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Abstract. The geosciences are a highly suitable field of ap-

plication for optimizing model parameters and experimental

designs especially because many data are collected.

In this paper, the weighted least squares estimator for

optimizing model parameters is presented together with its

asymptotic properties. A popular approach to optimize ex-

perimental designs called local optimal experimental designs

is described together with a lesser known approach which

takes into account the potential nonlinearity of the model pa-

rameters. These two approaches have been combined with

two methods to solve their underlying discrete optimization

problem.

All presented methods were implemented in an open-

source MATLAB toolbox called the Optimal Experimental

Design Toolbox whose structure and application is described.

In numerical experiments, the model parameters and ex-

perimental design were optimized using this toolbox. Two

existing models for sediment concentration in seawater and

sediment accretion on salt marshes of different complexity

served as an application example. The advantages and disad-

vantages of these approaches were compared based on these

models.

Thanks to optimized experimental designs, the parameters

of these models could be determined very accurately with

significantly fewer measurements compared to unoptimized

experimental designs. The chosen optimization approach

played a minor role for the accuracy; therefore, the approach

with the least computational effort is recommended.

1 Introduction

Mathematical models often contain roughly known model

parameters which are optimized based on measurements. The

resulting accuracy of the model parameters depends on the

conditions, also called experimental setups or experimental

designs, under which these measurements are carried out.

These experimental designs can be optimized so that the re-

sulting accuracy is maximized. Thus, the effort and cost of

measurements can be significantly reduced.

The optimization of experimental designs is therefore par-

ticularly interesting for geosciences, where much money is

spent on data collection. However, few application exam-

ples exist in this field (see Guest and Curtis, 2009, for an

overview). This article aims to promote this approach in geo-

sciences and exemplarily apply it to an existing salt marsh

accretion model (Schuerch et al., 2013).

In optimizing experimental design, the main problem is to

quantify the information content of the measurements to be

planned. In general, this can only be done approximatively.

There are several approaches available. In Sect. 2, four dif-

ferent approaches to optimize experimental designs together

with the weighted least squares estimator for model param-

eters are presented. Each of these four approaches makes a

different trade-off between accuracy and computational ef-

fort.

One approach is based on the linearization of the model

with respect to the parameters and is the most common used

approach called local optimal experimental design. The sec-

ond more robust approach takes into account the potential
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nonlinearity of the model parameters. Both approaches are

combined with two different approaches of solving the un-

derlying discrete optimization problem.

To the author’s knowledge, there is no open-source soft-

ware available that can apply all four of these approaches.

The only software using this robust approach is a closed-

source software called VPLAN which was introduced in

Körkel (2002). For the local optimal approach, several im-

plementations are available, but there is no open-source soft-

ware written in MATLAB. All four approaches, together

with approaches to optimize model parameters, were imple-

mented in a MATLAB toolbox called the Optimal Experi-

mental Design Toolbox. Its structure and application is de-

scribed in Sect. 3.

We have chosen two models as application examples,

simulating the suspended sediment concentration on salt

marshes during tidal inundation and resulting accretion rates

on these marshes (Krone, 1987; Temmerman et al., 2003;

Schuerch et al., 2013). Both models are zero-dimensional

point models and differ in their complexity and number of

parameters. These models can be used as a basis to predict

the survival capability of salt marshes under the influence of

expected global sea level rise.

To use these models for local salt marshes, their param-

eters have to be adapted to the local environmental condi-

tions. The required measurements are very time-consuming

and costly. Using the presented approaches, these measure-

ments could be carried out much more efficiently. These two

models are described together with the attendant numerical

experiments and the associated results in Sect. 4.

2 Optimization of model parameters and

experimental designs

The first step to the optimization of model parameters is the

choice of the estimator. This maps the measurement results

onto estimated model parameters. These estimated parame-

ters are often defined so that they minimize a so-called misfit

function. The misfit function quantifies the distance between

the measurement results and the model output.

The estimator should be derived from the statistical prop-

erties of the measurement errors, for example, a maximum

likelihood estimator. Often the measurement errors are as-

sumed to be normally distributed; this leads to the least

squares estimators. They are the most widely used class of

estimators since their introduction by Gauss and Legendre

(Stigler, 1981).

Their simplest form is the ordinary least squares estima-

tor. Its misfit function is the sum of the squares of the dif-

ferences between each measurement result and the corre-

sponding model output. A generalization is the weighted

least squares estimator which has advantages in the event

of heteroscedastic measurement errors. This estimator and

its asymptotic properties are presented in the following sub-

section. The generalized least squares estimator is a further

generalization which takes into account the stochastic depen-

dence of the measurement errors.

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is pre-

sented. For this purpose, some notations and assumptions are

introduced.

The model function is denoted by

f :�x ×�p→ R.

Here, �x ⊆ Rnx is the set of feasible experimental designs,

and �p ⊂ Rnp is the set of feasible model parameters from

which the unknown exact parameter vector p̂ ∈�p is to be

determined. Often these sets are defined by lower and upper

bounds.

The measurement result for every design x ∈�x is consid-

ered as a realization of a random variable ηx . Each random

variable ηx is assumed to be normally distributed with the

expectation f (x, p̂) and standard deviation σx > 0.

A1a. ηx ∼N (f (x, p̂),σ 2
x ) for every x ∈�x .

Furthermore, these random variables are assumed to be

pairwise stochastically independent.

A1b. ηx and ηx′ are stochastically independent for every

x,x′ ∈�x .

If we consider n≥ np measurement results

y = (y1, . . .,yn)
T
∈ Rn with corresponding experimen-

tal designs x1, . . .,xn ∈�x , the weighted least squares

estimation pn and the corresponding estimator Pn are

defined as

pn := Pn(y) := arg min
p∈�p

ψn(y,p), (1)

where the misfit function ψn is defined as

ψn : Rn×�p→ R, (y,p) 7−→
n∑
i=1

(
yi − f (xi,p)

σxi

)2

.

With the following assumptions, the existence of a mini-

mum is ensured.

A2. f (x, · ) is continous for every x ∈�x .

A3. �p is compact (closed and bounded).

If ψn(y, · ) is convex, the minimum is also unique.

The parameter estimation pn in Eq. (1) can be calculated

with an optimization method for continuous optimization

problems. A possible method is the sequential quadratic pro-

gramming (SQP) algorithm which is, for example, described

in Nocedal and Wright (1999, chapter 18).
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2.2 Asymptotic properties

Provided certain regularity conditions are met, the least

squares estimators are consistent, asymptotically normally

distributed and asymptotically efficient.

These asymptotic properties were first proved by Jennrich

(1969) for the ordinary least squares estimator and also dis-

cussed in Malinvaud (1970) and Wu (1981). In White (1980),

these properties were proved for the weighted least squares

estimator and for the generalized least squares estimator in

White and Domowitz (1984). A good summary for all three

can be found in Amemiya (1983).

Consistency means that the estimated parameters converge

in probability to the unknown exact parameters as the number

of measurements goes to infinity; that is,

Pn
p
−→ p̂ as n→∞

for the weighted least squares estimator Pn with the unknown

exact model parameters p̂.

For consistency, the following assumptions are sufficient

in addition to the previous assumptions A1 to A3 (Seber and

Wild, 2003, p. 565).

A4a. n−1Bn converges uniformly with Bn :�p ×�p→

R, (p,p′) 7−→
n∑
i=1

f (xi,p)f (xi,p
′)σ−2

xi
.

A4b. D̄(p, p̂)= 0⇒ p = p̂ for all p ∈�p with

D̄ := lim
n→∞

n−1Dn andDn :�p×�p→ R, (p,p′) 7−→
n∑
i=1

(f (xi,p)− f (xi,p
′))2σ−2

xi
(D̄ is well defined by

assumption A4a).

An estimator is asymptotically efficient if its variance con-

verges to the Cramér–Rao bound as the number of mea-

surements goes to infinity. The Cramér–Rao bound (Cramér,

1946; Rao, 1945) is a lower bound for the variance of any

unbiased estimator.

For asymptotic efficiency, the following assumptions are

sufficient in addition to the previous assumptions A1 to A4

(Seber and Wild, 2003, p. 571).

A5. p̂ is an interior point of �p. Let �̂p ⊆�p be an open

neighborhood of p̂.

A6. f (xi, · ) is twice continuously differentiable in �̂p.

A7. n−1Mn converges uniformly with Mn : �̂p→

Rnp×np ,p 7−→
n∑
i=1

∇pf (xi,p)∇pf (xi,p)
T σ−2

xi
.

A8. n−1Hn converges uniformly with Hn : �̂p→

Rnp×np ,p 7−→
(

n∑
i=1

( ∂2

∂pi∂pj
f (xi,p))

2σ−2
xi

)
i,j=1,...,np

.

A9. M̂(p̂) is invertible with M̂ := lim
n→∞

n−1Mn.

In this case, the Cramér–Rao bound of the weighted least

squares estimator Pn is the inverse of the Fisher information

matrix Mn(p̂).

Under these assumptions, the asymptotic behavior of the

weighted least squares estimator can be summarized by its

convergence in distribution as follows:

√
n(Pn− p̂)

d
−→N (0,Mn(p̂)

−1n) as n→∞ (2)

(see, e.g., Seber and Wild, 2003, chapter 12 and Walter and

Pronzato, 1997, chapter 3).

2.3 Optimal experimental designs

The accuracy of the weighted least square estimator Pn can

be described by its covariance matrix. Due to the asymp-

totic distribution (Eq. 2), this can be approximated by the

inverse of the information matrix Mn(pn), provided the ma-

trix Mn(pn) is nonsingular, that is,

cov(Pn)≈Mn(pn)
−1. (3)

Therefore, the unknown model parameters can be deter-

mined more accurately the smaller the (approximated) co-

variance matrix of the estimator is.

Criteria φ : Rnp×np → R+ ∪ {∞}, such as the trace or de-

terminant, are used in order to compare these matrices (see,

e.g., El-Monsef et al., 2009, for an overview of various cri-

teria). If the approximation (Eq. 3) is used and Mn(pn) is

singular, the value of φ is set to infinity.

In the context of optimizing experimental designs, we as-

sume n≥ 0 measurements have been carried out and designs

for additional measurements should be selected from m de-

signs x′1, . . .,x
′
m ∈�x . The choice for each design x′i is ex-

pressed by a weight wi ∈ {0,1}, where 1 indicates the selec-

tion and 0 the contrary.

Hence, the resulting information matrix, depending on the

choice w ∈ {0,1}m and the parameter vector pn ∈�p, is de-

fined as

Mn(w,pn) :=Mn(pn)

+

m∑
i=1

wi

∇pf (x
′

i,pn)∇pf (x
′

i,pn)
T

σ 2
x′i

.

If the covariance matrix is approximated by the inverse

of the information matrix, optimal (additional) designs, with

respect to a criterion φ, are expressed by a solution of

arg min
w∈{0,1}m

φ(Mn(w,pn)
−1). (4)

These optimal designs are called local optimal designs be-

cause these designs are only optimal regarding the previous

model parameter estimation pn and not the unknown exact

model parameters p̂.

Potential constraints on the choice of the designs can be

realized by constraints on the weight w. For example, the
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number or the cost of the measurements can be limited by

linear constraints on w. These constraints have to be consid-

ered in the above optimization problem (Eq. 4).

The formulation (Eq. 4) is useful if additional experimen-

tal designs should be chosen from a finite number of experi-

mental designs. Otherwise, the optimization problem can be

reformulated so that the additional optimal design variables

have to be optimized directly.

2.4 Calculation of optimal experimental designs

A straight-forward way to solve the optimization problem

(Eq. 4) is to test all possible values of w. This direct approach

is only practical for small m.

For bigger m, the optimization problem (Eq. 4) is solved

approximately. For this purpose, it is solved in the contin-

uous rather than the discrete setting; that is, the constraint

w ∈ {0,1}m is relaxed to w ∈ [0,1]m. Accordingly, the prob-

lem

arg min
w∈[0,1]m

φ(Mn(w,pn)
−1) (5)

is solved.

A possible algorithm to solve this continuous optimiza-

tion problem is the SQP algorithm which is, for example,

described in Nocedal and Wright (1999, chapter 18).

After the continuous problem (Eq. 5) is solved, its solu-

tion is projected onto integers with heuristics. An easy way

is to round the continuous solution. Another is to sum up all

continuous weights and then to choose as many designs with

the highest continuous weights. Potential constraints on w

still have to be considered by solving the continuous prob-

lem and the following projection onto an integer solution.

The second heuristic, for example, preserves constraints on

the number of designs to choose.

Our numerical experiments with the application examples

in Sect. 4 have shown that the solutions of the continuous

problem (Eq. 5) are already close to integer values. This be-

havior was also observed, for example, in Körkel (2002) and

Körkel et al. (2004).

2.5 Robust optimal experimental designs

The information matrix Mn depends on the estimated pa-

rameters pn if the parameters are nonlinear. This may lead

to suboptimal designs if ∇pf ( · ,pn) differs strongly from

∇pf ( · , p̂).

For this reason, we now consider a method which takes

into account a possible nonlinearity of the parameters. This

robust method was presented in Körkel (2002) and Körkel

et al. (2004).

The main idea of the method is not to optimize the quality

of the covariance matrix for a single parameter vector pn as

in Eq. (4), but to optimize the worst case quality within a

whole domain which contains the unknown exact parameter

vector p̂ with high probability.

For this purpose, a confidence region which contains p̂

with probability α ∈ (0,1) is approximated by

Gn(α) :=
{
p ∈ Rnp | ‖p−pn‖

2
Mn(pn)

−1 ≤ γ (α)
}
. (6)

Here, γ (α) is the α quantile of the χ2 distribution and

‖v‖A :=
√

vTAv denotes the energy norm of the vector v ∈

Rnp with respect to the positive definite matrix A ∈ Rnp×np .

The approximation of the confidence region arises from lin-

earization of the model function f in point pn and the as-

sumption Pn ∼N (p̂,Mn(pn)
−1).

If the worst case quality in the entire region Gn(α) shall

be optimized, the optimization problem (Eq. 4) becomes

arg min
w∈{0,1}m

max
p∈Gn(α)

φ(Mn(w,p)
−1). (7)

This minimum–maximum optimization problem can be

solved only with considerably more computational effort

compared to the optimization problem (Eq. 4). In order to

reduce this effort, the function φ(Mn(w, · )
−1) is linearized

in point pn in the following way:

φ(Mn(w,p)
−1)≈

φ(Mn(w,pn)
−1)+∇p(φ(Mn(w,p)

−1))T (p−pn).

The resulting inner maximization problem can be solved

analytically. It is

max
p∈Gn(α)

φ(Mn(w,pn)
−1)+∇p(φ(Mn(w,p)

−1))T (p−pn)

= φ(Mn(w,pn)
−1)+ γ (α)

1
2 ‖∇p(φ(Mn(w,pn)

−1))‖Mn(pn),

as can be seen, for example, in Körkel (2002). With this ap-

proach the optimization problem (Eq. 7) is replaced by

arg min
w∈{0,1}m

φ(Mn(w,pn)
−1)

+ γ (α)
1
2 ‖∇p(φ(Mn(w,pn)

−1))‖Mn(pn). (8)

This optimization problem again can be solved approxi-

matively by solving the corresponding continuous problem

and projecting this solution onto an integer solution as de-

scribed in the previous subsection.

It should be noted that in this approach (Eq. 8), the first and

second derivatives of the model are used. In contrast, only the

first derivative is used for local optimal designs (Eq. 4).

2.6 Efficiency of experimental designs

A common way to describe the benefit of an experimental

design is its efficiency. The efficiency of an experimental de-

sign w ∈ {0,1}m regarding a criterion φ and with n previous

measurements is defined as follows:

Eφ(w) := min
ŵ∈{0,1}m

φ(Mn(ŵ, p̂)
−1)

φ(Mn(w, p̂)−1)
. (9)
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model_object = model_explicit ( 'p* t ˆ2 ' , 'p ' , ' t ' )
% 1 . input : the model func t i on as symbol ic formula
% 2 . input : the parameter va r i ab l e ( s )
% 3 . input : the exper imenta l des ign va r i ab l e ( s )
% return : a model ob j e c t which implements the model i n t e r f a c e

Listing 1. Create a model with a symbolic model function.

It should be noted that the searched parameter vector p̂ is

used here. If this is not known then the efficiency can not be

calculated.

The efficiency is always between 0 and 1 and is larger the

better the experimental design is.

3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous sec-

tion for optimization of model parameters and experimental

designs as a MATLAB toolbox named the Optimal Experi-

mental Design Toolbox.

MATLAB (MathWorks, 2014) was chosen because it sup-

ports vector and matrix operations and provides many nu-

merical algorithms, especially for optimization. Moreover,

MATLAB supports object oriented programming and there-

fore permits a simple structuring, modification and extension

of the implementation. Another advantage of MATLAB is

that it can easily interact with C and Fortran.

The toolbox is available at a Git repository (Reimer, 2015)

under the GNU General Public License (Foundation, 2007).

It includes extensive commented source code, a detailed help

integrated in MATLAB and a user manual.

3.1 Provision of the model function

For the methods described in Sect. 2, the model function and

its first and second derivative with respect to the model pa-

rameters are required.

Actually, the model function is required for the parame-

ter optimization and, depending on the optimization method,

also its first derivative. Its first derivative is also required for

the experimental design optimization. If the robust method is

used its second derivative is also required.

The model interface prescribes how to provide these func-

tions. They need not be written in MATLAB itself, since

MATLAB can call functions in C, C++ or Fortran.

The toolbox has several possibilities to provide the deriva-

tives automatically. The model_fd class, for example, pro-

vides the derivatives by approximation with finite differ-

ences. If the model function is given as an explicit symbolic

function, the model_explicit class can provide the derivatives

by symbolic differentiation with the Symbolic Math Toolbox.

Listing 1 shows, for example, how a model_explicit object is

created.

In the event that the model function is given as a solution

of an initial value problem, the Optimal Experimental De-

sign Toolbox contains the model_ivp class. This class solves

model_object = model_ivp ( '−y+(t+1)*b ' , ' [ a , b ] ' , 'y ' , ' a ' , ' t ' , [ 1 , 1 0 ] )
% 1 . input : the r i gh t hand s i d e o f the d i f f e r e n t i a l equat ion
% 2 . input : the model parameter va r i ab l e ( s )
% 3 . input : the model func t i on va r i ab l e
% 4 . input : the i n i t i a l va lue o f the model func t i on
% 5 . input : the dependent va r i ab l e in the model func t i on
% 6 . input : the i n t e r v a l o f i n t e g r a t i o n
% return : a model ob j e c t which implements the model i n t e r f a c e

Listing 2. Create a model with a model function given as solution

of an initial value problem.

solver_object . set_model ( model_object )
% input : an ob j e c t that implements the model i n t e r f a c e

Listing 3. Set the model.

the parameter dependent initial value problem and calculates

the necessary derivatives. Listing 2 shows how a model_ivp

object is created.

The class takes advantage of the fact that the integration

and differentiation of the differential equation can be inter-

changed if the model function is sufficiently often contin-

uously differentiable. Required derivatives of the differen-

tial equation and initial value are calculated again by sym-

bolic differentiation with the Symbolic Math Toolbox. The

resulting initial value problems are solved with MATLAB’s

ode23s function which can also solve stiff problems. Since

the arising initial value problems for the derivatives are mu-

tually independent, the solutions of the initial value problems

can be calculated in parallel using the Parallel Computing

Toolbox.

3.2 Setup of the solver

Methods for the optimization of model parameters and ex-

perimental designs are provided by the solver class. First, a

solver object has to be created and the necessary information

has to be passed.

On the one hand, this is the model which has to be set by

the set_model method (see Listing 3).

On the other hand, an initial guess of the model parame-

ters have to be set by the set_initial_parameter_estimation

method (see Listing 4).

Potential accomplished measurements can be set via the

set_accomplished_measurements method. These measure-

ments consist of the corresponding experimental designs to-

gether with their variances of the measurement errors. Fur-

thermore, the measurement results themselves have to be

passed for a parameter estimation (see Listing 5).

Finally, if an optimization of experimental designs shall be

performed, the selectable measurements have to be set by the

set_selectable_measurements method (see Listing 6). These

measurements consist of the experimental designs as well as

the variances of the measurement errors.

www.geosci-model-dev.net/8/791/2015/ Geosci. Model Dev., 8, 791–804, 2015
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solver_object . set_initial_parameter_estimation ( [ 1 , 2 ] )
% input : the i n i t i a l e s t imat ion o f the model parameters

Listing 4. Set the initial parameter estimation.

solver_object . set_accomplished_measurements ( ( 1 : 5 ) ' , 0 .01* ones (5 , 1 ) , −←↩
exp ( ( 1 : 5 ) ' ) )

% 1 . input : the exper imenta l de s i gn s o f accomplished measurements
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s
% 3 . input : the a s s o c i a t ed measurement r e s u l t s

Listing 5. Set accomplished measurements.

3.3 Optimization of experimental designs and

model parameters

Once the solver object is configured as described in the

previous subsection, experimental designs or model param-

eters can be optimized via the get_optimal_measurements

(see Listing 7) or the get_optimal_parameters (see Listing 8)

method, respectively. Constraints on the experimental de-

signs or model parameters can be passed to the correspond-

ing method.

The get_optimal_measurements method can solve the op-

timization problem directly by trying all possible combina-

tions or approximatively.

For the approximative solving, the continuous problem is

solved with the SQP algorithm (see Nocedal and Wright,

1999, Chapter 18) provided by the fmincon function of the

Optimization Toolbox. Its solution is projected onto an inte-

ger solution by the second heuristic described in Sect. 2.4.

The first derivative of the objective function is provided

in analytical form. This saves much of the computing time

compared to derivatives calculated by finite differences. The

Hessian matrix is approximated by the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) update (Broyden, 1970; Fletcher,

1970; Goldfarb, 1970; Shanno, 1970).

MATLAB’s SQP algorithm can recover from infinity. If

an infinite function value is reached during the optimization,

the algorithm attempts to take a smaller step. Thus, if the

optimization is started with a regular design, singular designs

do not make any trouble.

The get_optimal_parameters method uses the trust-

region-reflective (Coleman and Li, 1994, 1996) or the

Levenberg–Marquard algorithm (Levenberg, 1944; Mar-

quardt, 1963; Moré, 1977) provided by the lsqnonlin func-

tion of the Optimization Toolbox to solve the least squares

problem resulting from the parameter estimation. The first

derivative of the objective function is also provided analyti-

cally.

Furthermore, the expected quality of the resulting param-

eter estimation for any selection of experimental designs can

be calculated using the get_quality method of the solver ob-

ject. Thus, for example, the increase in quality by adding or

removing experimental designs can be determined.

solver_object . set_selectable_measurements ( ( 6 : 1 0 ) ' , 0 .01* ones (5 , 1) )
% 1 . input : the s e l e c t a b l e exper imenta l de s i gn s
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s

Listing 6. Set selectable measurements.

optimal_measurements = solver_object . get_optimal_measurements (3 )
% input : the maximum number o f measurements a l lowed
% return : the optimal subset o f the s e l e c t a b l e measurements with a ←↩

number o f measurements l e s s or equal to the r e s t r i c t i o n

Listing 7. Optimize experimental designs.

3.4 Execution time and memory consumption

The total time required for the optimization of the model pa-

rameters or an experimental design depends crucially on the

time required for evaluating the model function and its first

and second derivative with respect to the model parameters.

When optimizing model parameters, the model function

and its first derivative has to be evaluated several times with

different model parameter vectors at the accomplished mea-

suring points. When optimizing experimental designs, the

model function and its first and second derivative has to be

evaluated for one model parameter vector but at the accom-

plished and selectable measuring points.

Generally, the execution time increases with the number of

parameters, the number of selectable measurements and the

number of accomplished measurements.

The implementation of this toolbox favors a low execution

time of a low memory consumption. For this reason, (inter-

mediate) results within a method call and between succes-

sive method calls are saved and reused. An example is mul-

tiple occurring matrix multiplications within a method call.

Another example is a re-optimization of designs with other

constraints, such as another maximum number of allowed

measurements. Here, the derivatives of the model function

calculated in the previous optimization are reused.

Due to the described caching strategy, the total memory

consumption depends linearly on the number of (accom-

plished and selectable) measurements and quadratically on

the number of parameters. Nevertheless, it should be possi-

ble to solve problems with hundreds of parameters and thou-

sands of measurements on a standard computer.

3.5 Changeable options

Many settings for the optimization of experimental designs

or model parameters are changeable. These can be altered by

the set_option method of the solver object (see Listing 9).

The desired options can be set using property-value pairs, as

already known from MATLAB.

Estimation method: The estimation method for the qual-

ity of experimental designs can be selected by the es-

timation_method option. The standard point estimation

method and the robust region estimation method, both
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optimal_parameters = solver_object . get_optimal_parameters ( [ 0 , 0 ] , [ 9 , 9 ] )
% 1 . input : the lower bound o f the model parameters
% 2 . input : the upper bound o f the model parameters
% return : a parameter e s t imat ion r e s u l t i n g from the accomplished ←↩

measurements which takes in to account the passed c on s t r a i n t s

Listing 8. Optimize model parameters.

solver_object . set_option ( ' option name ' , option_value )
% 1 . input : the name o f the opt ion which should be changed
% 2 . input : the new value o f the opt ion

Listing 9. Change an option.

presented in Sect. 2, are supported. The region estima-

tion method is the default setting.

Confidence level: The level of confidence for the confi-

dence region at the region estimation method, repre-

sented by α in Sect. 2.5, can be set by the alpha option.

The default value is 0.95.

Prior parameter estimation: It can be chosen whether a

parameter optimization should be performed before op-

timizing experimental designs. This can be set by the

parameter_estimation option and the values yes or no.

To save computational time no previous parameter opti-

mization is performed by default.

Quality criterion: The quality criterion, which is applied to

the covariance matrix and represented in Sect. 2.1 as

φ, can also be chosen with the criterion option. The

criterion interface prescribes the syntax of the criterion

function and its necessary derivatives. The trace of the

covariance is the default criterion and implemented by

the criterion_A class.

Parameter scaling: It can be chosen whether model pa-

rameter should be scaled before optimizing experi-

mental designs or the model parameters themselves.

Scaling means a uniform impact of all model pa-

rameters and is enabled by default. The options are

edo_scale_parameters and po_scale_parameters with

the values yes and no.

Optimization algorithm for experimental design: The

exact and the approximative approach for the opti-

mization of an experimental design problem can be

chosen with the edo_algorithm option and the values

direct and local_sqp. For time reasons, by default the

experimental design problem is solved by the approxi-

mative approach. Furthermore, the number of function

evaluations and iterations by the SQP algorithm can

be constrained by the options edo_max_fun_evals and

edo_max_iter.

Optimization algorithm for parameter estimation: The

optimization algorithm for the parameter estimation

problem can be chosen with the po_algorithm op-

tion. The trust-region-reflective (Coleman and Li,

1994, 1996) and the Levenberg–Marquard algorithm

(Levenberg, 1944; Marquardt, 1963; Moré, 1977)

can be chosen with the values trust-region-reflective

and Levenberg–Marquardt The trust-region-reflective

algorithm is the default algorithm. Furthermore, the

number of function evaluations and iterations can be

limited through the options po_max_fun_evals and

po_max_iter.

3.6 Help and documentation

The Optimal Experimental Design Toolbox also provides ex-

tensive integrated help. Besides system requirements and

version information, a user’s guide with step-by-step instruc-

tions on how to optimize experimental designs and model

parameters is included. Demos show how to work with the

toolbox in practice. In addition, a detailed description for ev-

ery class and method is available.

The layout of the help for the Optimal Experimental De-

sign Toolbox is based on the design of the help also used by

MATLAB and other toolboxes. Thus, the user does not have

to get reoriented with a new layout.

4 Application examples

In this section, numerical experiments together with their

results regarding the optimization of model parameters and

experimental designs are presented for two models of dif-

ferent complexity. Both models describe the sediment con-

centration in seawater during tidal inundation of coastal salt

marshes.

Coastal salt marshes have an important ecological function

with their diverse flora and as a nursery for migratory birds.

Furthermore, they have the role of dissipating current and

wave energy and therefore reducing erosional forces at dikes

and coastal areas.

With these models, the vertical accretion of coastal salt

marshes can be predicted. When considering expected global

sea level rise (IPCC, 2013), the future ability of coastal salt

marshes to adapt to rising sea levels and thus to survive can

be estimated. Depending on these estimates, measures to pro-

tect these salt marshes can be taken.

Calibration of the model parameters requires measure-

ments of suspended sediment concentration during tidal in-

undation, which are time-consuming and laborious. For this

reason, it is advantageous to know under which conditions

and how many of these measurements should be carried out.

4.1 The models

Both models are zero-dimensional point models, which de-

scribe the sediment concentration in seawater during tidal in-

undation of coastal salt marshes. The first model (C2-model)

has two model parameters, was described in Temmerman

et al. (2003) and was adapted for a salt marsh in the Wadden
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Sea (southeastern North Sea), located near Hoernum in the

southern part of the island of Sylt (Germany), by Schuerch

et al. (2013). The second model (C3-model) has three model

parameters, is an extension of the first model and subject of

current research.

4.1.1 The C2-model

The first model is called the C2-model. Here, the sedi-

ment concentration in kg m−3 is modeled by the function

C : [tS, tE)→ R+. Furthermore, tS is the start time of the in-

undation of the salt marsh and tE the end time. The concen-

trationC is given implicitly as the solution of the initial value

problem

C′(t)=

{
−wSC(t)+(C0−C(t))h

′(t)
h(t)−E

if h′(t) > 0
−wSC(t)
h(t)−E

else

for all t ∈ (tS, tE) and C(tS)= C0. (10)

Here, C0 ≥ 0 is the initial sediment concentration of the

flooding seawater and wS ≥ 0 the settling velocity of the sus-

pended sediment in m s−1. Moreover, the function

h : R→ R, t 7−→
a

1+
(
t−x0

b

)2 +hHW−hMHW

describes the time-dependent water surface elevation and E

the elevation of the marsh both in meters and relative to a

fixed datum. Here, a, b and x0 are constants describing the

change in the water level, hMHW the mean high water level

and hHW the high water level of a certain tidal inundation in

meters. The start tS and end time tE of the inundation are the

points where the height h equals the elevation of the marsh

E.

The sediment concentrationC thus decreases continuously

within a tidal cycle depending on the settling velocity wS

which is described by the term

−
wSC(t)

h(t)−E

in Eq. (10). During the flood phase, the reduced sediment

concentration is partially compensated by new inflowing sea

water. This is described by the term

(C0−C(t))h
′(t)

h(t)−E

in the first case of Eq. (10).

The values used in the water surface elevation function h,

for the local salt marsh, are shown in Table 1. These have

been estimated by nonlinear regression analysis using lo-

cal historic tide gauge data from 1999 to 2009 (at Hoernum

Hafen, Germany). The continuous high-resolution (6 min)

time series has, therefore, been split into the individual tidal

cycles beforehand (Schuerch et al., 2013).

Table 1. Values used for the water surface elevation function h

a b x0 hMHW E

local value 3.7506 19447.1 −1301.0 3.75 m 1.3m

Table 2. Values for the C2-model.

C0 [kg m−3] wS [m s−1]

reference value 0.1 10−5

typical range 0.01–0.2 4× 10−6–4× 10−4

start value 5 2× 10−7

optimization bound 10−4–104 10−8–1

The high water level hHW of the current tidal inundation is

measured or taken from predictions.

The initial sediment concentration C0 and the settling ve-

locity wS are only roughly known and therefore model pa-

rameters. Reference values derived from literature values and

typical ranges can be found in Table 2 (see Bartholdy and Aa-

gaard, 2001, for C0 and Temmerman et al., 2003, for C0 and

wS).

4.1.2 The C3-model

The second model is an extension of the C2-model and is

called the C3-model. Here the model parameters C0 and wS

are substituted by

C0 = k(hHW−E),

wS = r(C0)
s
= rks(hHW−E)

s .

Where k ≥ 0, r ≥ 0 and s ≥ 0 are unknown model parame-

ters. Reference values derived from literature values and typ-

ical ranges (where available) can be found in Table 3 (see

van Leussen, 1999, and Pejrup and Mikkelsen, 2010, for the

settling index s and Temmerman et al., 2004, for k).

In this model, a linear relationship between the initial sed-

iment concentration and the high water level is assumed,

where during heavy flooding a higher sediment concentration

is assumed (Temmerman et al., 2003; Schuerch et al., 2013).

Additionally, a relationship between the initial sediment con-

centration and the settling velocity is assumed (Krone, 1987).

This is an empirical approximation of the so-called floccula-

tion process (Burt, 1986).

4.2 Numerical experiments

We performed several numerical experiments to compare the

benefit of optimized with unoptimized measurement condi-

tions. Also, the benefit of different approaches to optimiza-

tion measurement conditions was compared. Using these re-

sults, an appropriate approach for the optimization of condi-

tions for real measurements was selected.
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Table 3. Values for the C3-model.

k r s

reference value 0.25 10−5 0.5

typical range 0.04–0.2 0.5–3.5

start value 12.5 2× 10−7 3

optimization bound 10−4–104 10−8–1 10−1–5

The approaches introduced in Sect. 2 and implemented

by the Optimal Experimental Design Toolbox described in

Sect. 3 were used for the numerical experiments. For that,

we used the model_ivp class which allows for the calculation

of the solution of an initial value problem and its first and

second derivatives with respect to the model parameters. The

C2-model was implemented by the model_C2 class and the

C3-model by the model_C3 class which is a subclass of the

model_C2 class.

For our numerical experiments, we used the model output

with the reference parameters in Tables 2 and 3 plus an ad-

ditive normally distributed measurement error with zero ex-

pectation as artificial measurement results. As standard de-

viation of the measurement error, we chose 10−2 once and

10−1 once.

In our numerical experiments, we alternately selected a

fixed number of experimental designs and estimated the

model parameters with corresponding measurement results.

We carried out each experiment 10 times and averaged the

results to minimize the influence of randomness.

For the parameter estimation, the start values and bounds

in Tables 2 and 3 were used. The bounds were chosen so that

the typical range of values is covered, but also more extreme

values are possible. The starting values were chosen slightly

outside the typical ranges to represent a poor initial guess.

The experimental designs for these models consist of the

time point of the measurement and the high water level of the

tidal inundation. A set of thirty selectable experimental de-

signs was specified. They were obtained by combining three

different high water levels of the tidal inundation (1.5, 2.0

and 2.5 m) with 10 time points equidistantly spread over the

inundation period.

For choosing the experimental designs, we compared the

standard and the robust approach presented in Sect. 3 with the

trace as quality criterion together with uniformly distributed

experimental designs. In the robust approach, a confidence

level of 95 % was used. The optimization problems for the

experimental designs were once solved exactly and once ap-

proximatively (see Sect. 2.4). To evaluate all these methods,

we compared the resulting parameter estimations with the

reference model parameters.

We further investigated whether the number of measure-

ments after which new experimental designs are optimized

had an impact on the accuracy of the parameter estimation.

For this purpose, different numerical experiments were per-

formed where the parameters and experimental designs have

been optimized after each one, three and five measurements.

Altogether 50 measurements were simulated at each exper-

iment with the C2-model. For the C3-model, 150 measure-

ments were simulated at each experiment since the model is

more complex and therefore a sufficiently accurate estima-

tion of its parameters might be more difficult.

4.3 Accuracy of the parameter estimations

In this subsection, we compare the accuracy of the parameter

estimations resulting from the previously described numeri-

cal experiments. Some results are illustrated in Figs. 1 and

2.

4.3.1 Results for the C2-model

The accuracy of the parameter estimations for the C2-model

only improved marginally after four to twelve measurements

independent of the choice of the experimental designs. The

accuracy improved faster the more frequently the experimen-

tal designs and parameters were optimized. However, the

best achieved accuracy was independent of the frequency.

With uniformly distributed experimental designs the best

achieved accuracy was slightly worse than with optimized

experimental designs. Four to six more measurements were

needed compared to optimized experimental designs in order

to achieve their accuracy.

Although the parameters occur nonlinearly in this model,

it made close to no difference whether the standard or the

robust approach for the optimization of the experimental de-

signs was used.

The approximate solving of the discrete optimization

problem has resulted in slightly worse accuracy at the first it-

erations compared to the exact solving. Thereafter, the differ-

ence was very small. The solutions of the relaxed continuous

optimization problems were almost always nearly integer.

The different standard deviations of the measurement er-

rors only influenced the best achieved accuracy which was of

course worse at a higher standard deviation. This can be ex-

plained by the fact that different constant standard deviations

only mean a different scaling of the objective of the experi-

mental design optimization problem. Thus, different constant

standard deviations do not affect its solution.

4.3.2 Results for the C3-model

After 10–25 measurements, the accuracy of the parameter es-

timations for the C3-model with optimized experimental de-

signs only improved slightly. Again, the fewer measurements

performed per iteration the faster the accuracy improved, and

the best achieved accuracy was independent of the number of

measurements per iteration.

With uniformly distributed experimental designs, the best

accuracy was achieved after 24–60 measurements. Further-
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Figure 1. Averaged error in the parameter estimation from 10 optimization runs with the C2-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

Figure 2. Averaged error in the parameter estimation from 10 optimization runs with the C3-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

more, the best achieved accuracy was worse by about a factor

of 10 compared to the best accuracy achieved by (standard)

optimized experimental designs.

The standard approach for optimizing experimental de-

signs resulted in a slightly better accuracy compared to the

robust approach.

For both approaches, the difference between the accuracy

achieved with the exact solutions of the discrete optimization

problem and the accuracy achieved with the approximate so-

lutions was small but recognizable and almost constant over

the iterations. Also in these experiments, the solutions of the

relaxed continuous optimization problems were almost all

nearly integer.

Again, the different standard deviations of the measure-

ment errors only influenced the best achieved accuracy.

4.3.3 Conclusions regarding the approach for

optimizing experimental designs

Optimized experimental designs provided a much more accu-

rate parameter estimation than uniformly distributed experi-

mental designs independent of the chosen optimization ap-

proach. Furthermore, only about half as many measurements

were needed to archive the same accuracy with optimized ex-

perimental designs as with uniformly distributed experimen-

tal designs. In the more complex model, the difference was

even bigger.

The robust approach did not achieved higher accuracy

compared to the standard approach. In the complex model,

the robust approach was even slightly less accurate. This may

indicate that the gain in accuracy by taking into account the

nonlinearity is offset by the additional approximations in the

robust approach. Since a considerably higher computational

effort is associated with the robust approach, the standard ap-

proach should be preferred, at least for these models.

The exact solutions of the discrete optimization problems

yielded only slightly better accuracy gains compared to its

approximate solutions. The fact that the approximate solu-

tions were almost all nearly integer also argues for the ap-

proximate solving. This circumstance was also observed in

Körkel (2002) and Körkel et al. (2004). For these reasons

and because the exact solving requires much more computa-

tional effort, the approximate solving should be preferred, at

least for these models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental

designs. Some results are illustrated in Figs. 3 and 4.
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Figure 3. Averaged efficiency for the experimental designs from 10 optimization runs with the C2-model and three measurement per iteration

with standard deviation 10−2 of the measurement error.

Figure 4. Averaged efficiency for the experimental designs from 10 optimization runs with the C3-model and three measurement per iteration

with standard deviation 10−2 of the measurement error.

The results emphasized the already seen importance of the

optimization of the experimental designs. In particular, the

advantage in the case of the few measurements carried out so

far was highlighted. Again, the slight advantage of the stan-

dard approach over the robust approach was visible. With

increasing number of accomplished measurements, the se-

lection strategy of new measurements became less important

as the amount and thus the influence of the new measure-

ments compared to those of the accomplished measurements

decreased.

4.5 Distribution of optimal measuring points

In this subsection, we compare the distribution of the mea-

suring points optimized in the previously described numeri-

cal experiments. Graphical representation of the distribution

of the measuring points from some numerical experiments

are shown in Figs. 5 and 6.

4.5.1 Distribution for the C2-model

The optimized measuring points were almost exclusively lo-

cated at the start and end of the inundation periods. At the

start of the inundation period, both approaches in the ex-

act variant favored lower high water levels unlike both ap-

proaches in the approximate variant which favored higher

high water levels. At the end of the inundation period, the

standard approach in both variants favored lower high wa-

ter levels unlike the robust approach in both variants which

favored higher high water levels.

4.5.2 Distribution for the C3-model

For the C3-model the optimized measuring points accumu-

lated at the end of the inundation periods. All approaches

favored lower high water levels. With an increasing number

of measurements per iteration, the robust approach in both

variants also preferred measurements in the middle of the in-

undation periods with the highest high water level.

4.5.3 Conclusions regarding the distribution of optimal

measuring points

The numerical experiments showed that measurements at the

start and end of the inundation periods should be preferred

for the C2-model.

Measurements at the start of the inundations can be justi-

fied by the fact that one parameter of the model is the concen-

tration at the start of the inundation. The fact that the settling

velocity as second model parameter most affects the concen-

tration at the end of the inundations justifies measurements

here. This can be confirmed by an examination of the ordi-

nary differential equation of the model derived with respect

to the settling velocity. The derivative of the model with re-
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Figure 5. Averaged frequency of measurements from 10 optimization runs with the C2-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

Figure 6. Averaged frequency of measurements from 10 optimization runs with the C3-model and three measurement per iteration with

standard deviation 10−2 of the measurement error.

spect to the settling velocity is zero at the start of the inun-

dation and is getting smaller the further the inundation pro-

gresses. Its absolute greatest value it thus reached at the end

of the inundation.

The experiments with the C3-model showed that here mea-

surements at end of the inundation periods should be pre-

ferred. In this model, the concentration at the start is no pa-

rameter but is affected by a parameter that also influences

the settling velocity. For this reason, measurements are not

suggested at the start.

For both models the high water level seemed to play a mi-

nor role for the choice of measuring points.

As a rule of thumb, one can say that measurements should

be carried out at the end of an inundation period and also

some at the start if the C2-model is used.

5 Conclusions

In this paper we presented two different approaches for op-

timizing experimental design for parameter estimations. One

method was based on the linearization of the model with re-

spect to its parameters, the other takes into account a possi-

ble nonlinearity of the model parameters. Both methods were

implemented in our presented Optimal Experimental Design

Toolbox for MATLAB.

By employing the presented approach for two existing salt

marsh models, we showed that model parameters can be de-

termined much more accurately if the corresponding mea-

surement conditions were optimized. In particular for time-

consuming or costly measurements, it is useful to optimize

the measurement conditions with the Optimal Experimental

Design Toolbox.

This gain in accuracy is not limited to the application ex-

amples. In general, using the implemented methods, the ac-

curacy of the parameters of any model can be maximized

while minimizing the measurement cost, provided that the

related assumptions are fulfilled. However, the required ex-

ecution time for the optimization increases with the number

of model parameters and (accomplished and selectable) mea-

surements. Parallelization techniques in the optimization as

well as in the model evaluation itself can counteract this ef-

fect.

In addition to the parallelization, the optimization in the

toolbox could also be extended to techniques of globaliza-

tion, so that the chance of getting into a local minimum is

reduced.

The results concerning the application examples have not

significantly differed despite the various approaches for op-

timizing experimental design. For this reason, the approach

with the least computational effort is recommended. How-

ever, this recommendation can not be applied readily to other
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(more complex) models. Here, the performance of the ap-

proaches should be compared again if possible.

Furthermore, it has been found that measurements at the

beginning and end of the inundation period are particularly

important for the application examples. The high water level

of the inundation seemed to play a minor role. These results,

however, can not be applied easily to other models. Usually,

a separate optimization of experimental design makes sense

here.

Code availability

The Optimal Experimental Design Toolbox is available un-

der the GNU General Public License (Foundation, 2007) at

a Git repository (Reimer, 2015). In addition to the toolbox,

including commented source code and a user manual, an im-

plementation of the application examples is also available.
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