Geosci. Model Dev., 8, 881-891, 2015
www.geosci-model-dev.net/8/881/2015/
doi:10.5194/gmd-8-881-2015

© Author(s) 2015. CC Attribution 3.0 License.

An integrated user-friendly ArcMAP tool for bivariate statistical
modelling in geoscience applications

M. N. Jebur, B. Pradhan, H. Z. M. Shafri, Z. M. Yusoff, and M. S. Tehrany

Department of Civil Engineering, Geospatial Information Science Research Center (GISRC),
Faculty of Engineering, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Correspondence to: B. Pradhan (biswajeet24@gmail.com, biswajeet@lycos.com)

Received: 3 September 2014 — Published in Geosci. Model Dev. Discuss.: 28 October 2014
Revised: 26 February 2015 — Accepted: 3 March 2015 — Published: 30 March 2015

Abstract. Modelling and classification difficulties are funda-
mental issues in natural hazard assessment. A geographic in-
formation system (GIS) is a domain that requires users to use
various tools to perform different types of spatial modelling.
Bivariate statistical analysis (BSA) assists in hazard mod-
elling. To perform this analysis, several calculations are re-
quired and the user has to transfer data from one format to an-
other. Most researchers perform these calculations manually
by using Microsoft Excel or other programs. This process
is time-consuming and carries a degree of uncertainty. The
lack of proper tools to implement BSA in a GIS environment
prompted this study. In this paper, a user-friendly tool, bi-
variate statistical modeler (BSM), for BSA technique is pro-
posed. Three popular BSA techniques, such as frequency ra-
tio, weight-of-evidence (WOE), and evidential belief function
(EBF) models, are applied in the newly proposed ArcMAP
tool. This tool is programmed in Python and created by a
simple graphical user interface (GUI), which facilitates the
improvement of model performance. The proposed tool im-
plements BSA automatically, thus allowing numerous vari-
ables to be examined. To validate the capability and accuracy
of this program, a pilot test area in Malaysia is selected and
all three models are tested by using the proposed program.
Area under curve (AUC) is used to measure the success rate
and prediction rate. Results demonstrate that the proposed
program executes BSA with reasonable accuracy. The pro-
posed BSA tool can be used in numerous applications, such
as natural hazard, mineral potential, hydrological, and other
engineering and environmental applications.

1 Introduction

Techniques to predict a response variable given a set of char-
acteristics are required in several scientific regularities. Nu-
merous applications have been implemented in various ar-
eas of geosciences. Bivariate analysis is one of the simplest
methods of statistical analysis and is popular in numerous
fields of study. Mathematicians, statisticians, biologists, and
hydrologists use this method to perform their analysis. Dif-
ferent types of bivariate statistical analysis (BSA) have been
established, for example, frequency ratio (FR), weight of
evidence (WOE), and evidential belief function (EBF) (Yal-
cin, 2008). Although each of these methods requires specific
mechanisms for calculation, all of these methods operate by
using the same concept. Environmental scientists model var-
ious natural conditions by using the BSA statistical method.
For instance, Ozdemir (2011) employed this technique for
the same purpose. The results of the analysis were plotted
in ArcGIS after computation in other programs. Mineral po-
tential mapping is also aided by BSA techniques. Carranza
(2004) used WoE modelling to map the mineral potential in
the administrative province of Abra in northwestern Philip-
pines. Their achievements indicate the plausibility of WoE
in the mineral potential mapping of large areas with a small
number of mineral prospects. Researchers have applied WoE
in mapping mineral potential (Bonham-Carter et al., 1989)
and it remains popular in this area of research (Carranza et
al., 2008).

BSA is in demand in hazard studies because its procedure
is simple and efficient. This technique has been used in nat-
ural hazard applications by researchers to predict the spatial
distribution of events. Extensive literature on different BSA
techniques and their proficiency assessment are also avail-
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able. BSA techniques can be used as a simple geospatial
analysis tool to determine the probabilistic correlation among
dependent variables (produced by using the inventory map of
a hazard incidence) and independent variables (conditioning
factors) containing multi-categorized maps (Oh et al., 2011).
In BSA, the overlay of conditioning factors and computa-
tion of hazard densities, the significance of each factor, or the
particular mixture of factors can be investigated individually.
Bivariate statistical analysis functions by using a dependent
variable and one conditioning factor. Hence, the significance
of each factor is investigated separately (Porwal et al., 2006).

In BSA, each conditioning factor is overlaid with the de-
pendent variable. On the basis of the event density, weights
are measured for each class of each factor. By using normal-
ized weights (the correlation between the event density in
each class of conditioning factor and the event density of the
entire region), each conditioning factor is reclassified and the
hazard map is produced. By using the acquired weights, de-
cision rules can be produced on the basis of the knowledge of
experts. Conditioning factors can also be combined to gener-
ate a map with uniform units, which is then overlaid with the
inventory map to provide the density per class. The BSA ap-
proach has been used in landslide mapping (Constantin et al.,
2011), earthquake studies (Xu et al., 2012b), flood suscepti-
bility mapping (Tehrany et al., 2013), land subsidence (Kim
et al., 2006; Lee and Park, 2013), and risk analysis (Hu et al.,
2009). Numerous studies have been conducted to exploit the
potential application of BSA in the hazard domain.

This research examined the efficiency of statistical analy-
sis, particularly bivariate analysis, in landslide studies in the
Cuyahoga River watershed (Nandi and Shakoor, 2010). In
another study, FR and WoE were applied in the Sultan Moun-
tains of southwestern Turkey to map areas that are suscepti-
ble to landslides (Ozdemir and Altural, 2013). According to
Nandi and Shakoor (2010) and Ozdemir and Altural (2013),
the BSA model is simple and its input, computation, and out-
come procedures are effortlessly understood. The application
of EBF in the area of landside studies has been investigated
(Lee et al., 2013). Four functions, namely degree of belief
(Bel), degree of disbelief (Dis), degree of uncertainty (Unc),
and degree of plausibility (Pls), are calculated separately to
determine EBF.

Each of these functions produces valuable information.
However, each function requires individual computations
with specific formulas. Tien Bui et al. (2012) used EBF and
fuzzy logic methods in their research and found that the
landslide susceptibility map derived from EBF has the high-
est prediction ability. They also established the efficiency of
BSA in landslide mapping.

BSA is also popular in hydrological research. Flood
susceptibility maps assist in mitigation strategies. Lee et
al. (2012) used the statistical method of FR to produce a map
of flood-prone regions in Busan, Korea, in a geographic in-
formation system (GIS). Tehrany et al. (2013) proposed an
ensemble method of FR and logistic regression (LR) to detect
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regions with high flood probability in Kelantan, Malaysia.
The conditioning factors were reclassified on the basis of the
weights acquired from the FR technique. These factors were
entered in LR processing to obtain the multivariate statistical
analysis (MSA\) result. If the calculation time for these statis-
tics can be reduced, the efficiency of the developed ensemble
method will be enhanced. Hence, producing a tool that is ca-
pable of performing BSA calculations will help reduce the
calculation time of ensemble methods.

The BSA model has been widely used in land subsidence
susceptibility mapping. In a study by Lee and Park (2013),
the FR model was applied and compared with the machine
learning of decision tree (DT). The BSA is a method that
is commonly used in natural hazard investigations. Although
this method is not novel, the use of BSA has increased in
recent years. Remote sensing (RS) and GIS have revolution-
ized the domain of natural hazards (Jebur et al., 2013a, b).
A spatial database consists of different data types that are re-
quired to be transferred from one format to another because
specific programs accept only specific data formats. Scien-
tists have started to develop new programs in hazard studies
because of the vital role of early warning systems in such
applications (Osna et al., 2014; Pradhan et al., 2014). GIS
is capable of storing, analyzing, and showing geographic in-
formation. It makes it possible to collect, organize, explore,
model and view the spatial data for solving complex prob-
lems (Barreca et al., 2013). Different types of spatial data
analysis range from the simple overlaying of various the-
matic layers to identify the region to the more complex use
of mathematical equations or combined statistical models for
the prediction of natural hazards. The importance of GIS in
catastrophic evaluation was proven by many studies related
to the usage of the GIS tools in exploration of various types
of data (Steiniger and Hunter, 2013).

For example the existing hydrological GIS-based tools,
such as Mike SHE and ArcSWAT, revealed considerable
power in enhancing the accuracy of soil and water evalua-
tions (Lei et al., 2011). These tools are capable of facilitating
the modelling and calibration procedure, and decreasing the
stages in implementing the models and increasing the preci-
sion of the outcomes (Hormann et al., 2009). The creation
of tools that automatically implement susceptibility mapping
was applied by Akgun et al. (2012). Akgun et al. (2012) pro-
posed MamLand, a program in MATLAB, to create land-
slide susceptibility mapping by using a fuzzy inference sys-
tem. ArcGIS allows users to produce specific tools for spa-
tial analysis (Stevens et al., 2007). For instance, Pradhan et
al. (2014) developed a tool in ArcGIS to apply texture analy-
sis for high-resolution radar data. Recently, a GIS-based sys-
tem has been developed by Barreca et al. (2013) to evaluate
and process the hazard associated with active faults influenc-
ing the eastern and southern flanks of Mt. Etna. The proposed
tool was created in ArcGIS which contains various thematic
data sets. It includes spatially referenced arc features and as-
sociated databases. In another paper, Lei et al. (2011) inte-
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grated a hydrological code EasyDHM and proposed an open-
source MapWindow GIS tool called MWEasyDHM. Their
aim was to create the tool by combining modules for prepro-
cessing, modelling, viewing, and analysis. MWEasyDHM
tool is user-friendly, free, and proficient which produces se-
lectable multi-functional hydrological analysis. Similarly, a
number of GIS tools are programmed by Etherington (2011)
in the Python environment for landscape genetics researches.
Tools are capable of transforming files, viewing genetic relat-
edness, and calculating landscape associations through least-
cost path procedure. The tools are free and available in Arc-
Toolbox. In a separate paper, Roberts et al. (2010) imple-
mented the research to facilitate the advanced analytic meth-
ods. A Marine Geospatial Ecology Tool (MGET) was cre-
ated in GIS environment which is free, easy to use, and an
efficient tools for the ecologists. The tools were made by in-
tegrating different strong programming methods of Python,
R, MATLAB, and C + +.

The current research aims to reduce the processing time
of BSA by introducing an easy-to-use ArcMap tool. On the
basis of the aforementioned problem statement regarding the
required processing time and difficulties for BSA, a program
that is capable of calculating BSA automatically should be
developed. Hence, a tool programmed in Python and based
on the BSA technique is proposed. This tool automatically
extracts the correlation among each class of conditioning
factor and event occurrence, reclassifies the factors on the
basis of the acquired weights in a GIS environment, and
saves each correlation in separate folders. A simple graphical
user interface (GUI) improves the model operation because
Python knowledge is not required. The entire process can be
performed in ArcGIS without any requirement for another
program. The proposed tool was tested to generate a land-
slide susceptibility map of Bukit Antarabangsa, Ulu Klang,
Malaysia.

2 Methodology

The procedural and theoretical perspectives of BSA applied
in this research include several steps (Fig. 1). In the method-
ology flowchart, the BSA tool was developed and integrated
into ArcGIS. To apply BSA, the conditioning factors should
be provided in raster format and classified with the proper
scheme by the user. The BSA recognizes the effects of each
class of conditioning factor on event occurrence. Hence, this
step cannot be eliminated in the BSA process. As a second
stage, a dependent variable (training layer) should be con-
structed by using the inventory map and other resources. This
layer should contain a pixel value of one to represent the ex-
istence of an event. Once the conditioning factors are classi-
fied and the training layers are prepared, FR, WoE, and EBF
can be applied automatically. The developed program reclas-
sifies each conditioning factor by using the attained weights
and saves them in a separate folder. The group of condition-
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Figure 1. General design of the methodology and BSA tool.

ing factors that have been assessed by BSA are ready to be
entered in the raster calculator to derive the corresponding
hazard map. The following subsection represents the overall
information on the scheme and functionality of the developed
tool.

2.1 Overall information on scheme and functionality

The program is developed by using ArcGIS and Python for
BSA. The tool can be used in the ArcGIS 9 and 10 versions.
Figure 2 displays the interface of the tool in GIS toolbox.

The ArcToolbox provided in this research is used to enter
the proposed tool in ArcMap. The user defines the source of
the Python files of each model from the properties menu of
the script (Fig. 3).

The program is partitioned into three sections: FR, WOE,
and EBF. The theoretical concept and graphic interface of
each tool is discussed in the following sections.

2.1.1 Frequency ratio

The theoretical expression of FR, as well as its usage in land-
slide susceptibility and flood mapping, has been reported
in the studies conducted by Yilmaz (2009) and Tehrany et
al. (2013). The FR method has a simple and understandable
structure compared with other probabilistic methods. FR is
described as the proportion of the region where an event oc-
curred over the entire area; FR is also defined as the propor-
tion of likelihood of an event occurrence to a non-occurrence
for a particular attribute. FR can be calculated by using the
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Figure 2. BSA tool interface.

following equation

Npix(SXi)
i SXi
i=1
Npix(Xj) ’ (1)

Z Npix(xj)
j=1

FR=

where Npix(SX;) is the number of pixels, which contain an
event in class i of the independent variable; X, Npix(X ;) is
the number of pixels and exist in independent variables X ;;
m is the number of categories of the independent variable X;.
Furthermore, n is the total number of independent variables
in the whole area (Yilmaz, 2009). Most of the researchers
performed these calculations manually by using Microsoft
Excel or other programs. Once the weights were obtained,
these values were used to reclassify the independent vari-
ables by using the spatial analyst tool in ArcGIS. The raster
calculator in ArcGIS was used to obtain the final suscepti-
bility map. The proposed tool in ArcMap can apply the FR
automatically and reclassify the independent variables on the
basis of the gained weights.

The graphic interface of the FR tool consists of one win-
dow containing four fields (Fig. 4). Each field is user-defined
in ArcGIS. The first field is the input raster, which is re-
lated to the desired conditioning factor. The training layer
or dependent variable, which is predefined and saved prior
to analysis, is selected for the second field. The cell size of
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the output and its location are specified by the user in the
third and fourth fields, respectively. The developed tool has
a simple structure, thus providing BSA for each condition-
ing factor within a few seconds. In manual calculations, this
procedure usually requires a considerable amount of time to
be implemented. The proposed tool reclassifies the analyzed
conditioning factor based on the attained weights and saves
it in the folder selected by the user.

2.1.2 Weight of evidence

The WOE method is a data-driven technique based on
the Bayesian probability framework (Beynon et al., 2000;
Neuhéuser and Terhorst, 2007; Porwal et al., 2006). This
characteristic provides additional advantages to the proposed
tool compared with other statistical methods. To implement
WOE, two important parameters of positive weight (W) and
negative weight (W—) are computed (Bonham-Carter et al.,
1989). This technique calculates the weight for each inde-
pendent variable (B) on the basis of the existence or non-
existence of the event (A) within the study area (Xu et al.,
2012a) by using the following equations

w+ = in B4 )
P{B|A}

+ = InP{BM} (3)
LT p(BIAY

where P represents the probability, In is the natural log. B
and B reveal the existence and non-existence of the indepen-
dent variable. A and A show the existence and non-existence
of the event. A positive weight (W) determines the pres-
ence of the specific independent variable at the event, and
the amount of positive weight represents the positive cor-
relation between the presence of the independent variable
and event, respectively. A negative weight (W™) indicates
the non-existence of the independent variable and shows the
amount of negative correlation.

The weight contrast is the difference between the two
weights of W+ and W—:

C(C=Wt—w). 4)

The size of the weight contrast demonstrates the spatial rela-
tionship between the independent variable and the event. The
C value is positive in the case of a positive relationship and
is negative in the case of a negative relationship.

The standard deviation of W is calculated as follows:

S(C) =V S2W++ 82w, (%)

where S(W™T) and S(W™) are the variance of the positive
and negative weights, respectively. These variances can be
calculated by using the following equations

1 1

SPwt = + _,
N{(BNA} ' BNA

(6)
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mathematical formulation of this method is accessible in Xu
P 1 1 - et al. (2012b). Figure 5 illustrates the user interface of the
™) WOE tool. Each field should be defined similar to FR.

"~ N{BNA)} + (BNA}
By using the proportion of the contrast divided by its stan-
dard deviation, the studentized contrast is calculated. The
studentized contrast is the final weight that assists the in-
formal test if C is considerably different from zero or if the
contrast is probable to be real. A complete explanation of the
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2.1.3 Evidential belief function

Dempster (1967) is an innovator who presented the
Dempster-Shafer theory of evidence, which is known as a
generalized Bayesian theory of subjective probability. This
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theory has been used in several fields of study, including
environmental and hazard studies (Awasthi and Chauhan,
2011). This theory also has relative flexibility, which is con-
sidered its advantage, accepts uncertainty, and is capable of
combining beliefs from different sources of evidence. EBF
estimates the probability that a hypothesis is true and evalu-
ates how close the evidence is to the truth of that hypothesis.
A complex procedure is required to calculate EBF compared
with FR. To compute the EBF, four functions (Bel, Dis, Unc,
and PIs) should be measured separately (Lee et al., 2013). In-
dividual computation by using specific formulas is required
to provide this information.

Assume that a set of independent variables of C = (C;i =
1,2,3,...,n), which contains mutually exclusive and ex-
haustive factors of C;, is used in current research. The func-
tionm : P(C) — [0, 1] is the basis of the probability assign-
ment.

Bel(C) = —Cueem ®)
Z WC,- j (event)
j=1

where C is the frame of discernment and P (C) is the set of all
subsets of C, counting the empty set (®) and C itself. Mass
function is another name for the mentioned function that sat-
isfies m(®) =0 and > m(A) =1, where A is any subset of

C. The degree in Whiéhcthe evidence supports A is calculated
by m(A), which is represented by a belief function (Bel(A)).
Suppose that N(L) and N(C) are the total number of pix-
els affected by the event and the total number of pixels in
the study area, respectively; C;; is the jth class of the inde-
pendent variable of C; (i = 1,2,3,...,n); N(C;;) is the total
number of pixels in class C;;; and N = (LN C;;) is the num-
ber of pixels affected by the event in C;;. Therefore, the data-
driven measurements of EBF can be calculated using Eq. (6)
and the following equations (Tien Bui et al., 2012)

N(LNCij)/N(L)
[N(Cij) = N(LNCi)I/IN(C) = N(L)T’

©)

WC,~ j(event) =

C;j(Non-gven)

) 114

DIS(CZ']') = > (10)
Wij(Non—even)

=1

J

where the C;; is shown by W, (event) and supports the belief
that the presence of the event is more than its non-existence.
The detailed mathematical calculation of each function has
been discussed in several studies such as Lee et al. (2013).
Figure 6 represents the interface of the EBF tool, and con-
tains three more fields compared with the two other methods
because each EBF function should be applied and saved in a
separate folder. Hence, after the selection of the conditioning
factor, training layer, and output cell size, the location to save
each function should be defined.
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Figure 6. Graphic interface of the EBF tool.

2.2 Code description

The code was designed in Python 27 (the default software in-
cluded with Windows 7). In the beginning, the arcPy library
is called to check the code for spatial extension in order to
continue the process. After that, when the user defines the
raster, the code calls the raster data as text using the com-
mand GetParameterAsText which is part of arcPy library. Us-
ing same as the previous command, the code will define the
output layer for the chosen model. The default path for all
the sub-processes is defined to be in C drive because it is the
default drive in all the systems. Therefore, the code creates
folders called FR_modeler, WOE_modeler, or EBF_modeler
depending on the selected process.

The next stage is to analyze the input layer (e.g. slope) and
the lookup command will be applied to prepare the layer for
the zonal geometry process. The zonal geometry is defined as
the table used to work on the statistics of the output. A file is
added to the attribute of the created table in the previous step,
i.e. zonal, to be used for calculating the percentage of each
class of the input layer. A statistics analysis was applied to
calculate the sum of all the pixels of the selected layer. Then,
a joining process is defined to link the created table with the
input layer. Subsequently, a tabulate area process was ran to
calculate the percentage of the occurrence of the independent
factor (i.e. landslide) in each input layer classes. The last step
for calculating FR is applied using Eq. (1). Then, the result-
ing value is defined as an integer and used to reclassify the
input layer. The code includes a delete command to delete all
the sub-process layers and tables.

The process of WoE and EBF contains the same process of
FR as its initial step. However, more statistical analysis and
more field are added to calculate the parameters of WoE and
EBF which are listed in Egs. (2)—(8). In each selected model,
a different folder will be created. The user may overwrite and
redo the process as much as required because the command
overwriteOutput was defined for each code. The flow chart
regarding the three algorithms is shown in Figs. 7, 8, and 9.
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2.3 Test area and data

Although the developed program can be used in any appli-
cation that employs BSA, the proficiency of the tool was
tested in the hazard domain. To examine the capability and
efficiency of the developed program, landslide susceptibility
analyses were performed by using the developed ArcMAP
tool with three BSA models, namely FR, WoE, and EBF. The
program was tested for the landslide susceptibility mapping
of Bukit Antarabangsa, Ulu Klang, Malaysia (Fig. 10).

A spatial database was constructed and analyzed on the
basis of the altitude, aspect, curvature, slope, stream power
index, topographic wetness index, distance from the river,
distance from the road, and geological layers. Comprehen-
sive overview of the usage of BSA for landslide susceptibil-
ity mapping has been reported in numerous studies (Yalcin et
al., 2011). A study conducted by Mohammady et al. (2012)
provided additional knowledge on the capabilities of these
three BSA methods. This previous research compared the
three methods of FR, WoE, and EBF and determined the
pros and cons of each statistical approach. A total of 47 land-
slide locations were recorded and a landslide inventory map
was prepared. The allocation of the landslide inventory for
training and testing was 70 and 30 %, respectively (Fig. 10).
The training data set (31 landslide locations) was chosen ran-
domly and a dependent layer (landslide layer) was created.
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Figure 10. Location of the pilot study area for testing the proposed
ArcMAP tool.
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Figure 11. Landslide susceptibility maps derived from (a) FR, (b) WoE, and (c) EBF.

3 Experimental results and discussion

To examine the efficiency of the developed bivariate statis-
tical modeler (BSM) tool, landslide susceptibilities were de-
rived by using all three methods. The correlation among the
conditioning factors and landslide occurrence was extracted.
The landslide probability index was measured and classi-
fied by using the proper scheme. To produce a susceptibility
map, the probability index should be partitioned into various
classes. The quantile method was applied in the current re-
search because of its reputation in classification. In the quan-
tile classification method, each class has the same number
of features. The method provided appropriate results on the
comparison between the created landslide susceptibility map
and the spatial distribution of landslide events. The acquired
landslide conditioning factors are shown in Fig. 11.

The derived landslide susceptibility map from WoE shows
a different appearance compared with the two other maps.
Validation should be performed to determine which map is
reliable. The area under curve (AUC) was applied to exam-
ine the precision of the derived susceptibility maps (Pérez-
Vega et al., 2012). The success rate values were 68, 63, and
76 % for FR, WoE, and EBF, respectively. Moreover, 71, 75,
and 80 % were the prediction rates for FR, WoE, and EBF,
respectively. The EBF represented the highest accuracy com-
pared with other methods in terms of success and prediction
rates. The prediction rate value for WoE was high but not as
high as EBF. This result is caused by the greater proficiency

www.geosci-model-dev.net/8/881/2015/

and capability of EBF compared with WoE. Recognizing the
best method for modelling is possible because any compara-
tive study is restricted and the best method for a specific data
set is significantly related to the characteristics of that data
set. Figure 12 illustrates the computed accuracies.

The design and interface of the developed tool show that
the BSA is simple to execute by using the proposed program
compared with manual calculation. The derived susceptibil-
ity maps and their AUC values suggest that the tool is precise
and reliable. Previous research has established that because
of the nature of BSA, the obtained results are imprecise com-
pared with machine learning and rule-based methods. There-
fore, the measured accuracies are acceptable for these simple
statistical methods.

4 Conclusions

To perform hazard studies, several requirements, such as
constructing the precise spatial database, obtaining high-
resolution imagery, and providing a reliable inventory map,
should be fulfilled. Users can be confronted with the insuffi-
ciency of appropriate and free tools to perform various analy-
ses. This condition makes such studies complex and in some
cases, time-consuming. The BSA is one of the fundamen-
tal methods in hazard mapping. Hence, developing a tool
that manages a large number of factors with an automatic
statistical and classification performance is essential. Users
commonly have to apply the BSA calculation manually and

Geosci. Model Dev., 8, 881-891, 2015
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Figure 12. Graphic representation of the cumulative frequency diagram presenting the cumulative landslide occurrence (%; y axis) in
landslide probability index rank (%; x axis): (a) success rate, and (b) prediction rate.

within a separate software. The results have to be entered in
a GIS environment and used to reclassify each conditioning
factor one after another. The proposed BSM tool can be used
to automate the BSA procedure and to facilitate the gener-
ation of the probability index. BSM is developed as a tool
in ArcGIS, which is capable of performing the three BSA
models of FR, WoE, and EBF. This tool can also manage
large amounts of conditioning factors with reduced calcula-
tion time, thus allowing the replication of various trials. As an
example, a significant characteristic of BSM is the reclassifi-
cation of the conditioning factors on the basis of the acquired
weight from BSA. The GUI also allows the application of
FR, WOE, and EBF without entering any code from Python,
thus helping the user in model operation. The application
to landslide susceptibility mapping in Bukit Antarabangsa
in Ulu Klang, Malaysia, provides significant outcomes. All
three methods are applied and landslide susceptibility maps
are created. FR, WoE, and EBF acquired success rates of 68,
63, and 76 %, respectively. AUC values for prediction rates
are 71, 75, and 80% for FR, WoE, and EBF, respectively.
In conclusion, the proposed tool can transform the BSA pro-
cedure into a simple and fast technique. This tool can assist
scientists in performing statistical analyses for any environ-
ment and mathematical application.
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