of BSM is the reclassifi-

cation of the conditioning factors on the basis of the acquired

weight from BSA. The GUI also allows the application of

FR, WoE, and EBF without entering any code from Python,

thus helping the user in model operation. The application

to landslide susceptibility mapping in Bukit Antarabangsa

in Ulu Klang, Malaysia, provides significant outcomes. All

three methods are applied and landslide susceptibility maps

are created. FR, WoE, and EBF acquired success rates of 68,

63, and 76 %, respectively. AUC values for prediction rates

are 71, 75, and 80 % for FR, WoE, and EBF, respectively.

In conclusion, the proposed tool can transform the BSA pro-

cedure into a simple and fast technique. This tool can assist

scientists in performing statistical analyses for any environ-

ment and mathematical application.
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